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ABSTRACT 

A famous theorem of Ryser asserts that a v x v zero-one matrix A satisfying 
AA r -- (k - k)I + aJ with k ~ k must satisfy k + (v - 1)k = k 2 and ArA 
(k - k)I  + A J; such a matrix A is called the incidence matrix of a symmetric block 
design. We present a new, e/ementary proof of Ryser's theorem and give a characteri- 
zation of the incidence matrices of symmetric block designs that involves eigenvalues 
of AA r. © Elsevier Science Inc., 1997 
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1. INTRODUCTION 

DASONG CAO ET AL. 

In the first volume of the Proceedings o f  the American Mathematical  
Society, Ryser [3] proved the following theorem. 

RYSEI~'S THEOREM (Version 1). Let  V be a set o f  size v, and let $1, 
S 2 . . . . .  S o be subsets o f  V. I f  there are distinct k and A such that I s, I = k f o r  
all i and IS i ¢q Sjl = A whenever  i 4=j, then k + (v  - 1)A = k 2, each point 
o f  V is included in precisely k o f  the sets S i, and each pair o f  distinct points o f  
V is contained in precisely A o f  the sets S i. • 

This paper explores variations on Ryser's theorem, in two different spirits. 
Ryser's original proof, and all other proofs that we have seen or concocted, 
resort to notions such as determinants, matrix inverses, linear independence, 
or eigenvalues and rely on results of linear algebra such as 

if C is a square matrix such that the equation Cx = 0 has a nonzero solution, then 
det CC T = 0 

o r  

if A is a square matrix such that equation AATx = 0 has no nonzero solution, then 
there is a matrix B such that BA = I. 

While use of algebraic techniques to prove a combinatorial theorem is surely 
not reprehensible, it is natural to wonder if such techniques are necessary. In 
this particular case, the answer is negative: in Section 2, we shall present an 
elementary proof of Ryser's theorem. 

A symmetr ic  block design is any pair (V, {S 1, S z . . . . .  So}) that satisfies the 
hypothesis (and the conclusion) of Ryser's theorem. The incidence matrix A 
of this design is the v × v matrix, with rows indexed by i = 1, 2 . . . . .  v and 
columns indexed by the elements of V, such that the ith row of A is the 
incidence vector of Si; equivalently, A = ( a i x )  with 

{~ if x E Si, 

aix = if x ~ S i. 

Note that A is the incidence matrix of a symmetric block design if and only if 
A is a square zero-one matrix and there are distinct integers k, A such that 

AA T =  ( k -  A) I +  A J,  
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where I and J denote as usual the identity and all ones matrix, respectively. 
In Section 3, we shall prove that these conditions can be weakened: A is the 
incidence matrix of a symmetric block design if and only ff A is a zero-one 
matrix, A is nonsingular, A has constant row sums, AA r has precisely two 
distinct eigenvalues, and AA r is irreducible, meaning that it cannot be 
permuted to assume the form 

where B, D are square matrices of positive order. The "'only i f"  part is trivial 
[in particular, k + (v - 1)A and k - A are the only eigenvalues of a v × v 
matrix (k - A)I + AJ]; our proof of the " i f"  part relies heavily on the 
Perron-Frobenius theorem. 

2. 'FIRST VARIATION 

Here, we offer an elementary proof of the following generalization of 
Ryser's theorem: 

RYSER'S THEOREM (Version 2). Let  A be a real v × v matrix.  I f  there 
are distinct k and A such that  AJ = kJ and A A  r = (k  - A)I + A J, then 
k + (v - 1)a = k 2, l a  = k 1, and ArA = (k  - A)I + A]. 

Proof. Writing A = (ai~) mad 

dx = Y'~ai~, dxy = E a , x a ,  y, t = k + ( v  - 1)A, 
i i 

note that, as E~(Eiai~)  = Ei (Exaix ) ,  

~ , d  x = vk ,  
x 

(1) 

and that, as Ex(E~aixX]~jajx) = Ei(~.jExai~aj~),  

E = vt, (9) 
x 
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and that, as Ex(E~a~) = Ei(Exaiex ), 

~,d~x = vk, 
X 

and that, as ExEy(Eiaixai~) = Ei(E~aix)(E~aiy), 

E ~ l ~  = vk ~, 
x y 

and that, as ExE~(E,a,xa, yXEjajxajy) = E,[Ej(E~a, xaj~XEya, yajy)], 

and that,  as 

(EsE~aiyasy), 

DASONG CAO ET AL. 

(3) 

(4) 

~ d ~ y  = v[k 2 + (v  - 1 ) h 2 ] ,  (5) 
x y 

E ~ E y ( E i a i x a i y ) ( E r a r x ) ( E s a s y )  = E i ( E ~ E ~ a i ~ a ~ )  

~_, ~.,d~ydxd~ = vt 2. 
x y 

(6) 

We propose to show that the identities (1)-(6) imply the desired conclusions: 

t = k ~, (7) 

d~ = k for all x, (8) 

= (k if x = y ,  (9) 
dxy 

A if x =~y. 

For this purpose, let us set 

( 0 ( k - A )  if x = y ,  
cxy = if x ~ y. 

From (5), (6), (3), and (2), we have 

~., ~ , ( td~y - Adxdy - cxy) z = O, 
x y 
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which, since each td~y - Ad~dy  - c , y  is a real number, implies 

td~y - Ad~dy  - Cxy = 0 for all x and y. (lO) 

From (4) and (1), we have 

~,  ~ , ( tdxy  - ad.dy  - % )  = v ( k  - X ) ( k  2 - t ) .  
x y 

which, along with (10) and the assumption that k ~ A, implies (7). Next, from 
(2) and (1), we have 

E ( d ~  - k )  2 = v ( t  - k2), 
x 

which, along with (7) and the assumption that each d~ - k is a real number, 
implies (8). Finally, writing 

= / k  if x = y, 
b~y 

A if x ~ y ,  

we obtain from (3), (4), (5) 

E E ( a x y  - bxy) 2 = 2 v a ( t  - k2) ,  
x y 

which, along with (7) and the assumption that each d,y - b , y  is a real 
number, implies (9). • 

In Version 2, the assumption that A is a real matrix can be dropped; see 
Ryser's second proof of his theorem [4, theorem 2.1, p. 103] or Marshall 
Hall's extension of the theorem [1, Theorem 10.2.3, p. 104]. However, this 
assumption is indispensable in our proof; we know of no elementary proof of 
the generalization of Version 2 where A can be a complex  matrix. 

3. SECOND VARIATION 

LEMMA. I f  M is a nonnegat ive  i rreducib le  s y m m e t r i c  matr ix  w i t h  exact ly  
two  dis t inct  e igenvalues ,  then  M = uu r + s I  f o r  some  posi t ive  u and  some s. 
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Proof.  I_~t n denote the order of  M, I f  n = 2, then the conclusion 
follows by setting 

12 = 
1  lJ IT d + r o l l  - -  m 2 2  m~l m22 

2 ' 2 

8 = 

roll + m22 - d 

with M = ( m i j )  and d = [(roll - m22) 2 + 4m12] 1/~. Hence we may assume 
that n ~> 3. 

By the Perron-Frobenius theorem [2, Theorem 9.2.1, p. 285], the charac- 
teristic equation of any nonnegative irreducible matrix has a simple root; in 
particular, the characteristic equation of M has a simple root, r. Every real 
symmetric matrix of order k has k linearly independent eigenvectors [2, 
Theorem 29.4, p. 76]; in particular, M has n linearly independent eigenvec- 
tors. Since only one of these n eigenvectors corresponds to r, the remaining 
n - 1 eigenvectors must correspond to the other root, s. In other words, the 
rank of M - sI  is 1. Hence M - sI  = ab r for some real vectors a and b. 
Since M is symmetric, a and b are multiples of  each other, and so 
M - sI  = + u u  r for some real vector u. Since M is ireducible, no compo- 
nent of u is zero. For any choice of three components u i, u j ,  u k of u, the 
three products uiu j ,  u~u k, u j u  k are off-diagonal entries of M; since M is 
nonnegative, the three products are nonnegative, and so u~, u j ,  u k must have 
the same sign. Hence all components of u have the same sign; replacing u by 
- u  if necessary, we conclude that u is a positive vector and, since M is 
nonnegative, M - sI  = uu  T. • 

THEOREM. A is the  incidence matr ix  o f  a s ymme t r i c  block design i f  and  
only  i f  A is a zero-one matrix ,  A is nonsingular ,  A has constant  row sums,  
A A  r is irreducible, a mt  A A  r has precisely two  dist inct  eigenvalues.  

Proof.  As noted in the introduction, the "only i f"  part is trivial. To prove 
the " i f"  part, we use the Lemma with AA r in place of M to find that 
A A  ~ = uu  r + sI  for some positive vector u and some s. Since A is zero-one, 
the diagonal elements of AA r equal the row sums of A; since A has constant 
row sums, it follows that all diagonal elements of AA r are the same. In turn, 
since u is a positive vector, it follows that all components of u are the same. 
Hence AA r =  sI  + tJ for some t; since A is nonsingular, s g: 0. We 
conclude that A is the incidence matrix of a symmetric block design with 
k = s + t , A = t .  • 
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This theorem is best  possible in the sense that none  of  its five conditions, 

(a) A is a zero-one matrix, 
(b) A is nonsingular, 
(c) A has constant row sums, 
(d) AA r is irreducible, 
(e) AA T has precisely two distinct eigenvalues, 

is implied by the four others: 
To see that (a) cannot  be  dropped,  consider 

A = 

a b b ..- b / 
1 2 1 ... 1 [  
1 1 2 . '-  1~ 

f"1""1".."2"1 

with a = 2 - ( v -  1)c, b = 1 + c ,  c = 2 v ( v  + 2 ) / ( v  3 + v  2 - 2 v -  1). 
Since 

a 2 + ( v -  1)b  2 -  1 a + v b  

a + v b  v + 2 '  

the rank of  AA T -  I is 1; hence 1 is an eigenvalue of  AA T, and its 
multiplicity is v - 1. The  other  eigenvalue of  AA T, corresponding to the 
eigenvector  [a + vb, v + 2, v + 2 . . . . .  v + 2] T, is a ~ + (v  - 1)b ~ + 
(v - 1Xv + 2); hence  A is nonsingular. 

To  see that  (b) cannot  be  dropped,  consider any zero-one matrix A, other  
than the all ones or the all zeros matrix, such that  all the rows of  A are the 
same. 

To  see that (c) cannot  be  dropped,  take the incidence matrix B of  a 
symmetr ic  block design with k = A ~ + 3A + 1 and v = Z 3 + 6A 2 + 10A + 
4. ( I f  A = 0 then B -- I; if A = 1, then the design is the projective plane of  
order  four. We  do not know for what  other  values of  Z such designs exist.) 
Then  let e denote  the all ones vector, and consider 

A = (  le eT) " B  

Since 

v + l - k + A  

k + l  

k + l  

A+I '  
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the rank of  AA T - (k - A)I is 1; hence k - A is an eigenvalue of  AA r, and 
its multiplicity is v - 1. The  other  eigenvalue of  AA T, corresponding to 
eigenvector  [k + 1, A + 1, A + 1 . . . . .  A + 1] r, is v + 1 + v(A + 1); hence 
A is nonsingular. 

To  see that  (d) cannot  be  dropped,  consider 

o) 
such that B is the incidence matrix of  a symmetr ic  block design. 

To see that  (e) cannot  be  dropped,  consider 

0 1 1 0 0 . . .  0 

1 0 1 0 0 . . .  0 

1 1 0 0 0 . . .  0 
A =  

1 0 0 1 0 . . .  0 

1 0 0 0 1 . . .  0 

f "'0" ' 0 "  b"" b --'-'" "1" 
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