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Rep-tiling Euclidean space 

A N D R E W  VINCE 

Summary. A rep-tiling ~- is a self replicating, lattice tiling of R". Lattice tiling means a tiling by 
translates of a single compact tile by the points of a lattice, and self-replicating means that there is a 
non-singular linear map ¢: R"-o R" such that, for each T e J- ,  the image 4~(T) is, in turn, tiled by Y-. 
This topic has recently come under investigation, not only because of its recreational appeal, but because 
of  its application to the theory of wavelets and to computer addressing. The paper presents an exposition 
of  some recent results on rep-tiling, including a construction of  essentially all rep-tilings of  Euclidean 
space. The construction is based on radix representation of points of a lattice. One particular radix 
representation, called the generalized balanced ternary, is singled out as an example because of  its 
relevance to the field of computer vision. 

1. Introduction 

The subject of this exposition, self-replicating tiling, has gained the interest of a 
wide spectrum of mathematicians. It is a recent addition to the large body of work 
on the geometry and symmetry of tilings, a topic surveyed, beginning with the 
mosaics in the Alhambra at Granada in Spain, in the book [15] by Grfinbaum and 
Shephard. Self-replicating tiling also relates to fractal geometry. The boundaries of 
the tiles often have nonintegral Hausdorff dimension, and techniques have been 
developed for computing the dimension. Self-replicating tilings are connected with 
generalized number systems, a topic that dates back at least to Cauchy, who noted 
that allowing negative digits in the radix representation of an integer makes it 
unnecessary for a person to memorize the multiplication table past 5 × 5. Knuth [ 19] 
discusses numerous alternative positional number systems, in particular the balanced 
ternary system, whose base is 3 and whose digits are the "trits" { - 1 , 0 ,  1}. 
Self-replicating tilings arise in image processing and computer vision, especially in 
the addressing of points in the plane using a hexagonal, rather than a square, grid 
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of pixels. In this case a system generalizing the balanced ternary system comes into 
play. Self-replicating tilings have recently been applied to the construction of 
wavelets. The standard wavelet bases are constructed using translations and expan- 
sions from simple functions with support on one tile in the usual cubic tiling of Nn. 
Gr6chenig and Madych [13], Lawton and Resnikoff [23] and Strichartz [31] use 
multiresolution analysis modeled on other self-replicating tilings of Nn. In 1984 
Shechtman, Blech, Gratias and  Cahn [30] discovered the first substance (an 
aluminum-manganese alloy) whose electron diffraction pattern indicates both "long 
range order" and violation of the crystallographic restriction (five-fold rotational 
symmetry in this case). Long range order usually means periodicity, but periodicity 
is incompatible with five-fold symmetry. Although the arrangement of atoms in this 
and similar materials, now called quasicrystals, is still unknown, certain self-repli- 
cating tilings due to Penrose [27] and others have become a canonical model for 
their structure. Thurston [32] makes basic connections between self-replicating 
tilings, finite state machines and Markov partitions in dynamical systems. The 
"expansion function" of a self-replicating lattice tiling of  R n induces a self map of 
the torus, the torus being the quotient of R" by the lattice group of isometries 
isomorphic to Z". Radin [28], in attempting to find the extent of disorder possible 
in certain tilings, uses the expansion function of a self-replicating tiling to construct 
another dynamical system on a certain space of tilings. He makes connections 
between the symmetry of the tilings and ergodic theory and statistical mechanics. 

The intent of this paper is not an exhaustive survey of the topics mentioned 
above, but an introductory exposition of the subject for an interested nonspecialist. 
After giving a definition of rep-tiling in Section 2, a correspondence between 
rep-tiles and radix systems is presented in Section 3. As a trivial example, the 
standard base 10 radix system corresponds to the tiling of the real line by unit 
intervals with the following self-replicating property: an expansion of each tile by a 
factor of ten results in a tiling of  the line by (first level) tiles, each of which is the 
union of ten of the original (zero level) tiles. Continuing this process leads to the 
hierarchy upon which ordinary arithmetic is based: for each m > 1, the line is tiled 
by ruth level tiles, each of which is tiled, in turn, by (m - 1)st level tiles. The main 
result in Section 3 is a bijection between pure lattice rep-tilings of ~" and 
n-dimensional radix systems satisfying unique representation. Section 4 deals with 
a particular radix system relevant to computer vision. The corresponding tiling of 
space, in this case, is by permutohedra (hexagons in dimension 2, truncated 
oetahedra in dimension 3 . . . .  ), and the radix system is a generalization of the 
balanced ternary. No necessary and sufficient conditions for unique representation 
are known, but Section 5 provides several sufficient conditions for a radix system to 
possess the desired unique representation property. The term "self-replicating", as 
used in the first paragraph of this paper, is generic in the sense that it has slightly 



Vol. 50, 1995 Rep-tiling Euclidean space 193 

different definitions depending on the context. In particular, concern in this paper 
is mainly with lattice tilings; generalizations, variations and open problems will be 
discussed briefly in Section 6. For most proofs, the reader willl be referred to the 
appropriate source. 

2. Rep-tiling 

In a tiling, all tiles are compact; the tiles cover Nn; and the intersection of the 
interiors of any two distinct tiles is empty. Most tilings in this paper are lattice 
tilings with a certain self-replicating property. More precisely', a lattice in ~" is the 
set of all integer combinations of n linearly independent vectors, and a lattice tiling 
is a tiling Y- of Rn by translates of a single tile T by a lattice L. In other words, 
¢-= {x + T tx ~ L}. The common wall tilings by squares or by hexagons are 
examples of lattice tilings. 

The self-replicating property goes back at least to 1964 when Golomb [12] 
defined a figure F to be rep-k if F can be tiled by k congruent similar figures. Three 
rep-4 figures are shown in Figure 1. Combining the notion of rep-k figure with the 
notion of tiling, Figure 2 shows three tilings of the plane where the tiles are the 
corresponding rep-4 figures in Figure 1. Each of the examples in Figure 2 is a tiling 
Y- having the property that there exists a similarity, i.e. a matrix of the form 
A = bQ with Q orthogonal and b positive real, such that for each tile T the image 
A(T) is, in turn, tiled by copies of tiles in J .  In the first and second examples the 
similarity is expansion by a factor of 2; in the third example the similarity is a n/2 
rotation composed with expansion by a factor of 2. The first example is a lattice 
tiling, but the other two examples are not. In fact, the third example is not even 
periodic, which means there do not exist translations in two linearly independent 
directions that preserve the tiling. 

A rep-tiling is slightly more general than the examples above in that arbitrary 
expansive matrices, not just similarities, are allowed. A matrix is called expansive if 
all eigenvalues have modulus greater than 1. If  A = bQ is a similarity, then A 
expansive is equivalent to b > 1. A rep-tiling is a tiling J- by translates of a single 

Figure 1. Rep-4 figures. 
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r A * l * l * l T m ~ l ~ A ~  
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k t A t . W ~ l f l l ~ t . ~ W A  ~ 

Figure 2. Rep-4 tilings. 

tile To such that 

(1) T O is compact with nonempty interior, and 
(2) there exists an expansive matrix A such that for each tile T the image A(T) 

is, in turn, tiled by copies of tiles in ~--. 

It is sufficient to assume in condition (1) that To has positive Lebesque measure 
(instead of nonempty interior), and it follows from the definition that To is actually 
the closure of its interior and that the boundary of T o has Lebesque measure zero 
[20]. Each tile in a rep-tiling is a rep-k figure. It follows from the definition and the 
fact that distinct pairs of  tiles intersect in a set of measure zero that k = ldet A 1 . In 
particular, det A must be an integer. If, in addition to conditions (1) and (2), 

(3) J -  is a lattice tiling, 

then ~- is called a lattice rep,tiling. The first example in Figure 2 is a lattice 
rep-tiling, but the other two rep-tilings are not lattice rep-tilings. In fact, the only 
example of a lattice rep-tiling given so far is the standard tiling of  the plane by 
squares. What seems surprising at first is that there are infinitely many lattice 
rep-tilings in each dimension. A construction is given in Section 3. Lattice rep- 
tilings have been investigated independently by Kenyon [17], GrSchenig and Hass 
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[14], Gr6chenig and Madych [13], Bandt [1] and Vince [34], and more recently by 
Lagarias and Wang [20]-[22] and Gelbrich [5]. 

3. Radix representation 

A basic result in number theory states that every non-negative integer has a 
unique base /? > 2 representation of the form 

di~ ~, (1) 
i = 0  

where de • D = {0, 1 . . . . .  /~ - 1 }. Here D is called the digit set and/3 is called the 
radix. The representation (1) has been generalized in several ways. In each case a 
central issue is unique representation. 

(i) The radix need not be positive. In fact, for/~ < - 2  every integer, including 
the negatives, has a base fl representation with digit set D = {0, 1 . . . . .  [fl] -1} .  The 
digits can also be negative. Particularly nice is the balanced ternary system, where 
the radix is 3 and the digit set is D = { -  1, 0, 1 }. Every integer has a unique radix 
representation in the balanced ternary system. 

(ii) In 1981 Gilbert [7]-[9] extended radix representation to the Gaussian 
integers ;Z[i] = {a + bila, b • 7/}. For example, every Gaussian integer has a unique 
radix fl = - 1 + i representation of  the form (1), where d~ • D = {0, 1} - -  hence a 
binary system for the Gaussian integers. The radix fl arithmetic in the Gaussian 
integers resembles usual binary arithmetic except in the carry digits. For example, 
1 + 1 = 1100 because 2 = f 1 3 + f l  2. So 1 + 1 results in 0 with 110 "carried" three 
places to the left. Surprisingly, with fl = 1 + i instead of - 1 + i, not every Gaussian 
integer has a representation; for example i does not. 

(iii) Radix representation can likewise be extended to other number fields. Let 
f(x)  • 7/Ix] be a monic polynomial, irreducible over Z, a a root of f (x)  in some 
extension field of  the rationals, 7/[~] the ring obtained by adjoining • to 7/. In the 
case f ( x ) =  x 2 +  1, the ring Z[~] is the Gaussian integers given in (ii) above. 
Another interesting example is f ( x ) =  x 2 + x  + 1. In this case ~ = - ½  + (x/~/2)i, 
and 7/[a] can be viewed geometrically as the hexagonal lattice in the complex plane 
(the lattice points being the centers of the hexagons in the hexagonal tiling). If the 
radix is chosen as fl = ~ + (x/~/2)i and the digit set is D = {0, 1, co, 092 . . . . .  cos}, 

1 where e~ = ~ + (x/312)i (so that D consists of 0 and the sixth roots of unity), then 
every point of 7/[~] has a unique radix representation for the form (1) [18]. It will 
become apparent in Section 4 that this hexagonal system is a natural 2-dimensional 
generalization of  the balanced ternary, the digit set D playing the role of the "trits". 
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Consider the following general framework for all the examples above. Let L be 
a lattice, viewed either geometrically as a set of points in Euclidean space, or 
algebraically as a finitely generated free Abelian group. Let A :L ~ L be a group 
endomorphism, and D a finite subset of L containing 0. The map A can, without 
loss of generality, be regarded as any square nonsingular matrix, as long as L is 
A-invariant. Indeed, if the basis for this matrix is chosen in L, then A is an integer 
matrix. The tr iple (L, A, D) is said to have the unique representation property if 
every element of L has a unique finite representation of the form 

~. Ai(4), (2) 
i = 0  

where di e D. If  L has a ring structure and A is the matrix that represents 
multiplication by an element fl in the ring (the endomorphism x ~ fix Vx ~ L), 

then expression (2) reduces to the form of expression (1). In this lattice frame- 
work the triples (L, A, D) corresponding to the examples above - -  the balanced 
ternary, the Gaussian integers with base - 1  + i and the hexagonal example - -  
are, respectively: 

(i) L = ? ] ,  A =(3),  D - { - 1 , 0 ,  1}; 

(I (ii) L = Z[i], A = , D = {0, l}; 

41 D={0,  1, 09, co2 , . . . ,  e~5}. 

In the last two examples, the matrix A is with respect to the standard basis. In the 
rest of this paper the examples above, all of which possess the unique representa- 
tion property, will be referred to as Examples  1, 2 and 3. 

The following proposition gives two necessary conditions for unique represen- 
tation in (L, A, D) and a sufficient condition for uniqueness. The reader is referred 
to [34] for the somewhat technical proof of the second statement. A digit set for 
(L, A) is a complete set of residues for L modulo A(L); in other words D is a digit 
set if it contains exactly one representative from each coset in the quotient group 
L]A(L) .  The number of digits, i.e. the number of cosets, is, by standard algebraic 
techniques, equal to [det A[ .  
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PROPOSITION. (1) I f(L,  A, D) has the unique representation property then D is a 
digit set. I f  D is a digit set then representation of a point, if  it exists, is unique. 

(2) I f  (L, A, D) has the unique representation property then A is an expansive 
map. 

Proof of (l). Assume that (L, A, D) has the unique representation property. To 
show that no coset is represented twice, assume, by way of contradiction, that 
d = d' mod A(L) for some d, d' ~ D, d ~ d'. This implies that d' = d + A(x) = 
d+A(~7=oA~(di)) for some x e L  and some dieD.  Then d ' = d + ~  +~ Ai(di), 
which contradicts uniqueness. To show that each coset has at least one repre- 
sentative in D, consider any x e L .  Then x =~7=oA~(d , . )=do+~m=l  A~(d~) for 
some di 6 D implies that x --- do rood A(L). 

Concerning the second statement, let D be a digit set and assume uniqueness of 
representation is violated. Then ~ ;~ o A "(di) = ~ 7'= o A i(d'~) for some di, d~ ~ D, 
and since A is invertible it may be assumed, without loss of  generality, that do 4: d~. 
But then do = d~ mod A(L), a contradiction. [] 

A triple (L, A, D) will be called a radix system if A is expansive and D is a digit 
set. Hence if (L, A, D) is a radix system, unique representation is, by part (1) of  the 
proposition, reduced to showing that each lattice point has some representation. The 
two necessary conditions in the proposition, however, are not sufficient to insure that 
each lattice point has a representation, even in dimension 1. For example, with 3 as 
radix, D = { - I, 0, 4} is a complete set of residues modulo 3, i.e. a digit set. However, 
- 2  has no radix 3 representation. Conditions under which each integer has a unique 
radix representation have been investigated by Matula [25] and by Odlyzko [26]. 
There seems to be no known simple necessary and sufficient conditions to insure 
representation. We will return to this problem in Section 5. 

Given a radix system (L, A, D), a set T(A, D) is constructed as follows, where 
the sum is the Minkowski sum ZT~o x~ = {Xo+ x, + - ,  - [x~ ~ xt} in [~": 

~c 
T(A, D)= Z A-i(D). (3) 

i = l  

Translating T(A, D) by the lattice L gives 

3-(L ,A,D)  = {x + T l x  eL} .  (4) 

It is not obvious that J-(L, A, D) is a tiling of g~" or even that T(A, D) is a tile 
(compact with nonempty interior). This turns out to be the case, however, when 
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(L, A, D) is a radix system. Moreover, the following theorem relates rep-tiling to 
unique representation. A rep-tiling is called pure if the origin lies in the interior of 
some tile. 

THEOREM 1. (1) I f  (L, A, D) is a radix system having the un[que representation 
property, then g-(L, A, D) is a pure lattice rep-tiling. 

(2) If&- is a pure ktttice rep-tUing, then J- = &-(L, A, D) for some radix system 
(L, A, D) having the Unique representation property. 

Using a computer implementation of formulas (3) and (4), the tiling in Figure 
3 is constructed from Gilbert's binary system for the Gaussian integers (Example 2) 
and produces a rep-tiling by the rep-2 "dragon"  tile. The tiling in Figure 4 is 
constructed from the hexagonal Example 3 and produces a rep-tiling by the rep-7 
"flowsnake." A rep-5 tiling appears in Figure 5. The three tiles (rep-4 Sierpinski 
triangle, rep-3 figure and rep-9 figure) appearing in Figures 6-8 also produce a 
rep-tiling by translation of the tile by the respective lattice. These examples show that 
individual tiles may be'topologically complex, not necessarily connected or simply 
connected. In fact, the tile in Figure 8 has infinitely many connected components. 

!.5 

0.$ 

0 

-0.5 

°1 

2 -1 -- 0 ! 
Figure3" J ( ~ ' (  1 ll) 'f(0) '(0)) )" 
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!.5 

L 

O.5 

0 

.0.5 

-I 

-i.5 

-2 
-2 

( ( 5/2 ) 
Figure 4. :Y-- L, ~ x ~ / 2  5/2 / '  {(0, 1, ~ . . . . .  o~5)} , where L is the hexagonal lattice. 

It is not entirely surprising that the boundary of the tiles are fractal. Mandelbrot 
[24], Giles [ 10] and Gilbert [7] had constructed rep-k fractal figures (but not tilings). 
Dekking [3]-[4] and Bandt [1] subsequently gave systematic constructions for such 
"fractiles". Dekking constructs the boundary of a rep-tile in R 2 by a recursive 
string-rewriting procedure, and Bandt constructs the tile using summation (3). 

Omitting the technicalities of the proof of Theorem 1, it is, nevertheless, not 
difficult to see, given the rep-tiling, how the digits in the radix representation arise, 
and conversely, given the digits, how formulas (3) and (4) for the tiling arise: The 
definition of  lattice rep-tiling in Section 2 implies that for any such tiling there is a 
set D = {dl, d2 . . . . .  dk } consisting of k = [det A[ lattice points such that if T o is the 
tile whose interior contains the origin, then 

k 

A(To) = U (4 + :To), (s) 
k = l  

where the digit d~ can be chosen to be the origin 0. The set D is the required digit 
set. 
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Conversely, given the radix system (L, A, D), let 

m - I  

ore= E A'W) 
i = 0  

denote the set of all lattice points that can be represented with at most m digits. It 
is equivalent to formula (3) to express T(A, D) as the limit (in the Hausdorff metric) 
of a nested sequence of sets: 

T(A, D) = lim A -m(Dm). (6)  

For a similarity A, the "evolution" of the set T(A, D) in the limit (6) can be nicely 
visualized. Recall that the Voronoi cell centered at the lattice point x ~ L is defined 
as the set of points y such that y is at least as close to x as to any other point of 
the lattice: Vx = {y ~ Rn: [y -x[  _< [y -z[ for all z ~ L}. Let Dm= [,.)x~Dm Vx be the 
union of the Voronoi cells Vx centered at the points in D,,. Then, by equation (6), 
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vi uro6. 

D m (scaled down by A--m) is an ruth approximation to T. Figure 9 shows the first 
approximations to the "dragon tile" T(A, D) of Figure 3. 

Since D is a set of coset representatives of L/A(L), the set Dm is a set of coset 
representatives of the group L/Am(L). Therefore L is the disjoint union 

L = U {x +Dm I x e A"(L) }, (7) 

which implies that 

A-m(L)  = U { x  -}- A-ha(Din) Ix ~ t } ,  

Letting m ~ oe shows that •" is, indeed, covered by copies of the tile T(A, D). 
(What is not clear is that the interiors o f  distinct tiles are disjoint, and, in fact, this 
may not be the case if (L, A, D) does not satisfy the unique representation prop- 
erty. We return to this question in Section 6.) In the case that (L, A, D) does 
satisfy the unique representation property, let To=T(A,D) and 7",,= 
U {x + T(A, D) Ix e D,, } for m > 1. Then by equation (7) 

~rn = {X + T m Ix ~ Am(L)} 
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0 

-0.5 

-1 

I 
. ,  L ......... 

-0 .5  

Figure 7. T(L, f 3/2 

........ • • ,, J 
0 O.5 i 1.5 

-w/3 /2 )  { ( 0 )  (1 )  ( 2 ) } )  where L is the hexagOnal ' 0 '  0 '  0 ' 

is a tiling of R" for each m with the following hierarchical property: each tile in ~--,, 
is, in turn, tiled by ]det A 1 tiles in J,,,_ ~. 

There is another way to view the tiling; T(A, D) arises as the attractor of  a 
certain iterated function system. More precisely, the functions 

w, (x) = A - ' ( 4  + x), 

i = 1, 2 . . . . .  k, are, in the terminology of  Barnsley [2], an affine iterated function 
system, and its attractor is, by definition, the unique fixed point of  the transforma- 
tion W defined on the space of  all compact subsets o f  ~" by 

k k 
w(x) = U w,(x)= U A-'(4 +x) .  (8) i=l i=1 

On one hand such an attractor is given explicity by the summation formula (3), and 
on the other hand it is, by comparing equations (5) and (8), the self-replicating tile 
for (L, A, D). 
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Figure 9. Approximations to the rep-2 dragon tile. 
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Theorem 1 naturally suggests the following two questions, which will be 
addressed in Section 5. 

(1) Is it possible to determine whether a given radix system (L, A, D) has the 
unique factorization property? 

(2) Given (L, A), does there exist at least one digit set D for which (L, A, D) has 
the unique representation property? 

4. Generalized balanced ternary 

Just as the decimal system is suitable for denoting integer points on the line, any 
radix system (L, A, D) with the unique representation property provides a system 
for addressing lattice points in Euclidean n-space, the address  of a lattice point x 
given by the string of  digits in the radix representation of x. The generalized 
balanced ternary, defined below, is a useful n-dimensional radix system that 
simultaneously generalizes the l-dimensional balanced ternary and the 2-dimen- 
sional hexagonal system. 

Let A* denote the dual of  the classical n-dimensional root lattice An. For our 
purposes A* is the lattice in IR ~ generated by a set {Vo . . . . .  v, } of vertices of a 
regular n-simplex with barycenter at the origin. So A* is the integer lattice on the 
line, and A* is the hexagonal lattice in the plane. The Voronoi region of  A*, A*, 
and A3* is an interval, a hexagon, and a truncated octahedron, respectively. In 
general, the Voronoi region of A* is a permutohedron, the n-dimensional polytope 
whose vertices (embedded in IR n+l) consist of the (n + I)! points obtained by 
permuting the coordinates of  ( - n / 2 ,  ( - n  + 2)/2, ( - n  + 4)/2 . . . .  , (n - 2)/2, n /2 ) .  

The lattice A* is isomorphic, as an Abelian group, to the quotient L = g [ x ] / ( f ) ,  

where f ( x )  = 1 + x + .  • .  + x ~. Let co = g, where the bar denotes the coset in L 
containing x. Since co "+1 = 1, the ring L acts somewhat like adjoining an (n + 1)st 
root of unity to 77. The isomorphism between A* and L is obtained by mapping 
generators v~ ~-+ co ~, and extending linearly. In fact, because L is a ring, the lattice 
A* also inherits a ring structure. Addition in A* is usual vector addition. By abuse 
of language no distinction will be made between A* and L. 

Let fl = ~ -  09 e L be the base for radix representation in A~*. The matrix 
representing fl, with respect to the generators {Vo . . . . .  v, }, is 

2 0 - . '  0 - 1  

- 1  2 - . .  0 0 

0 - 1  - . .  0 0 

0 0 . . . .  1 2 
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Let the digit set be D = {e0 +cl io  + . - .  +e,~o": ei e {0, 1}, not all e; = 1}. Then 
(A*, Ap, D) has the unique representation property [18], and is called the general- 
ized balanced ternary (GBT). The 1- and 2-dimensional cases are exactly the 
balanced ternary and hexagonal systems. In computer vision the pixel locations in 
an image can be thought of as the lattice points at the centers of Voronoi cells that 
tile the plane. A geometric advantage of pixel locations on a hexagonal grid, rather 
than the usual square grid, is that the hexagons are a reasonably accurate 
approximation to a circle. A computer software advantage of GBT addressing is 
that high throughput rates are achieved by performing addition and multiplication, 
as well as conversion of address to planar locations and vice-versa, in terms of  the 
bit strings e0el " " e ,  that represent the digits [18][29]. One firm [6] has developed a 
planar database management system based on the 2-dimensional GBT. Figure 10 
shows all planar locations with addresses of at most three GBT digits and also the 
product 25.255 = 604. For  convenience, the addresses in this figure are given using 
base 7 digits instead of binary string digits. This is possible because there is a ring 
isomorphism 

19: A* -+Z 

that, in dimension 2, takes a radix fl representation in A* with digits D to a radix 
7 representation in Z with digits {0, 1, 2, 3, 4, 5, 6}. In general, the isomorphism is 
given as follows. Let q = 2 n + i _ 1; then 

t9: ~ d,.fli~ ~ O(di)q i, 
i = O  i = 0  

where O:D ~ {0, 1 . . . .  , q - 1} is given by 

i = 0  i = 0  

The proof  that this is an isomorphism follows from the facts that to n +1 = 1 and 

--2 mod (ilL). 

5. Unique representation 

This section contains three remarks concerning when a radix system (L, A, D) 
has the unique representation property. Since D is a digit set, uniqueness follows 
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Figure I0. Addresses in generalized balanced ternary radix system. 

from the proposition in Section 3. The issue is whether every lattice point has some 
representation. Proofs of the results in this section appear in [34]. 

REMARK 1. Assume in this remark that A = bQ is a similarity; for the general case 
see [34]. Given a radix system (L, A, D), there is an efficient algorithm to determine 
whether (L, A, D) represents each lattice point. This algorithm is based on the 
following simple routine that is analogous to finding the base fl digits of  an integer. 

Given a point x = Xo ~ L, define a sequence {xi } of lattice points and a sequence 
{dr } of digits recursively by the formulas 

x,+~ = A - l ( x , - - 4 ) ,  
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where d~ is the unique element o f  D such that  

dt =- xi mod A(L). 

It is clear that,  if x m - ~ -  0 for  some m, then xi = dr = 0 for  all i > m. And,  if there is 

a repetit ion in the sequence {xi} other  than 0, then x, # 0  for all i. Let  
r(D) = max{ ]d[:d ~ D}/(b - 1); let B be a ball centered at the origin with radius 

Ix[ + r(D); and let ct be the number  of  lattice points o f  L in B. Then it can be shown 
that  x has a representat ion in (L, A, D) if and only if xm = 0 for some m < a. In this 

case, the digits in the radix representat ion of  x are do, d~ . . . . .  dm_ I. Consider,  for 
example,  (Z,  3, { -  1, 0, 4}). I f  x = 2, then 

Xo = 2 do = --1 

xl = 4 d I = 4 

x2 = - 1  d2 = - 1  

x3 = 0  d3 = 0 ,  

and 2 has base 3 representat ion ( - 1 ) ( 4 ) ( - 1 ) .  I f  x = - 2 ,  then x0 = - 2  and 
xl = - 2  so that  - 2  has no finite representation. Call this procedure for determin- 

ing whether  a given lattice point  has a (finite) radix representation, Algorithm A. 

ALGORITHM. Every lattice point in L has a representat&n in the radix system 

(L, A, D) if  and only i f  every lattice point in a ball of  radius r(D) has a finite radix 
representation. The latter condition can be efficiently tested using Algorithm A. 

As a first example,  apply  this a lgor i thm to Example  3, the 2-dimensional GBT.  

In this case, r(D)= l / ( x f 7 - 1 ) .  Since 0 is the only lattice point  in the ball o f  
radius r(D), it is immediate  that  (L, A, D) has the unique representation property .  

No t  quite so trivial, consider L =Z[ i ] ,  ~ = 1 + i  and D = {0, 1}. In this case 
b = v/2 ,  so that  r(D) = 1/(x//2 - 1). There are exactly 21 Gaussian integers in the 

ball o f  radius r(D) to which Algor i thm A is applied. However ,  Algor i thm A 
applied to the Gauss ian  integer i (which lies in the ball) results in the sequence 

i, i . . . .  The repetition indicates that  i has no finite radix representation.  On the 
other  hand  with/~ = - 1 + i, instead of  1 + i, it can be checked using Algor i thm A 

that  all 21 lattice points in the ball do have finite radix representations.  Therefore  

(Z[i], - 1  + i, (0, 1}) does have the unique representation property.  
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REMARK 2. A sufficient condition for representation of each lattice point can be 
stated in terms of the radix arithmetic. 

SUFFICIENT CONDITION 1. Every lattice point in L has a representation in the 
radix system (L, A, D) if 

(1) each element in a basis for L has a radix representation, and 
(2) D + D c_D + A(D). 

The second condition states that, in the radix arithmetic, a carry for addition 
can go at most one place to the left. Example 2 in Section 3, where digits are carried 
three places to the left, shows that this may not be the case. For the generalized 
balanced ternary, however, it can be shown that this is the case in all dimension. 

REMARK 3. Given a lattice L and linear expansive map A: L -+ L, does there 
exists at least one set D of digits such that (L, A, D) has the unique representation 
property? The answer, in general, is no. The simplest counterexample is the binary 
system for the integers: L = Z and A = (2). In fact, this is the only example in 
dimension 1. In dimension 2 there are infinitely many counterexamples. Let L = 7/2 
and 

-m) o  =(20 7) 
where m is an integer. In either case there is no set of digits so that (7/2, A, D) 
has the unique representation property. In fact it can be proved that, if 
det(I - A) = ± 1, then there exists no appropriate set D of digits. 

In the positive direction it can be shown that, if A has sufficiently large singular 
values, then there exists a digit set D such that (L, A, D) has the unique representa- 
tion property. Recall that the singular value decomposition of  a real matrix A is 
A = Uo diag(crt,.. , ,  or,)o V r, where U and V are orthogonal matrices. The real 
numbers cr~ . . . . .  tr, are called the singular values of A. If A = bQ is a similarity, 
then all singular values of  A are equal to the expansion factor b. 

SUFFICIENT CONDITION 2. I f  all the singular values of  A are greater than 3x,~nn, 
then there exists a set of  digits D such that (L, A, D) has the unique representation 
property. In dimensions 1 and 2 the bound 3x/~ can be improved to 2. 

The digit set D in this result is set of lattice points contained in the image under 
A of  the half open unit cube (a fundamental domain for the cubic lattice) centered 
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at the origin. As an example consider the square lattice L = 7/2 and the linear map 

Both singular values of A are 2.2361>2. Hence those lattice points 
((0, 0), ( 1, 0), (0, 1), ( - 1, 0), (0, - 1)} that lie in the image under A of the half open 
square ( -5,1 511 x ( -5,~ 5]~ constitute a digit set D for which (L, A, D) is the one that 
appears in Figure 5. 

A generalization of Sufficient Condition 2 produces a family of digit sets D for 
each pair (L, A), each digit set being the image under .4 of the fundamental domain 
of  a certain lattice [34]. Strichartz [31] proves a result similar to Sufficient Condition 
2 for the case that A is a similarity. Gr6chenig and Haas [14] construct a digit set 
D for each pair (L, A) in dimension 2 (except when A has two irrational real 
eigenvalues) that guarantees that 3-(L, A, D) is a lattice rep-tiling, And in some 
cases, they show that the rep-tile T(.4, D) is connected. 

6. Variations and generalizations 

This section discusses two open problems related to topics in this paper, and a 
generalization from lattice rep-tiles to crystallographic rep-tiles. The subject of 
self-replicating tilings using more than one prototile is fascinating, but too vast to 
be discussed here. 

Two problems 

In some of the questions below, the tile, rather than the tiling, is the fundamen- 
tal object of study. A rep-tile is a compact set T in R ~ of positive Lebesque measure 
with the property that there exists an expansive matrix A such that the image A(T) 
is tiled by translates of T. As before, there is a set D consisting of Idet A I digits 
defined by the equation A ( T ) =  ~)d~v(d+ T), and T =  T(A,D) is given by for- 
mula (3) in Section 3. Note, however, that no lattice is mentioned in the definition 
of  rep-tile. No tiling is mentioned either, but the following theorem holds [20]. Here 
Do = UF=, Din, where O m =~'.~=-o I Ai(D), and A(Doo) = D o  -Do~. 

THEOREM 2. I f  T(A, D) is a rep-tile, then there ex&ts a set of translations 
~¢ ~ A(D2) such that ~ + T(A, D) tiles R". 

QUESTION 1. IS T(L, A, D) a tiling even when the radix system (L, A, D) does 
not represent each lattice point? 
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Theorem 1 does not answer the question, because it does not even assert that L 
is a lattice, let alone the lattice L. It also does not assert that the tiling is a rep-tiling. 
(However, if L~ a = L then it is easy to show that T(L, A, D) is indeed a rep-tiling.) 
In fact, there is a counterexample to Question 1, even in dimension 1. Let L = Z, 
A = (3), D = { - 2 ,  0, 2}. Then T(A, D) = [ - 1, I], so that adjacent tiles overlap on 
a unit interval. 

Theorem 1 may, however, help in understanding this counterexample. If the 
lattice L in a radix system (L, A, D) has an A-invariant proper sublattice L '  
containing D, then clearly ~ _~ A(D~) e L '  ~ L. Since, by Theorem 1, 5¢ + T(A, D) 
tiles •" it is impossible that L + T(A, D) tiles I~ n. This is the case in the counterex- 
ample above, where the A-invariant sublattice containing D is 2Z. Of course, if L 
does have an A-invariant sublattice containing D, it is always possible to "mod 
out" and regard A as acting on the minimum (with respect to inclusion) such 
sublattice L'. So it is reasonable to conjecture, as was done in [14], that if L has no 
A-invarJant sublattice containing D, then T(A, D) does tile ~" by translation by L. 
The conjecture is true in dimension 1; however Lagarias and Wang [20] recently 
gave the following counterexample in dimension 2: 

o 

where the tile T(A, D) is shown in Figure 11. There is, however, a tiling (not a 

1.5 

Figure 11. T does not give a tiling by translation by ~_". 
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rep-tiling) of R 2 by translates of T(A, D) to the lattice 3Z ~ Z. This motivates the 
weaker conjecture: 

CONJECTURE 1. / f  (L, A, D) is a radix system, then there is some lattice tiling 
using only translates of T(A, D). 

Lagarias and Wang have announced a proof of Conjecture 1 in dimension 2 and 
in all dimensions when A is a similarity [21], but the general case appears to remain 
open. Concerning the original Question 1, Gr6chenig and Haas [14] provide an 
algorithm that determines, given radix system (L, A, D), whether or not 9--(L, A, D) 
is a tiling. 

Given any rep-tile T, Theorem 1 guarantees a tiling by translates of T but gives 
no limits on the degree of "disorder" the tiling can possess. This motivates the 
following question. 

QUESTION 2. Does there exist a rep-tile that admits no periodic tiling? More 
generally, does there exist a region that tiles ~" by translation, but admits no 
periodic tiling? 

In dimension 1, if a bounded region T tiles ~ by translation, then every tiling by 
translation is periodic [22]. The same result is true in dimension 2 if T is a 
topological disk with piecewise-C 2 boundary [11]. Likewise the result holds for 
convex polytopes in any dimension [33]. However, the Penrose tiles [27] are a set of 
two prototiles that admit infinitely many tilings of ~2, but no periodic tilings. For 
one tile the answer to both questions, in general, is open. If translations are not the 
only motions allowed, then there are examples of both non-convex (Schmitt, 
unpublished) and convex (J. H. Conway, unpublished) polyhedra that tile R 3 by 
Euclidean motions but only aperiodically. 

Crystallographic rep-tites 

The group Z n, viewed as a discrete group of isometries acting on En with 
compact quotient, is just one of many such crystallographic groups. There are 7 in 
dimension 1 (frieze groups), 17 in dimension 2 (wallpaper groups); 230 in dimen- 
sion 3; 4783 in dimension 4; and, in general, there are finitely many crystallographic 
groups in each dimension (proved by Bieberbach in 1910). The lattice rep-tilings are 
rep-tilings by all images of a single tile T under the action of the group 7/". Gelbrich 
[5] generalizes by calling a rep-tiling 3- crystallographic if Y- = {7(T) 17 E F}, for 
some tile T and some crystallographic group F. He proves in dimension 2 that, for 
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a c rys ta l lographic  g roup  and a given expans ion  fac tor  k, there are finitely many  

i somorph i sm types o f  c rys ta l lographic  rep-t i les that  are h o m e o m o r p h i c  to a disk. 

Here  an i somorph i sm is an affine bi ject ion that  preserves tiles at every level in the 

hierarchy.  Using  an  a lgor i thm for de te rmin ing  the tiles, he shows, for  example ,  that ,  

in the case o f  a lat t ice rep-t i le  (c rys ta l lographic  g roup  genera ted  by two indepen-  

dent  t ranslat ions) ,  there are three classes o f  tiles for  k = 2 and  seven classes for  

k = 3 .  
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