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The classical approach to maps is by cell decomposition of a surface. A 
combinntorial map is a graph-theoretic generalization of a map on a surface. 
Besides maps on orientable and non-orientable surfaces, combinatorial maps 
include tessellations, hypermaps, higher dimensional analogues of maps, and certain 
toroidal complexes of Coxeter, Shephard, and Griinbaum. In a previous paper the 
incidence structure, diagram, and underlying topological space of a combinatorial 
map were investigated. This paper treats highly symmetric combinatorial maps. 
With regularity defined in terms of the automorphism group, necessary and 
sufficient conditions for a combinatorial map to be regular are given both graph- 
and group-theoretically. A classification of regular combinatorial maps on closed 
simply connected manifolds generalizes the well-known classification of metrically 
regular polytopes. On any closed manifold with nonzero Euler characteristic there 
are at most finitely many regular combinatorial maps. However, it is shown that, 
for nearly any diagram D, there are infinitely many regular combinatorial maps 
with diagram D. A necessary and sufficient condition for the regularity of rank 3 
combinatorial maps is given in terms of Coxeter groups. This condition reveals the 
difficulty in classifying the regular maps on surfaces. In light of this difficulty an 
algorithm for generating a large class of regular combinatorial maps that are 
obtained as cyclic coverings of a given regular combinatorial map is given. 

1. INTRODUCTION 

A polytope is the convex hull of a tinite set of points in Euclidean space 
E”. The set of all proper faces of an n-dimensional polytope P form a cell 
complex of dimension n - 1, called the boundary complex of P. A map on a 
surface, i.e., a cell decomposition of a surface, is a topological generalization 
of the boundary complex of a polyhedron. In a previous paper [29], a 
generalization of a map, called a combinatorial map, was formulated in 
terms of edge colored graphs. Basic definitions are reviewed in Section 2. A 
related concept, called a crystallization, was independently investigated in a 
topological setting by Ferri and Gagliardi [12, 131. It was rediscovered by 
Lins [20], where it is called a graph-encoded map. Also related is the very 
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TABLE I 

Regular Polytopes 

Polytope Dimension 

n-Gon 

Simplex 

Hypercube 
Cross polytope 

Dodecahedron 
Isocahedron 
24Cell 

120.Cell 
600.Cell 

2 

22 
22 
22 

3 
3 
4 

4 
4 

Schllfli symbol 

in1 
{ 3, 3,..., 3} 

(4, 3,..., 3) 

(3,..., 3, 41 
is,31 

(3,5i 
13,4,3) 
i5, 3,31 

{3,3,5) 

important work of Tits [27, 281 on buildings and subsequent work of Ronan 
[24,25] on coverings and Buekenout [4] on diagrams. These investigations 
are carried out in the more general context of geometries and chamber 
complexes, of which maps may be considered a “thin” case. 

This paper treats highly symmetric combinatorial maps. The regular 
polytopes-those with sufficiently transitive automorphism group-have 
been completely classified and are listed in Table I with their Schllfli symbol 
[6]. In (221 McMullen defines combinatorial equivalence and. combinatorial 
regularity of polytopes in terms of the poset of faces. McMullen then proves 
that the set of combinatorially regular polytopes essentially coincides with 
the set of metrically regular polytopes. 

THEOREM 1.1 (McMullen). Every combinatorially regular polytope is 
combinatorialiy equivalent to a metrically regular polytope. 

In this paper we take a completely combinatorial point of view and 
investigate regular combinatorial maps. The treatment has the advantage of 
avoiding metric technicalities. In Section 3 regularity of a combinatorial map 
is defined in terms of its automorphism group. Basic properties of regular 
combinatorial maps are presented in Section 3: Necessary and sufficient 
conditions for a combinatorial map to be regular are given both graph and 
group theoretically. The automorphism group T(G) of a regular 
combinatorial map G is shown to be generated by involutions, and G is 
precisely the Cayley graph of T(G) with respect to this set of generators. 
Dual combinatorial maps generalize the dual of a polytope and various dual 
constructions of Coxeter and Moser [7] and Wilson [32]. The section 
concludes with a proof that every (finite) combinatorial map can be covered 
by a (finite) regular combinatorial map. 

Section 4 treats regular combinatorial maps on spheres. The main result is 
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FIG. 1. Maps on a torus. Opposite sides of the two squares and two hexagons are to be 
identified; (a) (4,4 I (ror,r2rI)311 (b) {4>4 I b-,r,rJ4L (cl {6,3 1 (ror1 rd6 t. 
(d) (6, 3 / (r r r r r )“}. 0 I 0 I 2 

the classification of regular combinatorial maps on closed simply connected 
manifolds (Theorem 4.1). This generalizes the classification of metrically 
regular polytopes and also McMullen’s Theorem 1.1. 

In Section 5 the classification of maps on surfaces other than the sphere is 
investigated. The systematic study of regular maps on surfaces, those 
possessing the greatest degree of symmetry, goes back at least to Brahana 
[2, 31. The problem of classifying the finite regular maps has been pursued 
along three lines: 

(a) By genus. The maps on surfaces of genus 0, 1, 2, 3, and on non- 
orientable surfaces of Euler characteristic 1 > x > -4 have been completely 
classified [2, 3, 11, 14, 16-18, 261. The regular maps on the sphere are 
exactly the boundary complexes of the five regular polyhedra. There are 6 
infinite families of regular maps on a torus. A representative of four of these 
families is shown in Fig. 1. The other two families are duals of these. 

(b) By families. Coxeter and Moser [7] have compiled lists of regular 
maps (not known to be complete) formed by identifying points of a hyper- 
bolic tessellation that are r-steps separated along some type of path (e.g., a 
petrie path). 

(c) By the embedded graph. The general question is, given a graph G, 
when does there exist a regular map with underlying graph G? Biggs [l] 
proves a result in this direction for the complete graph on n points. 

The classification of regular rank 3 combinatorial maps includes the long 
standing classification problem for regular maps on surfaces. We show in 
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Section 5 that the classification is equivalent to the determination of the 
normal, finitely generated, torsion free subgroups of the rank 3 Coxeter 
groups. Although no explicit classification exists for maps on surfaces, we 
give an algorithm in Section 7 for generating a large class of regular finite 
combinatorial maps obtained as cyclic coverings of a given regular 
combinatorial map. 

Section 6 concerns the number of regular combinatorial maps on a given 
manifold or with a given diagram. In general there are at most finitely many 
regular combinatorial maps on any closed manifold with nonzero Euler 
characteristic. However, for nearly any diagram D, there are imfinitely many 
finite regular combinatorial maps with diagram D. In particular, this answers 
a question of Griinbaum [ 191: for l/p + l/y < i, are there infinitely many 
regular surface maps consisting of p-gons, q of them surrounding each 
vertex? 

2. COMBINATORIAL MAPS 

Let I be a finite set. A combinatorial map over I is a connected graph G, 
regular of degree ]I], whose lines are ]Zl-colored such that no two incident 
lines are the same color. A combinatorial map may be finite or infinite. Let 
the function z: E(G) + Z, from the line set of G to I, be the coloring. The 
image of a line or set of lines under r is called its type. The rank of G is 111. 
An isomorphism of two combinatorial maps is a type preserving graph 
isomorphism. Automorphism is similarly defined. For J s Z two points of G 
are J-adjacent (J-adj) if they are joined by a path colored in J. Points that 
are {i}-adj are adjacent in the usual sense. For J g Z let G, be the subgraph 
of G obtained by deleting all lines of type not in J. Each connected 
component of GJ is a combinatorial map over J and is called a residue of 
type J. The only residue of rank ]Z] is G itself. The residues of rank 0 are the 
points of G. The residues of type Z - {i} are called i-faces of G. Two distinct 
faces x and y are called incident if x n y # 0. Let X denote the set of faces 
of G; let r: X+ Z be defined by r(x) = i if x is an i-face; and let * denote the 
incidence relation on faces. Then the triple S(G) = (X, r, *) is referred to as 
the incidence structure of G. 

To any combinatorial map G is associated an (111 - l)-dimensional 
simplicial complex dG as follows. For each point v in the point set V(G) of 
G, let dv be a simplex of dimension 1 Z] - 1. Arbitrarily assign to each vertex 
of Au a distinct element ofZ. Call the set of elements assigned to a face s of 
dv the type ofs. Let K be the disjoint union of the set {dv I v E V(G)}. In K 
identify two simplexes s z Au and s’ G Au’ of same type J if and only if v 
and v’ are (Z - J)-adjacent. If - denotes this identification, take AG = K/-. 
Intuitively, AG can be thought of as being built from (/Z] - I)-simplexes, one 
for each point of G, such that two (IZI - I)-simplexes share a common 
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codimension 1 face if the corresponding points are adjacent in G. The space 
/ G / = 1 AG j is called the underlying topological space of G. 

EXAMPLE. Let K be a cell complex with underlying topological space 
1 K /. If 1 K / is a connected manifold without boundary, then K will be called a 
map on a manifold. In particular, if 1 K 1 is a surface, then K is called a map 
on a surface. Given a map K on a manifold, a combinatorial map G(K) is 
obtained as the dual l-skeleton of the barycentric subdivision of K. Each 
vertex of the barycentric subdivision can be labeled with the dimension of the 
cell it represents. A line of G(K) is then colored i if it joins two maximal 
simplexes whose labels differ only by i. An i-face of the incidence structure 
S(G) corresponds to an i-cell of K. Note that G and K have the same 
underlying topological space. If K is a map on a manifold, then the 
combinatorial map obtained is denoted G(K). 

The following definitions are discussed in greater detail in 1291. Let G be a 
combinatorial map over I and R a rank 2 residue over {i, j}. If R is finite 
then it is a cycle in G consisting of lines alternately colored i and j. Let p(R) 
be half the length of this cycle. If R is infinite then p(R) = co. If the 
automorphism group of G acts transitively on the points of G, then the value 
of p(R) is the same for all residues of type {i,j}. In general define pjj = 
lcm p(R) where the least common multiple is taken over all residues of type 
{i, j}. The diagram D(G) of G is obtained by representing each i E I as a 
node labeled i and connecting nodes i and j by a line labeled pij. By 
convention the line is omitted when pii = 2 and the line label is omitted when 
pij = 3. The diagram is a generalization of the Schllfli symbol of a regular 
polytope. 

Let G, and G, be combinatorial maps over disjoint sets I, and I, with 
point sets V(G,) and V(G,). The product G, * G, is a combinatorial map 
over I, U I, with point set V(G,) X V(G,). Two points (ul, u2) and (vi, vz) 
are i-adj whenever [zll = U, and u2 i-adj u2] or [uz = vLI and U, i-adj u,]. This 
is the standard product construction for graphs, together with the appropriate 
line coloring. A combinatorial map is called reducible if it is isomorphic to 
the product of two other combinatorial maps. Otherwise it is irreducible. It is 
not hard to see that if D(G) is connected, then G is irreducible. 

A combinatorial map G is called ordered if there is a partial order > on 
the faces of its incidence structure S(G) such that x * y if and only if x > y 
or y > x for all faces x and y. For many classical examples, like boundary 
complexes of polytopes and maps on surfaces, the faces are partially ordered 
by inclusion. In [29] it is shown that if D(G) is linear, i.e., of the form 

PI _ pz _ p3 % 
0.0. - 

DIAGRAM 1 
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then G is ordered. A more general result characterizing the spaces of 
incidence structures belonging to linear diagrams is due to Buekenhout [4]. 

Ramified coverings have been studied by both Tits 1281 and Ronan 
[24, 251 in the more general setting of chamber systems. The concept of 
homotopy subsequently used in this paper was introduced by Tits. Numerous 
results on coverings of chamber systems, including a generalization of our 
Corollary 3.2, are proved by Ronan [24]. In the context of this paper, 
consider combinatorial maps G and G’ over 1. For a non-negative integer m, 
an m-covering G’ -+ G is a function J V(G’) + V(G) that preserves 
i-adjacency for all i E I and is bijective when restricted to rank m residues. 
By a covering we mean an m-covering for some m > 0. The covering f 
naturally induces a topological map ]fi: 1 G’ 1 --t / G/, and an (]I]- l)-covering 
induces a topological covering of the underlying topological spaces. For 
u E V(G) the set f -l(u) is called the fiber above U. Any two fibers have the 
same cardinality, and if this cardinality is d, we say that f is a d-fold 
covering. The group of automorphisms of G’ preserving each fiber is called 
the group of covering transformations off. Two coverings f: Gi + G, and g: 
G; --f G, are called equivalent if there exists isomorphisms B: G; + Gi and 4: 
G,-tG,suchthat#of=gol?. 

In [29] it is shown that any combinatorial map is isomorphic to a 
Schreier coset graph of a group W generated by involutions {yi I i E I}. 
Recall that if H is a subgroup of W, the Schreier coset graph G( W, H) is an 
I-colored graph defined as follows. The points of G(W, H) are the right 
cosets of W/H and two points u and u’ are iladj if and only if U’ = uri. If H 
is the trivial subgroup of W, the Schreier coset graph coincides with the 
Cayley graph of W. If G N G( W, H) then G( W, H) is called a Schreier 
representation of the combinatorial map G. The group W can be taken to be 
(ri,iEIIrf= l), in which case G( W, H) is called the canonical represen- 
tation. 

3. REGULARITY 

Let G be a combinatorial map over I. If the automorphism group T(G) 
acts transitively on the set of points of G then we say that G is regular. This 
is a strong requirement on the symmetry of G. For a map K on a surface, 
each point of G(K) corresponds to a triple {f,, f, , f,} consisting of pairwise 
incident 0, 1, and 2 faces. Hence to be regular, it is not only necessary that 
the automorphism group act transitively on 0, 1, and 2 faces, but it must act 
transitively on the set of triples {f,, f,, f,}. For polytopes and maps on 
surfaces “regular” is standard terminology. The term “flag transitivity” is 
usual in examples arising from algebraic and finite simple groups. The 
combinatorial maps associated with the polytopes listed in Table I are all 
regular. Other familiar examples of regular combinatorial maps arise from 
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regular tessellations of the plane (Euclidean of hyperbolic) and regular maps 
on surfaces [ 1,6,20]. Example 4 in [29] and the examples of [8, 191 yield 
more exotic regular combinatorial maps. 

Let T = i, i, . . . i, be a sequence of elements of 1. Such a sequence is 
referred to as an Z-sequence. A path of type T in a combinatorial map G is a 
path whose lines are colored successively i, , i, ,..., i,, . The combinatorial map 
G is called homogeneous if it has the following property. For any Z-sequence 
T if some path of type T is closed in G, then all paths of type T are closed. 
In other words, homogeneous means that whether or not a path of type T is 
closed is independent of the base point. 

THEOREM 3.1. Let G be a combinatorial map with Schreier represen- 
tation G( W, Hj. The following statements are equivalent. 

(1) G is regular, 

(2) T(G) acts regularly on V(G), 

(3) H is normal in W, 

(4) G is homogeneous. 

Proof (1) e (2). Iff E f(G) andf(u) = v for some v E V(G), then by 
the connectivity of G, f is the identity. 

(1) u (3) By Theorem 7.5 in [29] Z(G) acts transitively on V(G) if and 
only if H g W. 

(1) e (4). Consider Z(G) as a permutation group acting on V(G). Let P 
be the permutation group on V(G) generated by involutions (pi / i E I), 
where pi” = v’ if and only if v i-adj v’. Then Z(G) e C,(P), where C,(P) is 
the centralizer of P in the full symmetric group 2 on V(G). By a standard 
result in the theory of permutation groups C,(P) acts transitively if and only 
if P acts sharply. But the latter condition is equivalent to the homogeneity 
ofG. I 

COROLLARY 3.2. Zf G is a regular combinatorial map with Schreier 
representation G(W, H) then H a W and Z(G) N W/H. 

Proof. By Theorem 7.5 of [29] f(G) N N,(H)/H. So the result is an 
immediate consequence of Theorem 3.1. h 

THEOREM 3.3. Let G be a regular combinatorial map over Z, v any point 
of V(G) and Ri the unique automorphism taking v to the point i-adj to it. 
Then each R, is an involution and G is isomorphic to the Caylqv graph of 
T(G) with respect to the generators {Ri 1 i E I}. 

ProoJ Let G(W, H) be a Schreier representation of G with respect to the 
set of generators {ri 1 i E I}. By Corollary 3.2 there is an isomorphism 
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W/H + l-(G). S’ lace an automorphism of G is determined by its action on 
one point, Ri is the image of Hri. The theorem follows from the fact that G 
is the Schreier coset graph of W with respect to H. 1 

Further examples of regular combinatorial maps can be obtained as duals 
of known regular combinatorial maps. The usual notion of duality for 
polyhedra reverses the role of vertices and faces. For instance, the cube and 
octahedron are dual to each other. We give a generalization that produces 
numerous duals from a single combinatorial map. Let G be a combinatorial 
map over I and T=i,i, ... i, an I-sequence. Call an I-sequence T an 
involution if every path of type T2 := i,i, . . ’ i, i, i, e .. i, is closed. Let p = 
{ Ti 1 i E I) be an I-indexed set of involutions. Define a new I-labeled graph 
G, as follows. The point set of G, is V(G), and two points u and U’ are i-adj 
in G, if and only if u and u’ are connected by a path of type Ti in G. If G, is 
connected then it is a combinatorial map which is called the P-dual of G. The 
following proposition follows immediately from the definitions. 

PROPOSITION 3.4. If G is a regular combinatorial map and G, is the /3- 
dual of G, then G, is also regular. 

EXAMPLE 1. Let z be a permutation of I and take 

/3= {n-‘(i)liEI}. 

In other words G, is obtained from G by permuting the colors. This will be 
referred to as a permutation dual or x-dual of G. Note that the permutation 
duals of G have the same underlying topological space as G. If the cube is 
considered as a combinatorial map over (0, 1, 2}, then the (02)-dual is the 
octahedron. 

EXAMPLE 2. Suppose that j and k are non-adjacent nodes in the diagram 
of a regular combinatorial map G over I. Then take ,0 = (Ti / i E I}, where 

Ti = jk if i=j, 

k k 
a b 

FIG. 2. Construction of a dual combinatorial map; (a) G, (b) G,. 



264 ANDREW VINCE 

FIG. 3. Dual maps of the cube. (a) (6. 3 1 ( ror,rz)41 g= 0; (b) (4,6 I (r,r,rJ’} g= 3; 

(~)(3,6l(r,r,r,)~jg=O; (d)(6,4l(r,r,r,)‘)g=3. 

To form G, the graph G is altered as shown in Fig. 2. It is apparent that G, 
is connected so that G, is a combinatorial map. This is a generalization of a 
special construction of Coxeter and Moser [7, p. 1121 involving Petrie 
polygons. 

Besides the octahedron and the cube itself, four other P-duals of the cube 
can be realized as maps on surfaces. These are shown in Fig. 3 where like- 
numbered edges are to be identified. In this figure, G, and G, are duals of the 
cube by an application of Example 2 and G, and G, are duals of G, and G, 
by an application of Example 1. The symbol g denotes the genus of the 
surface. These also appear in [32] where they are called derivatives. 

THEOREM 3.5. Every combinatorial map G has a covering G’ + G by a 
regular combinatorial map G’. If G is finite, then G’ can also be chosen 
finite. 

ProoJ Let G( W, H) be a Schreier representation of G. Furthermore let 
N= &,,a -‘Ha and G’ = G(W, N). Since N is normal in W, G’ is regular 
by Theorem 3.1. The assignment Na t, Ha defines a covering G’ + G. The 
second statement in the theorem follows from the fact that N is the kernel of 
the map #: W+CWIH from W to the symmetric group on the elements of 
W/H given by #w(Ha) = Haw. 1 
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4. REGULAR COMBINATORIAL MAPS ON SIMPLY CONNECTED MANIFOLDS 

Recall that a Coxeter group over I is a group generated by involutions 
with presentation 

(ri,iEIl (rirJPij= l,pji= l,p,>2,ifj). (4.1) 

We do not eliminate the possibility that pii = co in which case the relation 
(rirj)Pij = 1 is absent. By abuse of language we use the term Coxeter group 
to refer to the presentation (4.1). The diagram for a Coxeter group is 

TABLE II 

Finite Irreducible Coxeter Groups 

Group Diagram 

D, 
/ .-.-.-. . . . .__. 

E6 i .-.-.-.-. 

Order 

(n + l)! 

Z”tZ! 

Automorphism 

Group of 

Simplex 

Hypercube 

Cross polytope 

2”-‘n! 

51980 

2903040 

696729600 

1152 

120 

24.Cell 

Dodecahedron 

Icosahedron 

1440 

2r 

120-Cell 

600.Cell 

r-Gon 
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constructed by representing each ri as a node labeled i and connecting nodes 
i and j by a line labeled pij. By convention the line is omitted when pij = 2 
and the line label is omitted when pu = 3. A Coxeter group is uniquely deter- 
mined by its diagram. If the diagram D of a Coxeter group W is discon- 
nected, then W is the direct product of Coxeter groups corresponding to the 
components of D. Hence a Coxeter group is said to be reducible if its 
diagram is disconnected. Otherwise it is irreducible. Coxeter [.5] classified all 
finite irreducible groups with presentation (4.1) and identified some as the 
automorphism groups of the regular polytopes. The finite irreducible Coxeter 
groups are listed in Table II. It has been shown [29] that every 
combinatorial map G has a Schreier representation G( W, H), where W is a 
Coxeter group with the same diagram as G. This representation will be called 
the Coxeter representation. 

Consider the special class of combinatorial maps of the form G(W) := 
G( W, ( 1 }), where W is a Coxeter group and { 1 } is the trivial subgroup. By 
Theorem 3.1 these combinatorial maps are regular. For example, if W is the 
Coxeter group with diagram -r--.-a then for r = 3, G(W) is a 
tetrahedron, i.e., G( W, {I }) = G(K), w h ere K is a tetrahedron. If r = 4 then 
G(W) is a cube. If r = 5 then G(W) is a dodecahedron. If r = 6 then G(W) is 
the tessellation of the Euclidean plane into regular hexagons. If r > 6 then 
G(W) is the tessellation of the hyperbolic plane (open unit disk) into regular 
r-gons, 3 of them surrounding each vertex. For W a finite irreducible Coxeter 
group we shall call a combinatorial map of the form G(W) a Coxeter map. 
Among the Coxeter maps are all maps G(K), where K is the boundary 
complex of a regular polytope. However, by Theorem 4.2 of [29], the 
Coxeter maps corresponding to E,, E,, E, and D, , n > 4 are not ordered, 
hence not associated with any polytope. 

The next theorem is a generalization of the classification of regular 
polytopes and also of McMullen’s Theorem 1.1. The proof has the advantage 
of avoiding metric technicalities. 

THEOREM 4.1. Let G be a regular irreducible combinatorial map whose 
underlying topological space is a closed simply connected manifold. Then G 
is a Coxeter map. 

ProoJ: Let G be a regular irreducible combinatorial map such that 1 G 1 is 
a simply connected closed manifold. Let G( W, H) be the canonical Schreier 
representation of G, i.e., W= (ri, i E I) r; = 1). For JZ I let W, be the 
subgroup of W generated by { ri 1 i E J} and let H, be the smallest normal 
subgroup of W containing the subgroups {Hf’ W,l lJ1 = m). By [29, 
Corollary 6.3 and Theorem 7.81 0 = X’(G) N H/H,. Therefore H = H, and 
G = G(W, Hz). Since G is regular H, 4 W by Theorem 3.1. Hence G = 
G( W, H,) = G( W/H,, { 1)). But W’ = W/H, is a Coxeter group. Since G 
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FIG. 4. A chiral map on the torus. Opposite sides of the square are to be identified. 

and W’ have the same diagram, G irreducible implies W’ irreducible by the 
arguments of [29, Theorem 4. I]. Because /G 1 is a closed manifold, AG has 
finitely many maximal simplexes, and hence W’ is finite. Therefore G @ 
G(W’) is a Coxeter map. 1 

We remark that for any Coxeter map G the underlying topological space 
/ Gi is actually homeomorphic to a sphere. 

Let G be a combinatorial map over Z and .Z z I. If Z(G) acts transitively 
on the set of residues of type I-J, we say that G is J-regulur. Thus an Z- 
regular combinatorial map is regular in the usual sense. If G is {i)-regular, 
then Z’(G) acts transitively on the set of i-faces of G. It is not necessarily true 
that if G is J-regular for every proper subset J of I, then G is regular. 
Extending the terminology used by Wilson [33] for maps on surface, a non- 
regular combinatorial map that is J-regular for every proper subset J of Z 
wi!l be called chiral. The map K in Fig. 4 consisting of 5 vertices, 10 edges 
and 5 squares on a torus yields a chiral combinatorial map G(K). 

THEOREM 4.2. (1) There does not exist a chiral map with- 
nonorientable uizderlying topological space. 

(2) There does not exist a chiral map with underlying topological 
space that is a simplv connected manifold. 

Proof. If G is chiral, then Z(G) has exactly 2 orbits in its action on 
V(G), and adjacent points belong to different orbits. Hence G is bipartite. By 
[ 29, Theorem 6.11 1 G] is orientable. 

To prove statement (2) let G be a chiral map with canonical Schreier 
representation G(W, H). Theorem 7.4 of [29] implies that N&Z) must be 
the “even subgroup” of W, i.e., the words of even length in the generators 
(ri j i E I). Thus if a(rirj)k a-’ is an element of H, then (rirj)k E H in case a 
is even and (t-iri)k = ri(rirj)k rj E H in case a is odd. In either case both 
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(rirj)k and its inverse (rjri)k lie in H. If a is odd r,a(rirj)‘( a-‘r, E H and if 
a is even r,a(r,rj)k a -Ii-* = r,arj(rjri)k rju-’ r,E H for any m E I. Since 
1 G] is a simply connected manifold, [29, Corollary 6.3 and Theorem 7.81 
imply that H is generated by elements of the form a(r,rj)k u-l. Thus r, E 
N,(H) for all m E I. Therefore H g W and G is regular by Theorem 3.1. 
This contradicts the assumption that G is chiral. I 

Call a combinatorial map over I n-regular if every residue of rank n is 
regular. Note that the rank n residues are not required to be isomorphic to 
each other. We close this section with the following open question: Classify 
the spherical combinatorial maps over I that are ]1] - 1 regular. By spherical 
we mean that the underlying topological space is a sphere. Since all spherical 
rank 3 combinatorial maps are 2-regular, we are interested in the cases 
where 1112 4. 

5. REGULAR RANK 3 COMBINATORIAL MAPS 

Let G be a regular combinatorial map and G( W, Hj the Coxeter represen- 
tation of G, i.e., W is a Coxeter group with the same diagram as G. Since H 
is normal in W, let Z@ be a set of relations that normally generate H. That is, 
H is the normal closure of JY in W. The diagram D := D(G) and the set 9 
uniquely determine G. Hence, for a regular combinatorial map G we use the 
notation {D / SF}. 

If D(G) is linear 
PI P2 Pn 

.-.-.-. . . . .-.) 

then this notation is abbreviated (pi, p?,..., p, 19). If g is empty this 
symbol reduces to { pl, p2 ,..., p,}. The regular combinatorial maps, {r} 
r> 2, (3, 3,..., 31, {3,..., 3, 41, (4, 3,..., 31, 13, 51, (5, 31, (3, 4, 31, (3, 3, 51 
and { 5,3,3 1 correspond to the regular polytopes. In this case the notation is 
just the classical Schlafli notation for the regular polytopes. 

A regular tessellation of the plane (spherical, Euclidean, or hyperbolic) is 
an arrangement of regular p-gons, q surrounding each vertex, fitting together 
to cover the plane without overlapping. The regular combinatorial maps 
{p, q) correspond to the tessellations of the appropriate plane: spherical if 
l/p + l/q > f, Euclidean if l/p + l/q = f or hyperbolic if l/p + l/q < ;. 

According to [29, Theorem 5.21 the regular combinatorial maps 
{p, q / 3) are exactly the classical regular maps on surfaces. For instance 
the combinatorial maps in Fig. 1 are regular and have the symbols 
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Let G = {D 1 A?} be a regular rank 3 combinatorial map. Here the diagram 
has the form 

A 
P 4 

r 

DIAGRAM 2 

The classification of regular rank 3 combinatorial maps includes the 
classification of regular maps on surfaces, a long standing problem. We will 
not attempt a review of the vast literature on this subject, but refer the reader 
to [7]. We divide the rank 3 combinatorial maps G into three classes 
according to the universal cover of the underlying topological space 1 G 1: 

(1) spherical, if x(] G 1) > 0, 

(2) Euclidean, if ~(1 G 1) = 0, 

(3) hyperbolic, if ~(1 G I) < 0. 

If G is spherical then / G I is either the sphere or the projective plane. By 
Theorem 4.1 the irreducible regular combinatorial maps with /G/ 
homeomorphic to a 2-sphere are exactly the boundary complexes of the 
regular polyhedra and permutation duals of these. In addition there is the 
family {p, 2}, p > 2 of reducible maps and their duals. If I G/ is the projective 
plane, then Theorem 5.1 implies that G has a 2-fold covering whose 
underlying topological space is a 2sphere. The only such possibilities for G 

are {3,4 I (rorlr2>31, {3,5 I ( rOrl rJ5} and duals. The associated maps can be 
obtained by identifying opposite points on the boundary complex of the 
octahedron and icosahedron. 

THEOREM 5.1. Every non-orientable regular combinatorial map has a 
unique 2-fold covering by a regular orientable combinatorial map. 

Proof. Let G be a non-orientable regular combinatorial map with 
canonical Schreier representation G(W, H). Let H’ be the subgroup of H 
consisting of elements that can be expressed as even words in the generators 
{ri / i E I}, and let G’ = G(W, H’). By Theorem 6.1 and 7.5 of [29], the 
canonical covering f: G’ -+ G given by H’a ct Ha for all a E W is a 2-fold 
covering by an orientable combinatorial map G’. To show that G’ is regular 
we must prove that H’ g W. Let h’ E H’ and a E W. Then ah’ = ha for 
some h E H because H 4 W. Therefore ah’a- ‘h - ’ = 1. If the parity of h 
and h’ are opposite, then we have an odd word equal to an even word in W. 
Since this is impossible, h E H’. The uniqueness of the covering follows from 
the fact that any subgroup N of index 2 in H, other than H’, must contain an 
odd word, in which case G( W, N) would not be orientable. 11 

Wilson [3 l] proved Theorem 5.1 geometrically for the case of maps on 

582b/35/3-5 
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surfaces and also gave an example of two non-orientable maps with the same 
2-fold orientable cover. 

If G = {D IS} is Euclidean and finite, then / G 1 is either a torus or a Klein 
bottle. By applying Lemma 5.2 below to the rank 3 case we have l/p + l/q $ 
l/r = 1. Hence the possibilities for (p, q, r) in Diagram 2 are limited to 
(2,4,4), (2,3,6), (3,3,3) and permutations of these. The normal subgroups 
of the Coxeter groups with these diagrams can be realized as well understood 
[23] discrete groups of isometries of the Euclidean plane. This leads to a 
complete (and well known in the case of maps on surfaces [ 71) classification 
of the regular combinatorial maps G, where 1 G 1 is a torus, 

{4> 4 I POf”’ ~2)2ml~ {4,4 I (w-, vdm 1, 

(39 6 I h~~rJzml~ (3, 6 I ~~O~I~2rI~Z)2ml~ 

{ /‘\ I POw)2ml~ ( /‘\ I (rO~lrZrlYl~ m> 1 .-. . . 

and permutation duals. Theorem 5.1 can be applied to check that no regular 
combinatorial maps exist on the Klein bottle. 

LEMMA 5.2. If G is a finite regular combinatorial map over I then 

x(lG/) = I V(G)1 y (-“;;“-“, 
Jr;1 

where pJ is the number of points in any residue of type J in G and x is the 
Euler characteristic. 

Proof. The simplexes of type J in AG correspond to the residues of type 
I-J in G. If one simplex of type J is counted for each chamber of AG, then 
each simplex is counted exactly prpJ times. Hence there are pr/pIpJ simplexes 
of type J in AG. The formula for ~(1 G/) follows. 1 

Coxeter and Moser [7] have compiled long lists of regular hyperbolic maps 
on surfaces, but no general classification exists. The following result 
indicates the difficulty in obtaining such a classification. 

THEOREM 5.3. There is a one-to-one correspondence between rank 3 
finite regular hyperbolic combinatorial maps with diagram D and torsion 
free, finitely generated, normal subgroups of the Coxeter group with 
diagram D. 

Proo$ Let W be the rank 3 Coxeter group with diagram not among 
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We claim that the function given by f: H H G(W, H) is the desired 
correspondence. Since H is a normal subgroup of W, G(W, H) is regular, 
and since H is torsion free, G(W, H) also has diagram D. To show that 
G(W, H) is finite, let H’ be the even subgroup of H and W’ the’ even 
subgroup of W. As in the proof of Theorem 5.1, H 4 W implies H’ 4 W’. 
But IV’ can be represented faithfully as a Fuchsian group acting on the 
hyperbolic plane (open unit disc). By a theorem on finitely generated 
Fuchsian groups due to Greenberg [ 141 H’ a W’ implies (W:H) = 
(W’:H’) < c/3. 

By [29, Corollary 7.31 f is injective. To show that f is surjective let G be a 
finite regular hyperbolic combinatorial map. Then D(G) is not among the 
diagrams listed above. By [29, Theorem 7.41 G = G(W, H), where H 5l W 
and W and G have the same diagram. Because G is finite, ] G/ is a closed 
surface. By [29, Theorems 6.2 and 7.81 H N zi(]G]). But it is well known 
that the fundamental group of a closed surface is finitely generated and 
torsion free. I 

6. REGULAR MAPS 

Let Y be a topological space with x(Y) # 0, where x is the Euler charac- 
teristic. It is not hard to show that there are at most finitely many finite 
regular combinatorial maps with underlying space Y. In the case of rank 3 
maps we also give a bound on the cardinality of the vertex set of G in terms 
of the Euler characteristic of the underlying topological space. In contrast, 
we next show that for any diagram D, with the exception of those on a 
known short list, there are infinitely many finite regular combinatorial maps 
with diagram D. This answers a question posed by Griinbaum for maps on 
surfaces. Griinbaum asked whether for l/p + l/q < i there are infinitely 
many finite regular maps consisting of p-gons, q of them incident at each 
vertex [ 19]? 

THEOREM 6.1. For any nonzero integer n there are at most finitely many 
finite regular maps G with x(lGJ) = n. 

ProoJ: If ~(1 G 1) = n then by Lemma 5.2, ] V(G)] = n/(5 1 + x), where x = 
CGgJ-, (-l)(“-+“/p,. F or all but finitely many values of the pJ, 1 x/ < 4. 
This implies that / V(G)/ < 2 1 IZ I. 1 

Theorem 6.1 does not necessarily hold if n = 0. For example, there are 
infinitely many regular combinatorial maps G, where / GI is a torus. 

THEOREM 6.2. If G is a finite regular, hyperbolic rank 3 combinatorial 
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map, then / V(G)1 < -84x(1 GI). Equality holds if and only if G has the 
diagram 

1 ,-a-. . 

ProoJ: If G has the form of Diagram 2, then x(] G]) = $1 V(G)/ (l/p + 
l/q + l/y - 1) by Lemma 5.2. Also (l/p + l/q + l/r - 1) < --A, 1 

The simplest example for which equality holds in Theorem 6.2 is G = 
17, 3 / (~~rir~)~}. Theorem 6.2 is, of course, related to Hurwitz’s classic 
theorem bounding the order of a group of orientation preserving conformal 
automorphisms of a Riemann surface. It is not known for which values of x 
there exists a hyperbolic map with -84x points. 

THEOREM 6.3. If D is a connected diagram not among those listed in 
Table II, then there are injkitely many jinite regular combinatorial maps 
with diagram D. 

ProoJ An arbitrary group B is called residually finite if for any x E B,. 
x # 1, there is a homomorphism f onto a finite group such that f (x) # 1. It is 
an easy exercise to verify that if {xi, x2,..., x,} is any finite set of elements of 
residually finite group B then there is a homomorphism f from B to a finite 
group such that f (xi) # 1 for i = 1,2,..., m. Let W be a Coxeter group with 
diagram D. It has been shown [9] that W has a faithful representation in 
GL(n, R), where n is the number of nodes in D. Also, by a fundamental 
theorem in the theory of linear groups [30], every finitely generated matrix 
group is residually finite. Thus W is residually finite. Assume that D is 
connected and not among the diagrams listed above. Let T be the set of 
elements consisting of generators ri and the powers of rirj for all i and j. 
Then there is a homomorphism fi: W-t B, with B i a finite group and such 
that f,(x) # 1 for x E T. Let N, = ker f, . Since D(W) is, by assumption, not 
in the list of excluded diagrams, W is infinite. Since (W:N,) < 03, N, is also 
infinite. So there is a t, E N, and a homomorphism f2: W+ B, with B, finite 
and such that f*(x) # 1 for x E TV {tl}. Let N, = ker f,. Continuing in this 
fashion, an infinite sequence of distinct normal subgroups N,, Nz,..., of W is 
defined. Let Gi = G(W, NJ. Then for each i, G, is a finite regular 
combinatorial map with diagram D. m 

Let f: G + G’ be an m-covering of combinatorial maps over I. Such 
ramified coverings are defined in Section 2. Note that a 2-covering preserves 
the diagram: D(G) = D(G’). An automorphism of a combinatorial map is 
considered a trivial covering. A regular combinatorial map G is called simple 
if there is no non-trivial 2covering fi G + G’ with G’ regular. Thus every 
regular combinatorial map is a 2-cover of a simple regular combinatorial 
map. 
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Conjecture 6.4. There are at most finitely many simple regular maps 
with a given diagram. 

7. CYCLIC COVERINGS 

Although the classification of regular combinatorial maps seems intrac- 
tible, there are methods that generate many regular combinatorial maps from 
a single given regular combinatorial map. The method of this section relies 
on coverings. Although the techniques differ, a similar approach has been 
successfully applied by Wilson [32] who has obtained nearly all known 
regular maps on surfaces from a very few parametrized families of maps. An 
m-covering is called cyclic (abelian) if the group of covering transformations 
(see Section 2) is a cyclic (abelian) group. By a regular m-covering we mean 
an m-covering f: G’ + G of regular combinatorial maps. In this section an 
algorithm is described that generates all finite regular combinatorial maps 
that are cyclic covers of a given finite regular combinatorial map. 

For a given regular combinatorial map G over 1 let V(G) = {ur , u2 ,..., uM} 
and let E = {e e , , *,..., eN} be the set of lines in E(G) not in some given 
spanning tree S of G. To each line {u, v} in E an orientation is arbitrarily 
assigned: +e = (u, U) and -e = (v, u). For each j, 1 < j < M and any I- 
sequence T define a polynomial 

where 

a,jk = +I if the path of type T based at uj contains tek, 

=--I if the path of type T based at uj contains -ek, 

=o otherwise. 

For an n-tuple B = (b,, bz,..., N b ) of integers reduced modulo an integer d 
define 

w,(B) = d/tg,j(B>, 4 

Take Ti, 1 < i < N to be the type of the unique cycle in S U { +e,} and let 
f+T= (TylTy2... TgN 10 < a1 < d - l}. The N-tuple B is called a (d, m)- 
solution for G if the following conditions hold. 

(1) is@,, bz,..., b.rJ = 1, 

(2) wrj(B) = wrj,(B) for all j, j’ E 1 and all T, 
(3) wTj(B) = 1 if T is the type of a path in G m-homotopic to 0. 



274 ANDREWVINCE 

It is not difficult to show that if conditions (2) and (3) hold for all T E K, 
then they hold for all I-sequences. The common value w,(B) := wTj(B) is 
called the winding number of T for the solution B. 

Let B be a (d, m)-solution for G and construct a new I-labeled graph G, 
as follows: V(G,) = V(G) x D, where D = { 1, 2,..., d}. Two points (u, r) and 
(u’, Y’) are i-adj in G, if and only if u i-adj U’ in G and either 

{u, u’} E S and r = r’, or 

(u, u’) = fe, and r’ E r f b, (mod d) for some k. 

Let f,: G, + G be the projection on the first coordinate (u, r) H u. 

THEOREM 7.1. Let G be a regular combinatorial map and 9 the set of 
all (d, m)-solutions for G. With the notation as above, the set of projections 
f,: GB --f G, B E 33 is precisely the set of all regular d-fold cyclic m-coverings 
ofG. 

Before giving a proof several comments are in order. 

Remark 1. Theorem 7.1 remains valid when the word “cyclic” is 
replaced by “abelian” if the following slight modifications are made in the 
definitions. Define d= (d,, d, ,..., 
integers and d= d,d, 

d%) as a q-tuple of relatively prime positive 
. . . d,. A (d, m)-solution over G is an N-tuple B = 

(4, bz,..., b,), where each b, = (bjl, bi, ,..., bi,) is itself a q-tuple of integers 
modulo di and where B satisfies conditions (I), (2), and (3) componentwise. 
The I-labeled graph G, has point set V(G) x D, where D = D, X 

4 x . . . x D, and Di = { 1, 2,..., di}. The definition of j-adj is the same as for 
the cyclic case. Because the proof for the abelian case is virtually the same 
as for the cyclic case, but notationally cumbersome, we omit it. 

Remark 2. If G is a map on a surface over (0, 1, 2}, a covering G’ of G 
need not be associated with a map on a surface. If we want to find coverings 
of G that are also maps on surfaces we must add the condition that the 
covering is not ramified over edges, i.e., the diagram is linear. In terms of the 
winding number we require 

(4) w,(B) = 1 for T= 0202. 

Assume G has diagram 

P 9 .-.-. 

and G’ is a covering of G that is also a map on a surface. Let w2 and w0 be 
the winding numbers of (O1)p and (12)9, respectively. Then G’ has diagram 

P’ 9’ 
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C d e 

FIG. 5. Regular coverings of the tetrahedron; (a) K, (b) G(K) = (3,3), (c)K,, (d) K,. 

(e) K,. 

where p’ = w2p and q’ = w,q. It is a direct consequence of Lemma 5.2 that 

x(1 G’ I> = 4d Gl)($ - VP’ - l/q’)/(i - UP - l/q). 

As an example consider the tetrahedron G = (3, 3} of Fig. 5a. The set of 
lines E c E(G) is shown in Fig. 5b. All 2-fold coverings of G, i.e., all (2,0)- 
solutions for G that are also maps on surfaces, can be found by solving the 
following system of congruences. These congruences are equivalent to 
conditions (1 t(4). 

x~+~~+x~~-x~+x~-x~+x~-x~~-~~~-~~~-O (mod2), 

x* = xg + x, = x3 + x4 = x9 (mod 21, 

x1 +x4 +x5 =x7 = xg =x9 + XI0 (mod 2). 

The solutions yield three possible coverings of G corresponding to maps on 
surfaces of genus 0 and 3: 

GI = {3>6 I (rovd41, g = 0, 

G; = 16, 3 I (vY,)~), g = 0, 

Gi = (66 I (ror1>3(rIr2>3), g= 3. 

These are shown in Fig. 5c, d, e, where like-numbered edges are to be iden- 
tified. 

Proof of Theorem I. 1. Assume B is a (d, m)-solution for G and ujO is a 
base point for G. The projection f,: GB + G is exactly the covering of [29, 
Theorem 6.51 corresponding to the permutation representation f*: 
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n”(G) + Z,, where (f* u) = r + gTj,(B) (mod d) and 0 is a path of type T 
based at ujO. Condition (3) in the definition of a (d, m)-solution is necessary 
and sufficient for f* to be well defined. Condition (1) is necessary and 
sufficient for f* to be transitive, i.e.,f*(P) acts transitively on D. Therefore 
by [29, Theorem 6.51 f, is a d-fold m-covering of combinatorial maps. 
Condition (2) is necessary and sufficient for G, to be homogeneous and 
hence regular by Theorem 3.1. It remains to show that f, is cyclic. By 
condition (1) the image of P(G) under fyc is generated by r t--+ r + 1 
(mod d). Since G, is homogeneous, the covering transformation F, taking 
(u, 0) to (u, k) takes (u, r) to (r, r + k) for all r, with addition mod d. Hence 
the covering transformation F, generates the group of covering transfor- 
mations. 

Conversely assume f: G’ + G is an arbitrary regular d-fold cyclic m- 
covering and u is a base point of G. By [29, Theorem 7.71 the group of 
covering transformations off is transitive on each fiber. Since f is cyclic, the 
points of G’ in the fiber above u can be labeled (u, 0), (u, l),..., (u, d - 1) so 
that F(u, r) = (u, r + 1) for some covering transformation F and all r, where 
addition is mod d. Let f*: n”(G) + C, be the permutation representation of 
n”(G) corresponding to f by [29, Theorem 6.51. By the homogeneity of G’, if 
D is any closed path based at U, (a) its m-homotopy class and&(a)(O) = k, 
thenf,(a)(r) = r + k. Now let E = {e,, e2,..., eN} be the set of lines of E(G) 
not in some given spanning tree S of G. Let CJ~ be the unique cycle in 
S U {ek} containing fe, and based at U. Then there exists a b, such that 
&(o,J(r) = r + b,. Now B = (b,, b, ,..., bN) is a (d, m)-solution for G and the 
algorithm yields a covering f, equivalent to f. 1 

This paper has used a completely combinatorial generalization to 
investigate those maps with the greatest degree of symmetry-to study their 
automorphism groups, their classification, the algorithmic generation of such 
regular maps and certain questions concerning the diagram and underlying 
topological space. We point out that no attempt has yet been made to 
investigate, withing this framework, two topics often studied in connection 
with maps, enumeration, and graph embedding. 
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