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Abstract A simple, yet unifying method is provided for the construction of tilings by
tiles obtained from the attractor of an iterated function system (IFS). Many examples
appearing in the literature in ad hoc ways, as well as new examples, can be constructed
by this method. These tilings can be used to extend a fractal transformation defined on
the attractor of a contractive IFS to a fractal transformation on the entire space upon
which the IFS acts.
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1 Introduction

The subject of this paper is fractal tilings of R” and, more generally, complete metric
spaces. By “fractal”, we mean that each tile is the attractor of an iterated function sys-
tem (IFS). Computer generated drawings of tilings of the plane by self-similar fractal
figures appear in papers beginning in the 1980s and 1990s, for example the lattice tiling
of the plane by copies of the twindragon. Tilings constructed from an IFS often pos-
sess global symmetry and self-replicating properties. Research on such tilings includes
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the work of numerous people including Akiyama, Bandt, Gelbrich, Gréchenig, Hass,
Kenyon, Lagarias, Lau, Madych, Radin, Solomyak, Strichartz, Thurston, Vince, and
Wang; see for example [1,3,12-14,17,19,20,22,25,27-30] and the references therein.
Even aperiodic tilings can be put into the IFS context; see for example the fractal ver-
sion of the Penrose tilings [4].

The use of the inverses of the IFS functions in the study of tilings is well-established,
in particular in many of the references cited above. The main contribution of this paper
is a simple, yet unifying, method for constructing tilings from an IFS. Many examples
appearing in the literature in ad hoc ways, as well as new examples, can be constructed
by this method. The usefulness of the method is demonstrated by applying it to the
construction of fractal transformations between basins of attractors of pairs of IFSs.

Section 2 contains background on iterated function systems, their attractors, and
addresses. Tiling are constructed for both non-overlapping and overlapping IFSs, con-
cepts defined in Sect. 3. The tilings constructed in the non-overlapping case, in Sect. 3,
include well known examples such as the digit tilings, crystallographic tilings, and
non-periodic tilings by copies of a polygon, as well as new tilings in both the Euclidean
and real projective planes. The tilings constructed in the overlapping case, in Sect. 4,
depend on the choice of what is called a mask and are new. Theorems 3.8, 3.9, and
4.3 state that, in both of the above cases, when the attractor of a contractive IFS has
nonempty interior, the resulting tiling almost always covers the entire space. Tilings
associated with an attractor with empty interior are also of interest and include tilings
of the graphs of fractal continuations of fractal functions, a relatively new develop-
ment in fractal geometry [9]. The methods for obtaining tilings from an IFS can be
extended to a graph iterated function system (GIFS); this is done in Sect. 5. The Pen-
rose tilings, as well as new examples, can be obtained by this general construction.
Section 6 describes how, using our tiling method, a fractal transformation, which is a
special kind of mapping from the attractor of one IFS to the attractor of another, can
be extended from the attractor to the entire space, for example, from R” to R" in the
Euclidean case.

2 Iterated Function Systems, Attractors, and Addresses

Let (X, dx) be a complete metric space and let F be an IFS with attractor A; the
definitions follow:

Definition 2.1 If f, : X — X, n = 1,2,..., N, are continuous functions, then
F =X f1, f2, ..., fn) is called an iterated function system (IFS). If each of the
maps f € F is a homeomorphism then F is said to be invertible, and the notation
Foo= (G 7 £ fy ) s used.

Subsequently in this paper we refer to some special cases. An IFS is called affine if
X = R" and the functions in the IFS are affine functions of the form f(x) = Ax +a,
where A is an n x n matrix and a € R". An IFS is called a projective IFS if X = RP",
real projective space, and the functions in the IFS are projective functions of the form
f(x) = Ax, where Aisan (n + 1) x (n + 1) matrix and x is given by homogeneous
coordinates.
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By a slight abuse of terminology we use the same symbol F for the IFS, the set of
functions in the IFS, and for the following mapping. Letting 2% denote the collection
of subsets of X, define F : 2X_,0X by

FB)=|J f(B)

feF

for all B € 2%, Let H = H(X) be the set of nonempty compact subsets of X. Since
F(H) € Hwecanalso treat F as amapping F' : H — H. Let dyy denote the Hausdorff
metric on H.

For B C Xandk € N:={1,2,...},let Fk(S) denote the k-fold composition of F,
the union of f;, o fi, o--- o f; (S) over all finite words i;i3 - - - iy of length k. Define
FO(S) = 8.

Definition 2.2 A nonempty set A € H(X) is said to be an attractor of the IFS F if

(i) F(A) = A and
(ii) there is an open set U C X such that A C U and limy_ Fk(S) = A for all
S € H(U), where the limit is with respect to the Hausdorff metric.

The largest open set U such that (ii) is true, i.e. the union of all open sets U such
that (ii) is true, is called the basin of the attractor A with respect to the IFS F and is
denoted by B = B(A).

An IFS F on a metric space (X, d) is said to be contractive if there is a metric d
inducing the same topology on X as the metric d with respect to which the functions
in F are strict contractions, i.e., there exists A € [0, 1) such that c?x( fx), fOy) <
Ac?x (x,y) forall x,y € X and for all f € F. A classical result of Hutchinson [15]
states that if F' is contractive on a complete metric space X, then F has a unique
attractor with basin X.

Let [N] = {1,2,..., N}, with [N1F denoting words of length k in the alphabet
[N], and [N]*° denoting infinite words of the form wjw; - - -, where w; € [N] for all
i. “Word” will always refer to an infinite word unless otherwise specified. A subword
(either finite or infinite) of a word w is a string of consecutive elements of w. The length
k of w € [N]¥ is denoted by |w| = k.Forw € [N]* we use the notation @ = www. . ..
For w € [N]*® and k € N := {1, 2, ...} the notation

wlk =wiwy - wg

is introduced, and for an IFS F = (X; f1, f2,..., fy) and w € [N, the following
shorthand notation will be used for compositions of function:

Jo = fu Ofwzo"'ofwk,
S Do = o 0 fo 00 fi!
Note that, in general, (f "), # (fo) L.

In order to assign addresses to the points of an attractor of an IFS, it is convenient
to introduce the point-fibred property. The following notions concerning point-fibred
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attractors [10] derive from results of Kieninger [18], adapted to the present setting.
Let A be an attractor of F on a complete metric space X, and let B be the basin of
A. The attractor A is said to be point-fibred with respect to F' if (i) { S (C )};02 | 1s
a convergent sequence in H(X) for all C € H(X) with C C B(A); (ii) the limit is
a singleton whose value is independent of C. If A is point-fibred (w.r.t. F) then we
denote the limit in (ii) by {7 (w)} C A.

Definition 2.3 If A is a point-fibred attractor of F, then, with respect to F' and A, the
coordinate map w : [N]*° — A is defined by

m(w) = Um  fo(xo). 2.0

The limit is independent of xo € B(A). For x € A, any word in 7 ~!(x) is called an
address of x.

Equipping [ N]°° with the product topology, the map 7 : [N]*® — A is continuous
and onto. If F is contractive, then A is point-fibred (w.r.t. F'). A point belonging to
the attractor of a point-fibred IFS has at least one address.

3 Fractal Tilings from a Non-overlapping IFS
Let S° denote the interior of a set S in a complete metric space X. Two sets X and Y
are overlapping if (X NY)° # (.

Definition 3.1 In a metric space X, a tile is a nonempty compact set. A tiling of a set
S is a set of non-overlapping tiles whose union is S.

Definition 3.2 An attractor A of an IFS F = (X f1, f>, ..., fn) is called overlap-
ping (w.rt. F) if f(A) and g(A) are overlapping for some f, g € F. Otherwise A
is called non-overlapping (w.r.t. F). A non-overlapping attractor A is either fotally
disconnected, i.e, f(A) N g(A) =@ forall f, g € F orelse A is called just touching.
Note that a non-overlapping attractor with nonempty interior must be just touching.

Starting with an attractor A of an invertible IFS

F:{Xs fl’f27"'7fN}v

potentially an infinite number of tilings can be constructed from A and F—one tiling
Ty for each word & € [N]°°. The basic construction is as follows. Given a word
6 € [N]°° and a positive integer k, for any w € [N 1%, let

th.o = ((f Dok o fu)(A),
Tox =to.w : @€ [NIF}.

Since the IFS F is non-overlapping, the sets in 7y ; do not overlap. Since, for any
€ [N¥, we have

(F e o fo = (F Dok o (Foe) ™ o fores © fo = (F Dottt © foparon
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the inclusion

Ty C Ty k1

holds for all k. Therefore
o0
Ty = Tox (3.1)
k=1

is a tiling of

B®) == | J(f oA € X,

k=1

where the union is a nested union. Note that B(6) is connected if A is connected, and
B(6) has nonempty interior if A has nonempty interior.

If F is contractive and the unique attractor A has nonempty interior, it is possible
to tile the entire space X with non-overlapping copies of A. More specifically, if F is
contractive and 6 satisfies a not too restrictive condition given below, then 7y tiles the
entire space X. In the case that Tj tiles X, we call Ty a full tiling.

Example 3.3 The IFS F = {R; fi, fo} where f1(x) = x/2 and fo(x) =x/2+4+1/2
has attractor [0, 1]. In this case, the tiling 77 is the tiling of [0, c0) by unit intervals.
The tiling 75 is the tiling of (—oo, 1] by unit intervals. If 6 # 1,2, then Ty is the full
tiling of R by unit intervals.

Definition 3.4 For an IFS F with attractor A, call & € [N]* full if there exists a

nonempty compact set A’ C A° such that, for any positive integer M, there exist
n > m > M such that

fo, 0 fou_i 00 fo,,,(A) C A
By Proposition 3.7 and Theorem 3.9, nearly all words 6 are full.

Definition 3.5 Call 6 € [N]° reversible w.r.t. a point-fibred attractor A and IFS F if
there exists an w = wjwj - - - € [N]* such that  is the address of some point in A°
and, for every pair of positive integer M and L, there is an integer m > M such that

w1+ 0p = Oy LOnyL—1 - Omt1. (3.2)

Call 0 € [N]* strongly reversible w.r.t. A and F if there exists w = wjwy - - - € [N]*®
such that w is the address of some point in A° and, for every positive integer M, there
is an integer m > M such that

wlwy Wy = 60,01 ---01. (3.3)
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By statement (3) of Theorem 3.7 below, if 6 is strongly reversible, then 6 is
reversible. The converse, however, is not true; for example, the string 6 = 312 is
reversible but not strongly reversible. To see that 312 is reversible, choose w = 12.

Let S : [N]*® — [N]*® denote the usual shift map and introduce the notation
M ‘= wpwp—1 - o). Equation 3.2 can be expressed S"O|L = m, while
Eq. 3.3 can be expressed 8|m = M Note that Definition 3.5 is equivalent to: there
is a point w, whose image under 7 lies in the interior of A, such that, if it is truncated
to any given finite length and then reversed, then it occurs as a finite subword of 6
infinitely many times.

Definition 3.6 A word 6 € [N]* is disjunctive if every finite word is a subword of
0. In fact, if 0 is disjunctive, then every finite word (in the alphabet [ N]) appears as a
subword in 6 infinitely many times.

Theorem 3.7 For an IFS F, let A be a point-fibred attractor. With respect to A
and F:

(1) There are infinitely many disjunctive words in [N1*° for N > 2.
(2) If A° #£ 0, then every disjunctive word is strongly reversible.
(3) Every strongly reversible word is reversible.

(4) A word is reversible if and only if it is full.

Proof Not only are there infinitely many disjunctive words for N > 2, but the set of
disjunctive sequences is a large subset of [ N]°° in a topological, in a measure theoretic,
and in an information theoretic sense [26].

Concerning statement (2), assume that 6 is disjunctive. Let a € A° and let o be an
address of a. There is a neighborhood N (A) of a that lies in A and an integer s such
that any point whose address starts with o|s lies in N(A) C A. Statement (2) will
now be proved by induction. We claim that there exists a word @ and an increasing
sequence #, > n of integers and such that the following statements hold:

(1) olty =01ty
%
2) wlt, =olsb|t, —s.

The two conditions guarantee that 6 is stongly reversible. The case n = 1 is shown as
follows. Since 6 is disjunctive, there is a | > s such that o'|s = 6,61 -0 —s41.
Define

<« P ——
wlty :=0]t = a|sO|t; —s.
We next go from n to n + 1. Since 6 is disjunctive, there is a 7,41 > f, such that

w|tn = efn-ﬁ—lel‘r&l*1 e etn-%—lftn‘l’l'

Now define

DA
o|tyt1 = 0ty11 = 0|t,0th+1 — 1y = 0[5 Oty41 — 5.
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The second equality guarantees that the initial 7, elements of w are unchanged; the
third equality follows from condition (2) of the induction hypothesis.

Concerning statement (3), assume that 6 is strongly reversible, and let pos-
itive integers M and L be given. If w, as required, has the strong reversal
property with respect to 6, then there exists an integer n > M + L so that
0,601+ --01 = wiw2 - - - @y, from which it follows that there is aninteger m > M such
that 0,4 10n+1—1---01 = wiw2 - wn4+r and therefore 0,110 +1-1- - Ont1 =
wiws - - - wy,. It follows that 0 is reversible.

Concerning one direction of statement (4), assume that 6 is reversible, and let @
have the required reversal property w.r.t. 6. Since (@) € A° it follows that there is
L € Nso that f,r(A) C A°. Choose A" = fy1(A) in Definition 3.4 of full. Let M
be given. By the definition of 6 reversible, there exists an m > M such that

f9m+L o f9m+[ﬁ] o--+0 f9m+1(A) = fw1 o fw2 0--+0 fa)L(A) = A/-

Taking n = m + L in Definition 3.4, it follows that 6 is full.

Concerning the other direction of statement (4), suppose that @ is full and let A’
be the corresponding compact set. It follows that, for any positive integer M, there
isn > m > M sothat fg, o fg,_, -+ o fg,, (A) C A" C A°, which implies that
fgnk o fgnkq -0 fp,(A) C A’ C A° for an infinite strictly increasing sequence
{ni )32, of positive integers. The set

[N1® U [ JINT

k=1

becomes a compact metric space when endowed with an appropriate metric (words
with a long common prefix are close). Therefore the sequence of finite words
{61,6n,—1.--01 },fil has a convergent subsequence, which we continue to denote by
the same notation {60, —1...01}7;, with limit € [N]*°. Hence, for any L and k
sufficiently large, 6y, 0, —1...0p, —1L+1 = wiwy...w . It follows that 6 is reversible with
reverse word w. O

Theorem 3.8 Foraninvertible IFS F = (X; f1, f2, ..., fn), let A be a just-touching
attractor with nonempty interior. If 0 is a full word, then Ty is a tiling of the set B(0)
which contains the basin of A. If F is contractive, then Ty is a full tiling of X.

Proof The proof is postponed because it is a special case of Theorem 4.3 in Sect. 4. O

By the above theorem, if F is contractive and 6 is full, then Ty tiles the entire
space X. According to Theorem 3.7, full words are plentyful. According to the next
result, if F' is contractive, for any ransom infinite word 6, Ty tiles X with probability
1. Define a word 6 € [N]*° to be a random word if there is a p > 0 such that each
Ok, k =1,2,...,1s selected at random from {1, 2, ..., N} where the probability that
Or = n, n € [N], is greater than or equal to p, independent of the preceding outcomes.

Theorem 3.9 Let F = {X; fi, f>,..., fn}, where X is compact, be a just touching
invertible IFS with attractor A with nonempty interior. If 0 € [N]*° is a random word,
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then, with probability 1, the tiling Ty covers the basin B(A). If F is contractive, then
Ty is a full tiling of X.

Proof Let x lie in the basin B of the attractor A of F', and let 6 be arandom word. Then
x lies in the union of the tiles of 7y if and only if x € f9_|nl (A) for some n if and only
if fg, 0 fo,_, 00 fg, 0 fg,(x) € A for some n. Given a word w, consider a sequence
{xk};io of points in X defined by xy = fu, (xk—1), k > 1. If  is a random word,
then {xk};:ozo is called a random orbit of the point x¢. Since 6 is assumed random, if Q
is an nonempty open subset of A, then, according to [7, Theorem 1], with probability
1 there is a point in the random orbit of any point x in the basin that lies in Q C A,
i.e., with probability 1, fy, o fy, , o+ o fp, (x) € Q for some n. Therefore, with
probability 1, there is a ball B, centered at x such that

f9n0f9n—1 O~--Of91(Bx) C Q CA.

Next, for any & > 0 let B, be the open g-neighborhood of the complement B of B,
and let B, = B\ B,. Since B, is compact, B; has a finite covering by balls B, and
hence, with probability 1, there is an n such that

fgn Of@nfl ©---0 fgl(BS) C A

Therefore, for any ¢ > 0, with probability 1, the tiling Ty covers B,. Assume that
Ty does not cover B. Then there exists an € such that Ty does not cover B,. But the
probability of that is 0. If F' is contractive, the basin B is X. O

Example 3.10 (Digit tilings of R") The terminology “digit tiling” comes from the data
used to construct the tiling, which is analogous to the usual base and digits used to
represent the integers. An expanding matrix is an n X n matrix such that the modulus
of each eigenvalue is greater than 1. Let L be an n x n expanding integer matrix. A
set D = {dy, ds, ...,dn} of coset representatives of the quotient Z" /L(Z™) is called
a digit set. It is assumed that 0 € D. By standard algebra results, for D to be a digit
set it is necessary that

|[D| = |detL|.
Consider an affine IFS F := F(L, D) = R"*; fi, f2,..., fn), where
fi) = A" —dy).

Since L is expanding, it is known that, with respect to a metric equivalent to the
Euclidean metric, L~! is a contraction. Since F is contractive, there is a unique
attractor A called a digit tile. The basin of A is all of R”. Note that a digit tile is
completely determined by the pair (L, D) and will be denoted 7 (L, D). It is known
[30] that a digit tile T is the closure of its interior and its boundary has Lebesque
measure 0. If 6 € [N]* is full, then Tj is a tiling of R" called a digit tiling. Examples
of digit tilings, for example by the twin dragon, appear in numerous books and papers
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Fig. 1 Three views of the tiling in Example 3.12 using & = 12301230. The L-shaped attractor is shown in
white near the center. The viewing windows are centered at the origin, and are of width and height 20,40,
and 60 from left to right

on fractals. Under fairly mild assumptions [30, Theorem 4.3], a digit tiling is a tiling
by translation by the integer lattice Z" with the following self-replicating property:
forany tile t € T, p, its image L(¢) is the union of tiles in 77, p. For this reason, such
a tiling is often referred to as a reptiling of R".

Example 3.11 (Crystallographic tilings of R") Gelbrich [12] generalized digit tiling
from the lattice group Z" to any crystallographic group I'. Let L : R"” — R” be an
expanding linear map such that LIL™' € T.If D = {dy, ..., dy} is a set of right
coset representatives of I'/ LTL™!, then

F={R" L7'(+d),....,L7' (- +dn)}

is a contractive IFS with attractor T (I', L, D) with nonempty interior, called a crys-
tallographic tile. The Levy curve is an example of such a crystallographic tile (for
the 2-dimensional crystallographic group p4). A tiling Ty is called a crystallographic
reptiling.

Example 3.12 (Chair tilings of R?) The IFS F = {R?; fi, f2, f3. f1} where

f1lx, y) = (x/2,y/2), B, y)=(=x/24+1,y/2),
fZ(x’ Y) = (X/2+ 1/4’ y/2+ 1/4)3 f4(x7 }’) = (X/Z, _y/2+ 1)9

is an IFS whose attractor is a chair or ”L”-shaped polygon; see Figs. 1 and 2. The chair
tilings are usually obtained by what is referred to as a “substitution method”. For the
chair tile, there are uncountably many distinct (non-isometric) tilings 7. There are
numerous other such polygonal tiles that are the attractors of just touching IFSs.

Example 3.13 (Fold out tiling) Let E denote a point in the interior of the filled
square [0, 1]2 with vertices ABCD. Let P, Q, R, S be the orthogonal projection
of E on AB, BC,CD, DA respectively. Four affine maps are uniquely defined
by fi(ABCD) = APES, f,(ABCD) = BPEQ, f3(ABCD) = CREQ, and
f4(ABCD) = DRES. The attractor of Fr = {R?; f1, f>, f3, fa} is [0, 1]2. The IFS
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Fig. 2 Another tiling from the
same IFS of Example 3.12, but
using 6 = 12300312

Fig. 3 The tiling of
Example 3.13

LR IR

R
E=RI'N

“RI'E

- new o

LR IR

B .
LR T

e BT

UAl&k WOranr & 1

FE is of the type introduced in [6], pairs of which may be used to describe fractal
homeomorphisms on [0, 112 (see Example 6.6 of Sect. 6). According to Theorem 3.8,
for any full word 6 € {1, 2, 3, 4}°°, we obtain a tiling Ty of R, one of which is shown
in Fig. 3, where E = (2/3, 1/3).

Since a € f£:([0,1]%) N £;([0, 11*) # @ implies that ' (a) = fj_l(a), the
mapping 7 : [0, 11> — [0, 1]? given by T'(x) = £, ' (x) when x € £; ([0, 1]?) is well
defined and continuous. It can be said that fi_1 applied to [0, 172 causes [0, 1]% to be
“continuously folded out from [0, 1]>”. The tilings Ty can be thought of as repeated
applications of such folding-outs.

Example 3.14 (Triangular affine and projective tilings) Fig. 5 shows two views of the
same affine tiling of R%. As in Example 3.13, this tiling can be used to extend a fractal
homeomorphism between two triangular attractors to a fractal homeomorphism of
the Euclidean plane (see Sect. 6). Consider the IFS F = {Rz; f1, f2, f3, fa} where
each f, is an affine transformations defined as follows. Let A, B, and C denote
three noncollinear points in R%. Let ¢ denote a point on the line segment AB, a
a point on the line segment BC, and b a point on the line segment C A, such that
{a,b,c}N{A, B, C} = (J; see panel (i) of Fig. 4. Let fi : R? — RZ denote the unique
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Fig. 4 (i) The points used to define the affine transformations of the IFS F = {Rz; f1, f2, f3, fa}; (ii)
images of the the triangle A BC; (iii) the attractor of the IFS {RZ; f1, 2, f3, fa}

Fig. 5 The tiling of Example 3.14. Each image shows a portion of the same tiling of R?2 generated by an
affine IFS with a triangular attractor. All tiles are triangles (the black quadrilateral is the union of two black
triangular tiles)

affine transformation such that
fiI(ABC) = Abc,

by which we mean that fj maps A to A, B to b, and C to c. Using the same notation,
let affine transformations f>, f3, and f4 be the ones uniquely defined by

f>(ABC) = aBc,
f3(ABC) = abC,
fa(ABC) = abc.

Panel (ii) of Fig. 4 shows the images of the points A, B, C under the four functions of
the IFS, illustrating the special way that the four functions fit together. The attractor
of F is the filled triangle with vertices at A, B, and C, which we will denote by A,
illustrated in (iii) in Fig. 4.
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Fig. 6 This image illustrates a
projective tiling in a fashion
analogous to that of the tiling in
Fig. 5. It is represented using the
disk model for R P?

If0 = 616,05--- € {1,2,3,4}% is full, then according to Theorem 3.8, Ty is a
tiling of R? by triangles. One such affine tiling is illustrated in Fig. 5 at two resolutions.
A related projective tiling is shown in Fig. 6. Note that, if e is a common edge of two
triangles A1, A in Ty, then e is the image of the same edge of the original triangle
ABC from A and A,, and if v is a common vertex in Ty of two triangles A», As
in Ty, then v is the image of the same vertex of the original triangle ABC from A
and Aj.

Although Theorems 3.8 and 3.9 hold for IFSs whose attractor has nonempty interior,
the basic tiling construction of this section applies as well to IFSs with an attractor
with empty interior.

Example 3.15 (Tilings from an attractor with empty interior) Fig. 7 shows a tiling by
copies of the Sierpinski gasket.

Figures 8 and 9 show the tiling Ty, for a particular @, for the IFS {Rz; fi.i=1,2,3}
where

fix,y) = (—0.7x +0.7,0.65y + 0.35),
fr(x,y) = (=03y + 1, —0.6x — 0.3y + 1.3),
f30x,y) = (0.375y + 0.325, —0.6x + 0.35y + 0.65).

Example 3.16 (A tiling of a fractal continuation of a fractal function) A fractal func-
tion, defined say on the unit interval, is a function, often everywhere non-differentiable,
whose graph is the attractor of an IFS. Figure 10 shows a tiling, obtained by the method
of this section, by copies of the graph of such a function. Such extensions of fractal
functions are essential to the notion of a fractal continuation, a generalization of ana-
lytic continuation of an analytic function; see [9].
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Fig. 7 The original attractor is
the small black Sierpinski gasket
near the middle bottom;

0 =322222-..

If (.7

Fig. 8 The tiling of Example 3.15

4 Fractal Tilings from an Overlapping IFS

In this section the concept of a mask is used to generalize the tilings of the previous
section from the non-overlapping to the overlapping case.

Definition 4.1 For an IFS F = (X; fi, fa, ..., fn) with attractor A, a mask M =
{M;,1 <i < N}isatiling of A such that M; C f;(A) forall f; € F.
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Fig. 9 Zoom of the tiling in Figure 8

Fig. 10 A tiling of the graph of W “
a continuation [9] of a fractal 1‘% |

function by copies of the graph | \\
of the fractal function

Let F be an invertible IFS with attractor A, and let & € [N]*®°. Let M =
{M\, M, ..., My} be any mask of A with the property that My, = fp, (A). Define
recursively a sequence of masked IFSs Fy, = {X; fu.1, fu.2, ..., fu N} Withrespective
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masks M,, and attractors A,, and associated tilings 7,,, forn = 1,2, ..., as follows:
Fi=F, A=A, T} ={A}, M| =M, and

Torr = {fy 4 (foi@ONMyj) 1 i=12,... N, teT,},

Fupr ={X; fig o fuio fag, ti=1....N},

Ans1 3= g, (An), @D
My = {My41.1, ..., Mys1n}, where

My1,6,01 = fnt1,0,01 (Ant1),
Mui1j = frg Mu )\ 16,40 (Ansr) if j 5 O

The following proposition is not hard to verify.

Proposition 4.2 Foralln = 1,2, ..., we have

(1) A, is the attractor of F,;
(2) M, is a mask for A,;
(3) Tn C Tyt

In light of statement (3), define, with respect to F and A:
o0
Tp = Tpme = U T,.
n=1

If an attractor A of an IFS F' is non-overlapping, then
M:={fi(A) :i=1,2,...,N}

is a mask for A. It is not hard to verify that, in this case, the tiling 7' ¢ is exactly the
tiling Ty defined by Eq. (3.1) in Sect. 3.

Theorem 4.3 Let F = (X; f1, fo, ..., fN) be an invertible IFS with attractor A
with nonempty interior and mask M. If 0 is a full word, then the tiling Trq g covers
the basin B(A). If F is contractrive, then Ty g is a full tiling of X.

Proof 1t is sufficient to show that the basin B := B(A) is covered by the tiling, so let
x € B. According to the third line of Eq. (4.1), the tiling T'o4 ¢ covers

L o) i o  Fo) (i o Fa ) £ fo) £ (A)
= fo  f s (A

for any n. So it sufices to show that x € fejl fgzl f9:1 e fgzl(A) for some n, or
equivalently ’

fenfenfl "'f@](-x) € A
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Fig. 11 Part of a tiling of R
generated by a masked IFS

By the definition of attractor, for any ¢ > O there is an M, such that if m > M,
then

F"(x) C A,

where A, is the open e-neighborhood of A. Because 6 is assumed to be full, there exists
acompact A" with A" C A° with the property that, for any M there existn > m > M
such that

fen ©-+-0 f6111+1(A) C A/ c Ao'
This implies that there exists an go-neighborhood Ag, of A such that

f@n ©--+0 f0m+1(A8()) - A°

for some g9 > 0. If M > M,,, then

J6, 00 fo 0 fo, 0 0 fo,(x) € fo, 00 fy,, (Ag) C A,
as required. O

Example 4.4 A portion of a one-dimensional masked tiling, illustrated in Fig. 11, is
generated by the overlapping IFS

F={R: fi(x) = bx, f2(x) = bx + (1 — b)}

with b = 0.65. The unique attractor of F is A = [0, 1]. The mask for A (w.r.t. F) is
{M| = [0, b], M> = [b, 1]}. The left-most tile is black and corresponds to the interval
A.

In this and other pictures, different colors represent different tiles. Some colors may
be close together. The images are approximate.

Example 4.5 Figures 12 (b = 0.65) and 13 (b = 0.9) illustrate masked tilings of
[0, 00)2 C R? associated with the family of IFSs F = {[0, 00)? : f1, f2, f3, f4}
where

fi(x, y) = (bx, by), fa(x,y) = (bx + 1, by),
f3(x,y) = (bx,by +1),  falx,y) = (bx +1,by +1),
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Fig. 12 Partof a
two-dimensional masked tiling.
The top row shows the same
one-dimensional masked tiling
illustrated in Fig. 11

Fig. 13 A masked tiling of a
quadrant of the Euclidean plane,
similar to Fig. 12, but with
scaling factor b = 0.9

with [ = (1 — b). The attractor is the filled unit square A = [0, 11?2 = [0, 12
represented by the black tile in the upper left corner of both images. The mask is

My = £1([0, 11%),

k
M1 = fipn (0, 1P\ (UM (k=1,2,3),
i=1

which is referred to as the fops mask. In both cases the tiling is generated by the string
0 =1
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5 Tilings from a Graph IFS

The construction of tilings from an IFS can be generalized to the construction of
tilings from a graph IFS. There is considerable current interest in graph IFS and
tilings corresponding to Rauzy fractals [16,23,24]. Hausdorff dimension of attractors
associated with graph IFSs has been considered in [21]. Graph IFSs arise in connection
with substitution tilings and number theory; see for example [2,11].

Let HY denote the N-fold cartesian product of M copies of H(X). A graph iterated
Sunction system (GIFS) is a directed graph G, possibly with loops and multiple edges
in which the vertices of G are labeled by {1, 2, ..., M} and each directed edge e is
labeled with a continuous function f, : X — X. It is also assumed that G is strongly
connected, i.e., that there is a directed path from any vertex to any other. Let E;; denote
the set of edges from vertex i to vertex j. Define the function

F :HM - g¥
as follows. If X = (X1, Xo, ..., Xy) € HM then
FX) = (F1(X), 2(X), ..., Fu(X)),

where

M
Fx =) U rx)

j=1 eEE,'j

fori = 1,2,..., M. It can be shown that, if each f, is a contraction, then F is
a contraction on HM, and consequently has a unique fixed point or attractor A =
(A1, Ay, ..., Ay). The concepts of non-overlapping and invertible are defined exactly
as for an IFS. In fact, an ordinary IFS is the special case of a graph IFS where G has
exactly one vertex and all the edges are loops.

Assume that the graph IFS is a non-overlapping and invertible with attractor
A = (A1, Ay, ..., Ay). Let G’ denote the graph obtained from G by reversing the
directions on all of the edges. For any directed (infinite) path & = ejer--- in G', a
tiling is constructed as follows. First extend previous notation so that 6y = ek, 0|k =
erey e and foi = fo, © fe 00 for (f Do = fr; o fr; o0 f; 1 Given
any directed path w of length k in G that starts at the vertex at which 6|k terminates,
let

t9.0 = ((f Do o fu)(A)),

Tok ={t0,0 * @ € Wi},
where j is the terminal vertex of the path w, and Wy is the set of directed paths of

length k in G that start at the vertex at which 6|k terminates. Since, for any w € W,
we have

(F e o fo= (F Dok o (Foe) ™ o fores © fo = (F Dottt © foparon
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t,B) / f2A) f,8)/ fA)
fq
N -
. - I f
fa f 1
2
Fig. 14 Graph IFS for the Penrose tiles
the inclusion
To.x C Ty i+
holds for all k. Therefore
o0
Ty = U Iy
k=1

is a tiling.

Example 5.1 (Penrose tilings of R?) In this example the graph G is given in Fig. 14
where, using the complex representation of R?, the functions are

fi@) = (r — f)wl, H) = §w4 +12 f3(2) = §w3 s

where T = (1 + \/3)/2 is the golden ratio and wy = cos(km/5) + i sin(kz/5), 0 <
k < 9, are the tenth roots of unity. (The origin is at the leftmost vertex of each
triangle.) The acute isosceles triangle A and obtuse isosceles triangle B in the figure
have long and short sides in the ratio 7 : 1, and the angles are /5, 27 /5, 27 /5 and
/S, /5, 3w /5, respectively. The attractor of the graph IFS is the pair (A, B):

A= fi(B)U f2(A) U f3(A),
B = fi(B)U f2(A).
Clearly, there are periodic tilings of the plane using copies of these tiles. However,
if 0 is a directed path in G and Ty tiles R?, then this is a non-periodic tiling. Although a

Penrose tiling is usually given in terms of kites and darts or thin and fat rhombs, these
are equivalent to tiling by the acute and obtuse triangles described in this example.
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g
s~z=——'l"u

Fig. 15 Another GIFS tiling; see Example 5.2

Example 5.2 (Another GIFS tiling) In Fig. 15 the graph has two vertices corresponding
to the two components of the attractor, the isosceles right triangle 7" and square S shown
at the top. The eight edges of the graph, corresponding to the eight functions are shown
graphically by their images, the eight colored triangles and rectangles shown at the
top. Four of the functions map the triangle 7" onto the four smaller triangles, and the
other four functions map the square S to the two smaller squares and two rectangles.
One of the infinitely many possible tilings that can be constructed, using the method
described of this section, is shown in the bottom panel.

6 Fractal Transformations from Tilings
The goal of this section is, given a fractal transformation, to extend its domain from

the attractor of the IFS to the basin of the IFS, for example in the contractive IFS case,
from the attractor to all of X.
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6.1 Fractal Transformation

In Sect. 2, each point of a point-fibred attractor an IFS was assigned a set of addresses.
To choose a particular address for each point of the attractor, the following notion is
introduced.

Definition 6.1 Let A be a point-fibred attractor of an invertible IFS F. A section of
the coordinate map 7 : [N]*° — Aisamapt : A — [N]* such that 7 o 7 is the
identity. For x € A, the word t(x) is referred to as the address of x with respect to
the section 1.

If A is a point-fibred attractor of F, then the following diagram commutes for all
nel[N]:

Sy

[N]® — [N]®
T N4
A —- A
Jn

where the inverse shift map S, : [N]* — [N]* is defined by S, (w) = nw for
ne|[N].

The notion of fractal transformation was introduced in [5]; see also [6,8]. A fractal
transformation is a mapping from the attractor of one IFS to the attractor of another
IFS of the following type.

Definition 6.2 Giventwo IFSs F' and G with an equal number of functions, with point-
fibred attractors A g and A, with coordinate maps 7 and 7 and with shift invariant
sections tr and tg, each of the maps trot1s : A¢ = Arandngotr : AF — Ag
is called a fractal transformation. If a fractal transformation /4 is a homeomorphism,
then 4 is called a fractal homeomorphism.

A homeomorphism & : A — Ag is a fractal homeomorphism with respect to
shift invariant sections tr and 7 if and only if / satisfies the commuting diagram

AF — AG
h

TF \ / G (6-1)
[N]>
i.e., the function & takes each point x € Ap with address @ = 7p(x) to the point
y € Ag with the same address w = tG(y). See [8].

6.2 Extending the Domain of a Fractal Transformation

To extend the domain of a fractal transformation, we introduce a “decimal’ notation
0 - w, where 6 is a finite word and w is an infinite word in the alphabet [N]. Let

Q:=1{010y-- -6 -wywy--- |k € {0} UN, 6;, w; € [N] for all i, 0 # w}.
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For an IFS F the coordinate map 7w : [N]* — A can be extended as follows.

Definition 6.3 For an invertible IFS on a complete metric space X with point-fibred
attractor A and 0 - w € €, define the extended coordinate map 7 : Q — X of
m : [N]*® — Aby

70 - w) = (f He(r(w).

Recall the notation F* := (X; fl_l, fz_l, e, flgl), so that F*(X) = Ufepf_l(X).
The range of 7, called the fast basin of the attractor A and denoted B = B(A), is
equal to

B(A) = U (F) () =[x € X : fy(x) € A forsome 6 € U2, [NT*].

Proposition 6.4 The fast basin B of a point-fibred attractor A of an invertible IFS F
on X is the smallest subset of X invariant under F* and containing A, i.e., F* (B)
and

B= (] D
F*(D)=D
Moreover, if B is the basin and B the fast basin of A, then
() BSBifA® #0,
(2) B =0if A° =0

Proof Concerning the first statement, that B is invariant follows from the definition.
Concerning the minimality statement, if C is invariant under F* and A C C, then

B = U el Je=c.
k=0 k=0

Concerning the second statement, in the case that A° # @, there is a w € [N]* such
that 71 (w) € A°. If x € B, then limy_, o Jo(x) =n(w) € A°. Therefore fi,x € A°
for some K. In the case that A® = {4, since B = U2, (F* YK(A) is a countable union
of nowhere dense sets, then so is B by the Baire catgegory theorem. O

Definition 6.5 Let F be an invertible IFS with point-fibred attractor A. Let6 € [N]*,
and recall the notation B(0) := U,fil(f_l)mk(A). For a sectiont : A — [N]*®
define the extended section

T :BO) - Q

as follows. For x € B(6), let k be the least integer such that x € (f_1)9|k(A).
Therefore there isa y € A such that x = (f_l)g|k (y). Define

Tp(x) =0k - T(y).
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Fig. 16 Example of an extended fractal homeomorphism, generated by a pair of affine IFSs each with a
rectangular just-touching attractor

Then clearly 7 o 7y is the identity.

Now consider two IFSs F and G on the same complete metric space, with an equal
number of functions, with point-fibred attractors Ar and A, with coordinate maps
wr and 7, and with sections T and 7. Each word 0 € [N]* induces two extended
sections 7 :=Tr.g and 7g := 7¢.¢. The maps

TFrotg : Bg(®) = Br(®) and 7gotr : BF(8) — Bg(0)
are called extended fractal transformations of the fractal transformations
JTFO‘EGZAG—>AF and ﬂGOTFiAF—>AG,

respectively. In particular, if € is full for both F' and G, then an extended fractal
transformation is defined on the basin of an attractor. If, in addition, F and G are
contractive, then the extended fractal transformations take the whole space X to itself.

A transformation that takes, for example, the unit square [0, 1]2 to itself, can be
visualized by its action on an image. Define an image as a function ¢ : [0, 11> —
C, where C denotes the color palate, for example C = {0,1,2,...,255)3. If h is
any transformation from [0, 11% onto [0, 112, define the transformed image h(c) :
[0,1]> = C by h(c) :=c o h.

Example 6.6 Consider two “fold-out” affine IFSs, F and G, which, up to conjugation
by an affine transformation, are of the form in Example 3.13 for two different values of
the parameter E. The IFS F corresponds to £ = (0.5, 0.5) and the IFS G corresponds
to £ = (0.4, 0.45). The attractor of F is a small rectangle L located in the bottom
left corner of the left hand image of Fig. 16. The attractor of G is a small rectangle R
situated in the bottom left corner of the right hand image. The fractal homeomorphism
generated by F and G maps the portion of the left hand image lying over L to the
portion of the right hand image that lies over R. The word 6 = 1 extends the fractal
homeomorphism to the upper left quadrant of the plane; the right hand image illustrates
the result of applying this extended homeomorphism to the left hand image.
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