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Hence we have proved the 

THEOREM. If p is a prime greater than 3 there exist nontrivial morphisms of 
inequivalent extensions of Zp by Zp which are not isomorphisms. 

The author wishes to thank W. Messing for discussions which led to this note. 
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A Rearrangement Inequality and the Permutahedron 

A. VINCE 
Department of Mathematics, University of Florida, Gainesville, FL 32611 

One chapter of the classic book "Inequalities" by Hardy, Littlewood, and Polya 
[3] is dedicated to inequalities involving sequences with terms rearranged. The main 
example in that chapter is the following. Let a1 < a2 < - * an and b1 < b2 < 

. . < bn be sequences of real numbers and g any permutation of the set 
{1,2,..., n}. Then 

n n n 

Eaibn-i+l < Eaib,.i Eaibi (1 
i=l ~i=l i=l 

Hardy, Littlewood, and Polya interpret the ai as fixed distances along a rod and the 
bi as weights to be suspended at these distances: To get the maximum moment with 
respect to an end of the rod hang the heaviest weights furthest from that end; to get 
the minimum moment hang the heaviest weights closest. 

Many variations and generalizations of this rearrangement inequality exist. Three 
appear below, more at the end of this note, and Marshall and Olldn [5] contains a 
relatively recent survey. In this note all sequences {a i} and { bi } are increasing in 
the sense a1 < a2 < * < an and b1 < b2 < * * < bn, and all sums and products 
are from i = 1 to i = n unless otherwise stated. Also N = {1, 2, ..., n } and Sn 
denotes the set of all permutations of N. 

Example 1. [7] For sequences with positive terms and for all 7T E Sn 

Hl(ai + bn-i+l) > H(a1 + b71) > H(ai + bi). 

Example 2. [8] For p > 1 and all 7T E Sn 

Elai - bilP < Elai - bjP < Elan-i+1 - bilP. 

Example 3. [4] One generalization of the Hardy-Littlewood-Polya inequality (1) 
is as follows. If the sequences have positive terms and f is an increasing convex 
function then for all 7T E Sn 

Ef(aibn-i+f ) < Ef(ay)we r < Ef(aibi)y 

Recall that f is increasing if f(x) >, f(y) whenever x > y, and f is convex if 
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f(ax + (1 - a)y) < af(x) + (1 - a)f(y) for all 0 < a < 1. In the differentiable 
case, of course, convex is equivalent to f"(x) > 0. 

The purpose of this note is to show how the permutahedron leads to a very 
simple generalization of the Hardy-Littlewood-Polya inequality, from which the 
inequalities above and many other rearrangement inequalities immediately follow. 
In [5] rearrangement inequalities are derived using majorization, which is a partial 
order on the set of vectors in n-dimensional Euclidean space. This elegant method 
goes back at least to Schur [10] and is a unifying principal for many types of 
inequalities. The intention in this note is to use a much simpler partial order on Sn 
to obtain the rearrangement inequalities. 

Let .f denote the identity permutation _f(i) = i of N and .* the reverse 
permutation f*(i) = n - i + 1, i = 1,..., n. An inversion of a permutation 7 of N 
is a pair (S7j, 7Tk) such that j < k and s7j > 7Tk. For example, (5, 3) is one of the 
four inversions of g = 2 51 3 4. Now consider the directed graph Pn whose vertex 
set is Sn, and there is an edge (a, 7T) directed from a to s7 whenever vertex a is ob- 
tained from vertex s7 by interchanging the elements of an inversion of the form 
(n7j, 7T(j + 1)). Pn is sometimes called a permutahedron [1] and an example is 
shown in Figure 1. The transitive closure of Pn induces a partial order on the set Sn. 
Recall that the transitive closure is the "smallest" directed graph with the same 
vertex set as Pn and with the property that if (7T, T) and (T, a) are directed edges 
then so is (7T, a); the partial order on Sn is defined by a > s7 if there is an edge 
directed from a to S in the transitive closure of Pn. A real valued function g: 
Sn-* R is called order preserving if g(a) > g( g) whenever a > g. This is all that is 
needed to prove the following theorem. 
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FIG. 1. Permutahedron P4. 
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THEOREM. Let gl,..., gn be real valued functions defined on an interval I. Then 

Egi(bn-i+J) '< Egi(b,,Tj) < Egi(bi) (2) 

for all sequences b, < b2 < * < bn in I and all 'iT E Sn if and only if 

gi+- gi is increasing on I, 1 < i < n. (3) 

Remark. If the functions gi are differentiable, then it is clear that 

g1(x) < g2(x) < gn(x) for all x E- I (3') 

is equivalent to condition (3). 

Proof. ('-) Fix a sequence b1 < b2 < * < bn and let g: Sn -- R be defined by 
g( g) = Yg,(b b). To show that g is order preserving it suffices to show that 
g(a) > g('r) whenever (a, 7T) is an edge of the permutahedron: 

g(a) - g('g) = [gj(bqj) + gj+?(ba(j+?))] - [gj(brj) + gj+?(bT(j+ ) 

= (gj+l - gj)(b,,j) - (gj+l - gJ)(br(j+1)) > 0. 

The last inequality follows from bj < b,,(j+1) and the assumption that gj+1 - gj is 
increasing. Since .4 < ST <. f for any permutation gi, also g(.f*) < g(r) < g(,), 
which is precisely inequality (2). 

(=:) By way of contradiction assume that gm+1 - g,,, is not increasing for some 
m. Then there exists x > y such that (g,,,+1 - gm)(x) < (gm + 1 - gm)(y). Now 
choose any sequence b, < b2 < * - - < bn in I with bm = x and bmi+ = y. Let 'T be 
the transposition (m m + 1). Then Egi(b,i) = 

E gi(bi) + g.(x) + g.+,(y) 

> L gi(bi) + gm(y) + g+l(x) = Egi(bi) 
i * in, m +? 

contradicting inequality (2). a 

The inequalities of Examples 1, 2, and 3, as well as those below, result by simply 
substituting the appropriate gi in the theorem. For example, choosing gi(x) = aix 
yields the classic Hardy-Littlewood-Polya inequality (1). Choosing gi(x) = 
-log (ai + x) yields Example 1; and choosing gi(x) = f(aix) gives Example 3. In 
each case it is an exercise to show that the gi satisfy condition (3) or (3') in the 
theorem. For the Hardy-Littlewood-Polya inequality condition (3) is immediate. For 
Example 3 the verification of condition (3) is a little tricky, but still elementary. 

Example 4. Let gi(x) = f(ai - x). If f is convex then for all XT E Sn 

Ef (ai- bi) < Ef(ai -bi) < Ef(an-i+1 - bi). 

With f(x) = Ix I P this is Example 2. 

Example 5. [2] Take gi(x) = g(ai, x) where g is a real valued function of two 
variables defined on a domain D = [a, b] X [c, d]. If 

g(x1, Y) - g(x1, Y2) - g(x2, YI) + g(x2, Y2) > 0 (4) 
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for all xl > x2, y1 > y2 in the domain then 

Eg(aj, bn-i+,) < Eg(aj, bvi g(i i (5) 

for all 7T E S,7. Note that for a function with continuous second derivatives condi- 
tion (4) can be replaced by 

d2g(x,y) > for all(x, y) E D. (4') 
dx dy 

Example 6. Many inequalities can be generalized to more than two sequences. 
Let {a'}, {a2}, ...,{am}, 1 < i < n, be not necessarily increasing real sequences 
and let a (1), a (2),..*, a(n) denote the sequence a1, a2, ..., an in increasing order. 
Suppose g(x1, . . , xm) satisfies condition (4) or (4') for every pair of variables. Then 

Eg(a, ai2. aim) < J:g(a1j), a(2).. a(m)). (6) 

This inequality follows directly by induction using the right inequality of (5) as the 
first step. Choosing g(x1, . . ., Xm) = x1 x2 *.. xm and g(x1, * *, xm)= 
- log (x1 + * * * + xm), respectively, in (6) results, for sequences of positive terms, in 
inequalities analogous to (1) and Example 2 [9]: 

' 12 M V12 aM E ala 2 . . . a m < E a (i) a (2i) * * * a 

and 

H(al + a 2 + +am) >H H(a1 + a(2 + +am 

Example 7. Choose g(xl,..., xm) = f[min(x1,..., xm)] in (6). If f is an increas- 
ing function then 

Ef mn ai < Ef( min ai 

Taking f(x) = x and f(x) = log(x), respectively, leads to inequalities of Minc [6]: 

E mina < E minai 

and 

Hminai Hmna-). Sfrt max fc< t min. 

Similar inequalities hold for the max function. 
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Musings on the Prime Divisors of Arithmetic Sequences 

PATRICK MORTON 
Department of Mathematics, Wellesley College, Wellesley, MA 02181 

Of the early proofs one usually sees in a number theory course, the most 
beautiful is the proof, due to Euclid, that there are infinitely many primes. This 
theorem may be formulated as follows. 

If { a,n }?=1 is any sequence of integers, and p is a prime for which pI an for some 
n, p is called a prime divisor of the sequence {an } n=,. (See [2].) Euclid's theorem 
says that the sequence {n)}?. 1 has an infinite set of prime divisors. What other 
sequences have this property? 

For example, consider the sequences whose terms are defined by the following 
formulas: 

1) an = f(n), where f E Z[x] is a nonconstant polynomial; 
2) bn = [gn2], where brackets denote the greatest integer; 

3) Cn = [Tn2]2 - [ n21[V + [j2; 

4) dn = 211 + 1. 
Which of these sequences has an infinite number of prime divisors? 

The answer is, of course, that they all do. The fact that {an)n'= does was first 
proved in an elementary way by Schur [8], and is usually stated as follows. (See [2] 
and [3] for other proofs and more on the prime divisors of polynomials.) 

THEOREM 1. Let f(x) e Z[x] be nonconstant. Then the congruence 

f (x) O(mod p) 
has a solution x E Z for infinitely many primes p. In other words, infinitely many 
primes divide the terms of the sequence { f(n)}) n=l. 

The purpose of this note is to give a surprising proof of this result using a 
well-chosen infinite series, and then to see where the proof leads. It will turn out 
that the proof can be generalized to show that the sequences {bn)n 1 and {cn)}' = 
both have infinite sets of prime divisors, but that the same proof cannot decide this 
question for the simpler sequence { dn }n= 1! The proof will also be a surprise in that 
it hides an algebraic structure. 

1. A proof of Schur's theorem. Assume theorem 1 is false for some non-constant 
f(x) E Z[x], and let m = deg f. Then for n E Z, f(n) = 0 or (by the fundamental 
theorem of arithmetic) 

f(n) = ?palpa2 ... pak 
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