
SIAM J. DISC. MATH.
Vol. 6, No. 3, pp. 501-521, August 1993

() 1993 Society for Industrial and Applied Mathematics
014

REPLICATING TESSELLATIONS*
ANDREW VINCEt

Abstract. A theory of replicating tessellation of R is developed that simultaneously generalizes radix
representation of integers and hexagonal addressing in computer science. The tiling aggregates tesselate Eu-
clidean space so that the (m + 1)st aggregate is, in turn, tiled by translates of the ruth aggregate, for each m in
exactly the same way. This induces a discrete hierarchical addressing systsem on R’. Necessary and sufficient
conditions for the existence of replicating tessellations are given, and an efficient algorithm is provided to de-
termine whether or not a replicating tessellation is induced. It is shown that the generalized balanced ternary
is replicating in all dimensions. Each replicating tessellation yields an associated self-replicating tiling with the
following properties: (1) a single tile T tesselates R periodically and (2) there is a linear map A, such that
A(T) is tiled by translates of T. The boundary of T is often a fractal curve.
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AMS(MOS) subject classifications. 52C22, 52C07, 05B45, 11A63

1. Introduction. The standard set notation X + Y {z + y z E X, y E Y}
will be used. For a set T c Rn denote by Tx z + T the translate of T to point z.
Throughout this paper, A denotes an n-dimensional lattice in l’. A set T tiles a set R
by translation by lattice A if R [-JxsA T and the intersection of the interiors of distinct
tiles T and Tu is empty. Such a tiling is calledperiodic.

In this paper, A A A will be an endomorphism of A, often given by a nonsingular
n x n matrix. Given A, a finite subset S c A, containing 0, is said to induce a replicating
tessellation or simply a rep-tiling of A if (1)

m

S ’A(S)
i--O

tiles A by translation by the sublattice A’+I(A) for each m > 0, and (2) every point of
A is contained in S, for some m. The pair (A, S) will be called a replicating tilingpair or
simply rep-tilingpair. This definition of rep-tiling is related to the rep-k tiles of Golomb
[11], Dekking [5], Bandt [1], and others as described later in this introduction.

The definition of rep-tiling can be restated in terms ofthe Voronoi cells ofthe lattice.
Recall that a lattice A determines a tessellation by polytopal Voronoi cells where the
Voronoi cell of the lattice point z is defined by {y ’ Ig z[ < lY zl for all z A}.
Let V, denote the union of the Voronoi cells corresponding to the lattice points of
The definition of rep-tiling is equivalent to (1) V, tiles by translation by the sublattice
A’+1 (A), for each m > 0, and (2) every point of l’ lies in V, for some m. The set
S, (or the corresponding V,) is called the m-aggregate of the pair (A, S). If S induces
a replicating tessellation, then the (m + 1)-aggregate is tiled by IS[ copies of the m-
aggregate for each m > 0. More precisely, So S and S,,+1 is the disjoint union

zA,+(S)

for all m > 0. Hence, we have the term "replicating."
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502 ANDREW VINCE

Given A A A and S, afinite address of a lattice point z E A is a finite sequence
ra Aiso sl. s, such that z -i=0 si where s E S. The m-aggregate is then the set of

lattice points whose address has at most (m + 1) digits.
PROPOSITION 1. Given endomorphism A A A, the set S c A induces a rep-tiling

ofA ifand only ifevery lattice point in A has a unique finite address.
Proof. Condition (2) in the definition of a rep-tiling is equivalent to every lattice

point having a finite address. Given condition (2), condition (1) in the definition is
equivalent to the finite address being unique. This is proved as part of Proposition 2
in 2.

Before proceeding with the theory, consider the following three examples. The first
has applications to computer arithmetic and the representation of numbers by symbol
strings [20], [21]. The third has applications to data addressing in computer vision and
remote sensing [6], [18], [25].

Example 1 (Radix representation in Z). The lattice A is the one-dimensional integer
lattice Z, and A is multiplication by an integer b. By Proposition 1, a finite subset S of
Z induces a rep-tiling of Z if every integer z has a unique base b radix representation

mz -i=0 shi, where si S. With S {0, 1,..., b 1} and b > 2, the Fundamental
Theorem of Arithmetic states that every nonnegative integer (but no negative integer)
has such a unique radix representation. The m-aggregate, in this case, is the set of inte-
gers {0, 1,..., b’ 1}, and, clearly, each aggregate is tiled by b copies of the previous
aggregate. With b < -2, every integer has a unique radix representation. With b 3 and
S {-1, 0, 1}, the radix representation is called balanced ternary. Every integer has a
unique representation in the balanced ternary system. Although S {-1, 0, 4} is also
a complete set of residues modulo 3, the number -2 has no base 3 radix representation
with coefficients in the set S {-1, 0, 4}. Unique representation, in a more general
setting, is a main topic of this paper.

Knuth [20] gives numerous reference to alternative positional number systems dat-
ing back to Cauchy, who noted that negative digits make it unnecessary for a person to
memorize the multiplication table past 5 5. For a given positive integer base b, Odlyzko
[22] gives necessary and sufficient conditions for a set S of positive real numbers to have
the property that every real number can be represented in the form 4- -=-v sb- s
S. The unique representation of integers is investigated by Matula [21].

Example 2 (Radix representation in Z[i]). Gilbert [7]-[9] extends radix representa-
tion to algebraic numbers. For example in the Gaussian integers Z[i] {a + bi a, b
Z}, let -1 + i. Every Gaussian integer has a unique radix representation of the
form Y’i0 si, where si S {0, 1 }. (This will be proved in 7.) In the terminology
of this paper, if A is complex multiplication by fl, then S {0, 1} induces a rep-tiling
of the square lattice in the plane. The first aggregate is the union of two translates of
the zero aggregate; the second aggregate is the union of two translates of the first aggre-
gate; in general the (i + 1)st aggregate is the union of two translates of the ith aggregate.
Using Voronoi cells to represent the lattice points, Fig. 1 illustrates how the aggregates
fit together like jigsaw pieces. By contrast, with the value/ 1 + i replacing -1 + i, a
rep-tiling is not induced because the Gaussian integer has no radix representation with
coefficients in S.

The base/ arithmetic in the Gaussian integers resembles usual arithmetic except in
the carry digits. For example, 1 + 1 0011 because fl -1 + i satisfies the polynomial
z + z 2, i.e., 2 z +. So 1 + I results in carrying 011 to the next three places to

1Katai and Szabo [16] show that for base -k + i, where k is a positive integer, every Gaussian integer
has a unique radix representation with coefficients in
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REPLICATING TESSELLATIONS 503

FIG. 1. Radix representaion base 1 + i. Copies ofthe first seven aggregates are indicated.

the right. The ring structure of radix representation in algebraic number fields is further
discussed in 7.

Example 3 (Hexagonal tiling). This example is a two-dimensional analogue of the
balanced ternary of the first example. The lattice A is the hexagonal lattice in the plane
shown in Fig. 2, and the endomorphism A is given by the matrix

which is a composition of an expasnsion by a factor of x/ and an arctan(x/-/2) rotation.
The set S, consisting of the origin and the six points located at the sixth roots of unity,
induces a replicating tessellation. The 0-aggregate consists of the seven cells in Fig. 3(a).
The set of cells in Fig. 3(b) is a first aggregate and is the union of seven translates of
the zero aggregate. The second aggregate in Fig. 3(c) is, in turn, the union of seven
translates of the first aggregate. In general, the (i / 1)st aggregate is the union of seven
translates of the ith aggregate. The entire plane can be tessellated by translated copies
of the ith aggregate for any i in such a way that aggregates in the tessellation are nested
in the manner described above. Moreover, every hexagon lies in some aggregate. In the
unique finite address sos1.., s,, of a cell, the digit si indicates the relative position of
that particular cell in the ith aggregate level. Replicating hexagonal tiling is generalized
to higher dimensions in 7. From a computer science point ofview, hexagonal addressing
is an efficient addressing system that allows for addition and multiplication of addresses
based on simple sum, product, and carry tables [6], [18]. In fact, one firm has developed
a planar database management system based on hexagons (Gibson and Lucas [6]).

We consider two main questions.
Question 1. Given A A A and a finite set of lattice points S, does S induce a

rep-tiling of A?
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504 ANDREW VINCE

FIG. 2. Hexagonal lattice.

Fie,. 3. Zero, first, and second aggregates.
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REPLICATING TESSELLATIONS 505

Question 2. Given A A - A, does there exist some finite subset S of A, such that
S induces a rep-tiling of A?

Necessary conditions for (A, S) to be a rep-tiling pair are that S be a fundamental
domain for A (Proposition 2); in particular IS det AI. Also necessary is that A be a
linear expansive map (Proposition 4), which means that the modulus of each eigenvalue
of A is greater than 1. If A is linear expansive but (A, S) is not a rep-tiling pair, then, in
general, not every lattice point has a finite address. However, every lattice point z does
have an infinite repeating address that converges, in a certain sense, to z. This is proved
in 5, where the A-adic integers are defined in analogy to the classical number theoretic
p-adic integers; the A-adics are applied in 6. Section 6 contains three theorems giving
various necessary and sufficient conditions for S to induce a rep-tiling, thus providing
answers to Question 1. An efficient algorthm to determine whether (A, S) is a rep-tiling
pair is based on one of these theorems. A fourth theorem in 6 states that, for a large
class of matrices A, those with sufficiently large singular values (at least two in dimension
2), the set S of lattice points in the Voronoi region of a certain sublattice of A serves
as a fundamental domain such that S induces a rep-tiling. This provides an answer to
Question 2. The existence of an efficient algorithm, given A A - A, to decide whether
or not there exists a finite set S that induces a replicating tessellation, is open.

A periodic tiling of R’ by translation of a single tile T by the lattice A is called self-
replicating if there exists a linear expansive map A A - A, such that for each z E A,

,s’(:)

for some set S(x) c A. This self-replicating property originated with Golomb [11] who
defined a figure to be rep-k if k congruent figures tile a similar figure. For example, a
triangle is rep-k for k a perfect square. In this paper, tiling is restricted to lattice tiling,
but similarity is generalized to allow any linear expansive map A. Giles [10] discusses the
construction of rep-k figures whose boundary has Hausdorff dimension between 1 and 2,
including the rep-7 Gosper "flowsnake" and the rep-16 Mandelbrot "square snowflake."
The work of Dekking [4], [5], Bandt [1], Kenyon [17], and Gr6chenig and Madyeh [12]
all deal with the self-replicating property and use a construction similar in principle to
Theorem 1. The notion of a self-replicating tiling of R’ is due to Kenyon [17], although
the definition in [17] does not require that the tiling by translations of T be periodic, i.e.,
a lattice tiling. Kenyon shows that, on the line, the tiling is forced to be periodic, but not
necessarily periodic in dimensions greater than one.

The main point here is that each rep-tiling pair (A, S) induces a self-replicating pe-
riodic tiling. The construction is as follows. Let

m

E. A-’(S).
i=1

Note that the E, are nested and let

rn--1

and T := T(A,S) E,

where E denotes the closure of E.
THEOREM 1. If (A, S) is a rep-tilingpairfor A, then
(1) T T(A, S) is compact and is the closure ofits interior.
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506 ANDREW VINCE

(2) T tiles Rn periodically by translation by the lattice A.
(3) The tiling is self-replicating.
The above construction of self-replicating tessellations is applied to the second and

third examples in Figs. 4 and 5. Note that the tile in Fig. 4 is rep-2; the union of the two
tiles (viewed at an angle 7r/4) is similar to the original tile. Also, the tile in Fig. 5 is rep-7;
the union ofthe seven tiles is similar to the original tile. The proofofTheorem 1, given in
4 ofthis paper, is shorter and simpler than the proofof a similar theorem by Kenyon 17,
Thm. 11], but the hypotheses in [17] are slightly less restrictive. Nevertheless, essentially
very periodic self-replicating tiling can be obtained by the construction above (Theorem
2).

FIG. 4. Self-replicating tessellation by tile T(A, J), where A

lattice and S consists ofthe origin and the sixth roots ofunity.

__,a__2 I acts on the hexagonal

FIG. 5. Self-replicating tessellation by tile T(A, S) where A is multiplication by -1 q- acting on the square
lattice and S consists ofthe origin and the point (1, 0).

Section 7 of this paper examines the algebra, as well as the geometry, of replicat-
ing tessellations. A construction is given in which the lattice has a ring structure that
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REPLICATING TESSELLATIONS 507

allows for both addition and multiplication of finite addresses. This construction gen-
eralizes radix representation where the base is an algebraic integer and the hexagonal
tessellation used in image processing. It is shown that one important example, the gen-
eralized balanced ternary, provides replicating tessellations in all dimensions. Subjects
not treated in this paper, but of related interest, include L codes and ambiguity [3], [14],
[23].

2. Fundamental domain. The notation AX A(X) will be used hereafter. For
a lattice A, both A and AA are abelian groups under addition. Define a fundamental
domain S to be a set of coset representatives of the quotient A/AA. Indeed, if V is
the union of the Voronoi cells corresponding to the points of such a set S, then V is
a fundamental domain (Dirichlet domain) for the group of isometries of S’ that are
translations by vectors in A(A). If S is a fundamental domain, then [15]

ISI detAI.
In Example 1 of the Introduction, A (b) and A/AA Z/bZ. So a fundamental domain
S, in this case, is a complete set of residues modulo Ibl and ISI Ibl. In Example 3 of
the Introduction, ISI det(A) 7, corresponding to the seven lattice points in the
0-aggregate.

PROPOSITION 2. Let A A A be an endomorphism.
(1) If S induces a rep-tiling of A, then S must be a fundamental domain.
(2) If S is a fundamental domain, then (i) S, ,im=o Ai(S) files A by translation by

the sublattice Am+l(A) forall m >_ O, and (ii)thefinite address ofa latticepoint, ifit exists,
is unique.

Proof. Condition (1) in the definition of rep-tiling, with m 0, is equivalent to S be-
ing a fundamental domain. To show (2), assume S is a fundamental domain and, by way
of contradiction, assume the existence of lattice point with two distinct finite addresses.
Thus -im=0 Ais m=0 Aiti for some si, t E S and, without loss of generality, so to.
But this implies that so t0(modAA), a contradiction. To show that Sn -=0 A(S)
tiles A by translation, note that {Sx z E AA} tiles A by translates of S. Iterate to
obtain successive tilings

A=S+AA

S + A(S + AA) S + AS + AZA Sz + AZA

(S + AS +... + A’S) + A’+IA =Sm + Am+A.

According to Proposition 2, if S is a fundamental domain then the finite address of
a lattice point, if it exists, is unique. It is a consequence of topics in 5 that every lattice
point has a unique infinite address, which coincides with the finite address in the case
that all digits after a certain position are zero.

3. Equivalent tessellations. Matrix transformations A" A A and B" F F of
lattices A and F, respectively, are said to be equivalent if there exists an invertible matrix
Q, such that B QAQ- and F QA. Proposition 3 essentially states that questions
about replicating tessellations are invariant under equivalence.

PROPOSITION 3. Assume that A A -. A and B F -. F are equivalent via matrix Q.
(1) S is a fundamental domainfor A ifand only ifQS is a fundamental domain ]’or B.
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508 ANDREW VINCE

(2) So 81... 8m is thefinite address ofz E A ifand only ifQso Qsl Qs, is thefinite
address ofQz F.

(3) S induces a rep-tiling ofA ifand only ifQS induces a rep-tiling of F.
Proof. Concerning (1), there is a partition A S + AA if and only if there is a

m Asiifpartition F QA QS / QAA QS / BF. Concerning (2), x ,i=o
and only if Qx ,i=o QAisi ,=o Bi(Qsi) Statement (3) follows from state-
ment (2).

Remark. Since equivalence is essentially a change of basis for the matrix A, there
exist equivalent matrices in several canonical forms. By changing to a basis of the lattice
A itself, an equivalent integer matrix B Z’ Z’ is obtained. Hence, from the point
of view of replicating tessellations, there is no loss of generality in assuming that A is
an integral matrix acting on the cubic lattice Z’. In particular, the characteristic and
minimal polynomials for A have integral coefficients. Similarly, we can obtain equivalent
matrices in Jordan canonical form or rational canonical form. As an example, consider
the matrix A associated with the hexagonal tiling in the Introduction. Then

B= J= R=
-1 3 0 2 +w2 1 5

are equivalent integral, Jordan, and rational forms, where wl and w2 are the complex
third roots of unity and the lattice for R is Z2. The lattice for the Jordan canonical form
is actually a two-dimensional real lattice in C2.

Recall that a linear expansive map A is one for which each eigenvalue is greater
than 1.

PROPOSITION 4. If A, S) is a rep-tilingpair, then A must be a linear expansive map.
Proof. Assume that A has an eigenvalue of modulus e < 1. By the remark above,

the n n matrix A may be assumed in Jordan canonical form. Assume J is an m m
Jordan block of A of the form el + N corresponding to eigenvalue e, where N is the
nilpotent matrix consisting of all O’s except l’s just below the diagonal. (Without loss
of generality, assume that J is the topmost block of A.) Let T be the projection of the
fundamental domain S on the first m coordinates. For t T, an easy calculation shows
that each entry in the matrix jk is O(kmk). Since Itl < C for all t e T and some bound
C, then also IJktl O(k’ek) and 1i--0 Jhl < -,o O(ime) < c for some constant
c. Hence, the component consisting of the first m coordinates of any finite address is
bounded. However, there exists lattice points where this component is arbitarily large.

Next, assume that A has an eigenvalue ,0 of modulus 1. By the remark above, A
may be assumed to be an integer matrix. Let p(x) Z[x] be a factor of the characteristic
polynomial, irreducible over Z, with root A0. Assume that p(x) has a root , with modulus
not equal to 1. If < 1, then we are done by the paragraph above, so assume > 1,

There exists a Galois automorphism of Q[x] fixing Q elementwise, such that (,0) ,.
Now (,0)(,0) I implies I( 0)1 < 1. Again, an eigenvalue has modulus less than 1,
a contradiction. Therefore, all roots ofp(x) have modulus 1. However, Polya and Szeg5
[24, p. 145] prove the following result due to Kronecker [19]: If p(x) is an irreducible
monic polynomial with integer coefficients such that all roots lie on the unit circle, then
the roots of p(x) are roots of unity. This implies that A has eigenvalue 1 for some
positive integer j. Because A is an integer matrix, the corresponding eigenvector x can
be taken to have integer coordinates. If sost... s is the finite address of x, then the
finite address of x Ax is 00... 0SlS2... s, where the initial segment has j 0’s. Now
x has two finite addresses, which contradicts the assumption that the finite address is
unique.

D
ow

nl
oa

de
d 

12
/1

1/
15

 to
 3

8.
98

.2
19

.1
57

. R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p



REPLICATING TESSELLATIONS 509

The condition that A be expansive is necessary for (A, S) to be a rep-tiling pair, but
it is not sufficient. There are matrices A satisfying the eigenvalue condition that admit
no fundamental domain S for which S induces a rep-tiling. In dimension 1, for example,
A (2) is such a matrix. (This is the only example in dimension 1.) Examples in all
dimensions are given in the comments after Corollary 1 of Theorem 3 in 6. Neverthe-
less, Proposition 4 is sharp in the sense that, for any e > 0, there exists a matrix A, and a
fundamental domain S,, such that A, has an eigenvalue of modulus a where la 11 < ,
and such that (A,, S) is a rep-tiling pair. The generalized balanced ternary is proved, in
the remark at the end of 7, to be such an example.

4. Self-replicating tilings. The proof of Theorem 1 appears in this section, as well
as the proof of the converse, Theorem 2.

THEOREM 1. If (A, S) is a rep-tilingpairfor A and T T(A, S), then
(1) T is compact and is the closure ofits interior;
(2) T tiles ]R’ periodically by translation by the lattice A; and
(3) the tiling is self-replicating.
Proof. Since, by Proposition 4, all the eigenvalues ofA- are less than 1, the set E, is

bounded, the bound independent of m; therefore, T is compact. Consider statement (2)
of Theorem 1. Condition (1) in the definition of a rep-tiling pair (A, S) guarantees that
Em tiles A-’(A) by translation by A. Therefore, E tiles I,J= A-’(A) by translation by
A. The facts that

__
A-m(A) is dense in IR and E is bounded imply IR’ IUsA T.

To show that the intersection of the interiors of distinct tiles is empty, it suffices to prove
that #(T Tu) 0, where # is Lebesgue measure. By condition (2) in the definition of
a rep-tiling pair, there is an integer m such that z, y S,,. From the definition of E it
follows that A+t(E) [.Jos Eo, which implies that A+(T) [-Joes, To. Now
(det A)’+I/z(T) Iz(A’+(T)) lz(Uwes Tw) < -oes #(Tw) (detA)m+#(T)
implies that #(Uoes. To) -oes. #(To). This, in turn, implies that Iz(T rq Tu) O.
Concerning statement (3) in the theorem it follows as above, with m 1, that A(T)
Uwes Tw. Then A(Tz) Uoesa, Tw.

Consider statement (1) in the theorem. To prove that T is the closure of its interior,
it suffices to show that each point x e E in an interior point of T. Let F denote the
interior of a point set F. Assume that 0 e T. Since there is a nonnegative integer rn
such that x Em, we have z "= A’x Am(E,) Sm- C A. Therefore, x e TO

if and only if z e (A’T) if and only if 0 e (-z + A’T). Since z 4- E c_ A’E, we
have T c_ -z + AmT. Therefore, if 0 e T, then x e T. Recall that T is compact
and that ]1{’ Ueh T. Hence, to show 0 e T, it suffices to prove that 0 T for all
x e A- {0}. Assume, by way of contradiction, that 0 e T for some x e Sk- Sk-
for some fixed k > 1. Let Lm {AmSm + A’-ts,_ +... + so s{ e S, s, = 0}.
We claim that lim,__,oo minyeL. lYl oo. To see this, note that for any R > 0 there
exists an integer m, such that um=0 L includes all points of A within a sphere of radius
R. Since finite addresses are unique, the points of Lm+l lie outside the sphere. Next,
choose B such that lYl < B for all y e T and choose m0 such that lYl > 2B for all
y E Lm, m > m0. Let a suppeR. IAxl/lxl and e B/am-k. From the choice of
x, there is a y E E, such that Izl < , where z x + y. Now Am-kz L,.o + E
implies that IAm-kzl > 2B B B, which in turn implies that Izl > B/,m-k , a
contradiction. [q

The periodic, self-replicating tiling by a single tile T(A, S) given by Theorem 1 is
said to be induced by the rep-tile pair (A, S). The next result states that essentially every
periodic self-replicating tiling is induced by a rep-tiling pair.
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510 ANDREW VINCE

THEOREM 2. Consider a periodic, self-replicating tiling by a single tile T. If (1) T is
compact and is the closure ofits interior, and (2) the origin is contained in the interior ofT,
then the tiling is induced by a rep-tilingpair.

Proof. Let A and A be the linear expansive map and the lattice, respectively, asso-
ciated with the periodic, self-replicating tiling. Let S be the finite subset of A, such that
A(T) I.Js T. We claim A(A) c_ A. To see this, let z be any point of A and note
that I.Joes() To A(T) Ax + A(T) Ax + oes To Jweax+s To. Because
this equality involves only finitely many compact tiles, Ax + S S(x). In particular,
Ax e S(x) c A.

We next prove that (A, S) is a rep-tiling pair. To show that S is a fundamental domain
for A, consider the Lebesgue measure on both sides of the equation A(T) (-Jes T.
This gives ISI det(A). Since S has the correct number of elements, it suffices to show
that no two elements of S are congruent mod(AA). Assume, by way of contradiction,
that s s’ + Ax for some x A {0}. Then s lies in the interior of T and hence in
the interior of A(T). Also, s’ lies in the interior of T,, and hence s lies in the interior of
Ax/A(T) A(T). However, the intersection of the interiors ofT andT is empty, and
hence, the same is true for A(T) and A(T), a contradiction. By Proposition 2, condition
(1) in the definition of a rep-tiling pair is satisfied.

Iterating A(T) (-Jes T, we obtain A"(T) (.Jes._ T. Because 0 lies on
the interior of T, for any lattice point z there is an integer m such that T c A (T)
(-Joes,_ To. This implies that z S,_, proving condition (2) in the definition of a
rep-tiling pair.

It remains to prove that T T(A, S). By the formula in the paragraph above,
S,-1 c A’(T), which implies E, A-’(S,_) c T for all m > 0. This, in turn,
implies T(A, S) c_ T. Since T(A, S) tiles ’ by translation by A, the interior points of T
satisfy TO c_ T(A, S). Therefore T TO c_ T(A, S).

Theorem 2 is false without the assumption that 0 is contained in the interior of some
tile T. For example, the tiling of/ by translates of the unit interval T [0, 1] is not
induced by a rep-tile pair. This tiling is indeed induced by the pair (A, S) where A (3)
and S {0, 1, 2}, but (A, S) is not a rep-tiling pair because the negative integers have no
base 3 radix representation with digit set S, i.e., -1 belongs to no aggregate. However,
the tiling of1 by translates ofT [- 1/2.1/2] is induced by the rep-tile pair (A, S) where A
(3) and S {-1, 0, 1}. It is an open question whether every periodic, self-replicating
tiling is induced, up to a translation, by a rep-tiling pair.

5. A-adic integers. It is assumed here that S is a fundamental domain for the matrix
A A A and that A is expansive. This implies, in particular, that det AI is an integer
greater than or equal to 2.

LEMMA 1. IfA is a linear expansive map, then

A’A {0}.
i=0

Proof. If all eigenvalues have modulus greater than 1, then examination of the Jor-
dan canonical form shows that A’x for all nonzero x.

For x A, let t, (x) denote the greatest integer t,, such that x AA. By Lemma
1, t, is finite except when x 0, in which case we set ,(0) . Then

1

det AI(
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REPLICATING TESSELLATIONS 511

has the property that [z[ 0 if and only if z 0 and thus defines a norm on A, and
d(z, y) [z y[ defines a metric we call the A-adic metric. Two lattice points are close
in the corresponding topology if their difference lies in A’A for large m. If A (p)
is a one-dimensional matrix, then this reduces to the classical p-adic metric where two
integers are close if their difference is divisible by a large power of p. The completion
of A with respect to the A-adic metric will be called the A-adic integers and denoted
A. (Alternatively, the A-adic integers can be defined as an inverse limit of the system
({A/AkA}, {fjk}), where fjk A/AkA A/AJA, j < k is defined by fjkk j,
where x xkmodAA.) Note that A c_ . If S is any set of coset representatives
for A/AA, then, just as for the case of the ordinary p-adic integers, there is a unique
canonical representation of each A-adic integer in the form -0 Asi, where s E S,
which will be abbreviated so sl s2... and called the A-adic address. The partial sums in
this canonical form converge to the A-adic integer in the A-adic metric.

A simple recursive algorithm to determine the A-adic address sosl s2... of a lattice
point is obtained by iteration using the partition A {S + x x AA}, from the
assumption that S is a fundamental domain. This process is analogous to finding the
base b digits in the radix representation of a given integer.

ALGORITHM A. The ith entry s, i 0, 1,..., in the A-adic address of a lattice point
x0 E A is the unique element of S, such that

s _= xi (mod AA),
where

x+ A-(x- s).

The A-adic address sos.., of a lattice point is called finite if s 0 for all i suf-
ficiently large. The A-adic address of every lattice point is finite if and only if (A, S) is
a rep-tiling pair. For A (3) and S (-1, 0, 4}, which is in the first example of the
Introduction, Algorithm A yields A-adic addresses:

1=(4)(-1)=4+(-1)3,
-2 444

Since -2 has no finite address, S does not induce a replicating tessellation on Z. For the
matrix

with

2 1 ) Z2 Z2A=
-1 3

the A-adic address of is
1
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512 ANDREW VINCE

Again, this shows that S does not induce a replicating tessellation of Z2.
If a lattice point z has an A-adic address with repeating string si/l.., si+q, we say

that x has a repeating address. Although a lattice point may not have a finite A-adic
address, the next result shows that every lattice point has a repeating A-adic address.

LEMMA 2. The A-adic address ofanypoint in A is repeating.
Proof. According to Algorithm A, whenz takes on a value a second time the address

repeats. Hence it is sufficient to show that the sequence {z} is bounded. Iterating the
formula in the algorithm gives x, A-’z ’i=0 A-’+isi If 1/c is the eigenvalue
of A with the least modulus, then c is the eigenvalue of A-1 with the greatest modulus.
Choose a real number a such that i > a > Ic]. A calculation using the Jordan canonical
form suffices to show that all entries of the matrix (1/aA-1), tend to 0 as m - . This
implies that ]A-"zl < amlzl for m sufficiently large. Hence, there is a constant c such
that ]A-’z] < calz], where c is independent of m. This implies, for any m, a bound

Note that the proof above gives an upperbound on the number of iterations in Algo-
rithmA necessary to determine whether or not a given lattice point z has a finite address.
For example, in dimension 1 with A (b) the bound is Izl + max{Isl s S}/(Ibl- 1),

6. Necessary and sufficient conditions for replicating tessellations. This section
contains several necessary and sufficient conditions for the existence of replicating tes-
sellations, thus providing some answers to the two main questions posed in the Intro-
duction. Again it is assumed throughout that S is a fundamental domain for A and that
A is expansive. Note that the matrix (I A") is nonsingular for any positive integer m.
Otherwise, I would be an eigenvalue of A", and hence A would have an eigenvalue of
modulus 1.

THEOREM 3. Given A:A -+ A, the following statements are equivalent:
(1) S induces a rep-tiling of&
(2) (I A"+I)-ISm contains no nonzero lattice pointfor m 0, 1,
(3) (I- Am+l)-IS contains only latticepoints with finite addressfor m 0, 1,
Proof. (3) (1) Assume S does not induce a replicating tessellation on A. Accord-

ing to Lemma 2 some lattice point y has a repeating address where the repetition is not
zeros. If there is an initial segment y0 of length q before the address begins repreating,
then y y0 E AqA and z A-q(y y0) E A consists of that portion of y that repeats
from the beginning. Let so, sl,..., s, be the repeating digits in the address of z. Then
(I A’+l)z -=o As, and therefore z (I- Am+l)-lSm, where z does not have
finite address.

(2) (3) Clearly, if (I- A"+x)-xS, contains a lattice point without finite address,
then it contains a nonzero lattice point.

(2) = (1) Finally, assume that (1 Am+l)-lqm contains a nonzero lattice point z.
Then (I A’+l)z -0 Ais with s S. The lattice point g whose infinite address
consists of the digits so, sl,..., s, repeated satisfies the same equation (I A"+l)y
,=o Aisi Since I A"+1 is nonsingular, z y has a repeating (not finite) address,
and therefore, S does not induce a rep-tiling of A. ]

Theorem 3 implies, in particular, that if (A, S) is a rep-tiling pair, then S cannot
contain any nonzero element of (I- A)A. In dimension 1, if A (b), then S can contain
no integer divisible by b- 1, a result given in [21]. For example, with S {-2, 0, 2}
there exist integers with no finite base 3 radix representation. Moreover, we have the
following result.

COROLLARY 1. Given A A A, ifdet(I A) +l, then A admits nofundarnental
domain S such that S induces a rep-tiling of&
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REPLICATING TESSELLATIONS 513

Proof. If det(I- A) +1, then (I- A)A A. Therefore, S must contain a nonzero
element of (I- A)A.

Examples of such matrices acting on the cubic lattice that admit no fundamental
domain include all matrices of the form

0 -m)1 m
and 21 + H,

where m is an integer and H is strictly upper trianglular.
Theorem 4, based on Theorem 3, states that only lattice points within a bounded

region need be tested for the existence of a finite address. This leads to an efficient
algorithm to determine, given A A A and a fundamental domain S, whether or not
S induces a replicating tessellation of A.

LEMMA 3. The sets (1 A"+x)-S., m 0, 1,... are contained in some ball
centered at the origin whose radius is independent ofm.

Proof. Let H A-1 and let H Q-I-Q, where is the Jordan canonical form
of H and Q is an appropriate nonsingular matrix. Suppose that c is a constant, such
that HQS is contained in a "box" B(c) {(Yl, Y2,..., Y) lull < c, i 1, 2,..., n}.
Furthermore, let C (1/(1 -a))n, where a is the modulus of the largest eigenvalue of
H. Note that a < 1, since it is assumed that the moduli of all eigenvalues ofA are greater
than one. Each entry in- approaches 0 as m --. oc. Hence, for m large enough, say
m > m0, we have B(C) c_ (-m+ I)B(2C). For m < m0, there is a constant K, such
that (H"+1 I)-l(B(c) + B(c) +... + mB(c)) C_ B(K). Let B’ be the larger of
the two boxes/3(2(7) and/3(14) and let/3 Q-1B,. In the statement of the lemma,
take any ball containing B.

Now (1 A’+I)-S, c_ B if and only if Sm C_ (I A’+)B. Multiplying by H"
gives the sufficient condition B(c) + -B(c) +... + -’B(c) c_ (-H-+ I)B’. This is
true by definition for m < m0. For m > m0, it suffices to examine the situation on each
Jordan block of H of the form d a1 + N, where a is an eigenvalue of H and N is
the nilpotent component of the Jordan block. An upper bound on the modulus of any
coordinate of B(c) + dB(c) +... + d’B(c) is

<- =C.-a 1-a

Therefore, we have B(c) + -B(c) +... + "-H-roB(c) C B(C) C (-m+l I)B(2C) C

(-H-+ I)B.
THEOREM 4. There exists a ball B centered at the origin, with radius depending only on

A and S, such that (A, S) is a rep-tilingpair ifand only ifeach latticepoint in B has a finite
address.

Proof. If (A, S) is a rep-tiling pair, then every lattice point in B has a finite address
because every lattice point does. The converse follows from Theorem 3 and
Lemma 3.

For particular cases, it is possible to give an explicit value for the radius of the ball
B. An efficient algorithm to determining whether or not (A, S) is a rep-tiling pair is
obtained by applying Algorithm A to each of the finite number of lattice points in/3.
Then (A, S) is a rep-tiling pair if and only if each of these A-adic addresses is finite. Two
examples are considered.
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514 ANDREW VINCE

Similarities. Consider the case where A bU, where U is an isometry and the real
number b is greater than 1 in absolute value. Call such a matrix a similarity. The tech-
niques of Theorem 4 yield the following version.

COROLLARY 2. Given a similarity A A ---, A, a set S induces a rep-tiling ofA ifand
only if every lattice point in the ball ofradius max(Isl s S}/(Ibl 1) centered at the
origin has a finite address.

Applying this result to the one-dimensional case gives the following corollary, which
is proved by other means in [21].

COROLLARY 3. Every integer has a unique base b radix representation with digit set S
ifand only ifevery integer in the interval

Ibl 1 Ibl 1

has such a representation.
Diagonalizable matrices. If matrix A is diagonalizable, for example, if the minimal

polynomial of A is irreducible over the integers, then the following result is obtained by
the methods of Theorem 4. Let Q be a nonsingular matrix and D a diagonal matrix such
that D QAQ-1. By a box is meant a set of the form {(zt, z2,..., z,) Izl <_ c, i
1, 2,..., n} for some constants ci. Let Bcs be the smallest box containing QS.

COROLLARY 4. With notation as above, for the diagonalizable matrix A, the set S
induces a rep-tiling ofA ifand only ifeach lattice point in Q- (BQs) has a finite address.

Example. Consider the matrix

acting on the square lattice Z2. A fundamental domain S has cardinality det(A) 23; let
S be the set of 23 circled latticed points in Fig. 6(a). Calculation shows that Q-l(Bcs)
is the rectangle indicated in the figure. It is routine to check that all lattice points within
this rectangle are in the first aggregate (having, in fact, finite addresses of length at most
two). By Corollary 4, this constitutes a proof that S induces an aggregate tessellation of
Z:"

Theorem 5 essentially states that if, in adding two elements of S there is only one
carry digit in the finite address of the sum, then S induces a replicating tessellation. More
specifically, the sum and difference of any two vectors in the fundamental domain lie in
the first aggregate.

THEOREM 5. Given A A ---, A and a fundamental domain S, if
(1) some aggregate contains a basisfor the lattice A and
(2) S +/- 6? c_ S + A(S),

then S induces a rep-tiling of&
Proof. By Proposition 2 it is sufficient to show that every lattice point has a finite

address. Since some aggregate S contains a basis, every element of A is the sum of
a finite number of elements with finite address of the form +Sos... s,, possibly with
summands repeated many times. The proof is by induction on the number k of sum-
mands. It is clearly true for k 0. Assume that every lattice point that is the sum of
k 1 terms has a finite address and let z be the sum of k elements of S. By induction,
the sum of the first k 1 of these k terms has the form z sos Sq, where s E S. Let
y tot t, be the kth term, where t E +S. Since S 4- S c_ S+ AS, addition of z and
y is performed on the respective addresses from the left, where the number of carries to
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REPLICATING TESSELLATIONS 515

(a) (b) (c)

FIG. 6. Fundamental domainsfor matrix A in the lattice

the next digit to the right (e.g., place + 1) is one less than the number of summands at
place i. It is not hard to deduce that the number of carries never exceeds m / 1, and at
place max(m, q) + i the number of carries does not exceed m i + 1. Hence, all digits
after place max(m, q) + m + 1 are zero. [3

For an n-dimensional lattice A, let G be the group of isometries of’ generated by
the n translations, taking the origin to each of n basis vectors of A. A Dirichlet domain
is a subset F c ’, such that ’ is the disjoint union of the images of F under G. It
is well known that there is a Dirichlet domain VA whose closure is the Voronoi region
of the lattice A. Call this Dirichlet domain VA the Voronoi domain of A. The radius of
the largest ball centered at the origin and contained in the Voronoi region is called the
packing radius of A, and the radius of the smallest ball centered at the origin containing
the Voronoi region is called the covering radius of A. Note that the packing radius is half
the length of a minimum norm vector in A.

Theorem 6 states that, for a large class of matrices A A A, there exists some
fundamental domain S such that S induces a rep-tiling of A. In fact, a number of distinct
viable fundamental domains can be obtained as the sets of lattice points contained in
Voronoi domains of certain sublattices of A.

LEMMA 4. A tq VAA is a fundamental domain for A A A.
Proof. Let D A N VAA. By definition, {VAA + Ax x E A} is a partition of

’. Hence {D x AA} is a partition of A. This is equivalent to saying that D is a
fundamental domain for A" A A.

LEMMA 5. Given A A A, let D A N VAA. Assume that
(1) the set ofminimum norm vectors in AA contains a basisfor AA, and
(2) all singular values ofA are greater than 3R/r, where r is the packing radius and R

is the covering radius ofAA.
Then D induces a rep-tiling of A. In the one- and two-dimensional cases, the bound

3R/r can be improved to 2.

Proof. The proof uses Theorem 5 by showing that (1) D contains a basis for A, and
(2) D 4- D C_ D + AD. To prove (1) we show that if vl,..., v, constitute a basis of
minimum norm vectors of AA, then A-vx,..., A-v, is a basis for A contained in D.
The condition on the singular values of A implies that IA-zl < r/3RIzl < 1/21zl for all
z E 1’*. Therefore, IA-vl < 1/21vl < r, which implies that A-ivi D for all i.
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516 ANDREW VINCE

Concerning the second condition, if x E D 4- D, then Ixl < 2R. By Lemma 4, we
know that D is a fundamental domain for A, and hence, x s + Ay, where s E D
and y A. It now suffices to show that y D. But y A-I(x- s)implies lul <
r/aR(Ixl+lsl) <_ r/3R(2R+R) r. Therefore, y D. The improvement in dimensions
1 and 2 is obtained by showing directly that IAyl <_ 2r, and hence lyl < r if all singular
values of A are greater than 2. D

A similarity of the form bU, where U is an isometry and b > 3ff- (b > 2 in dimen-
sions 1 and 2), satisfies the hypotheses ofLemma 5 ifthe lattice A itselfhas a basis ofmini-
mumnormvectors. ApplyingLemma 5 in dimension 1 gives: if Ibl > 2, then every integer
has a unique base b radix representation with digits in D {-/Ibl 1/2J,..., llbl/J }.
This is also proved in [21]. As another example, let D consist of the 9 lattice points with
coordinates 0 or +1. Applying Lemma 5 to

0 -3 ) Z ZA’--
3 0

implies that D induces a rep-tiling of Z2.
The first assumption in Lemma 5, concerning the minimum norm vectors, may very

well fail in general. To remedy this situation, merely transform AA to a lattice A0 known
to be generated by the minimum norm vectors.

THEOREM 6. Given A A - A, let Q be any nonsingular matrix such that lattice
A0 Q(AA) is generated by its minimum norm vectors. If all singular values of QAQ-1
are greater than 3R/r, where r is thepacking radius and R is the covering radius ofA0, then
D A fq Q-1VAo induces a rep-tiling of A. In the one- and two-dimensional cases, the
bound 3R/r can be improved to 2.

Proof. Let. Ao QAQ-1. By definition, A A A and A0 QA QA are
equivalent. By Proposition 3 of 3, (A, D) is a rep-tiling pair for A if and only if (A0, QD)
is a rep-tiling pair for QA. But QD QA fq VAo QA fq VQAA QA fq VAoQA. The
theorem now follows directly from Lemma 5 applied to A0.

Note that, in Theorem 6, if B is the matrix whose columns are a basis for A0, then
we can take

Q BA-1,
D A fq AB-1VAo,

in which case QAQ-1 BAB-1.
COROLLARY 5. Given n n matrix A A ---, A, let C be the Voronoi domain of the

cubic lattice (the closure ofC is a unit cube centered at the origin) and let D A fq AC. If
all singular values ofA are greater than 3x/- then D induces a replicating tessellation of A.
In the one- and two-dimensional cases, the bound 3v/-d can be improved to 2.

Proof. Let A0 be the cubic lattice so that B is the identity matrix. Then R/r
Q A-1, QAQ-1 A, and D A Q-1VAo A tO AC. The corollary now follows
directly from Theorem 6.

Corollary 5 can be applied directly to the square lattice in 2 to obtain the follow-
ing result concerning radix representation in the Gaussian integers. If/3 is a Gaussian
integer, not equal to 2 or 1 4- i, then there exists a fundamental domain D such that
every Gaussian integer has a unique radix representation of the form -m__0 si, where
s E D. Here D is a square Voronoi region centered at the origin.
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REPLICATING TESSELLATIONS 517

A reasonable choice for A0 in Theorem 6, besides the cubic lattice used in Corollary
5, is one having a small ratio R/r. One such lattice in all dimensions n is A, the dual to
the root lattice A, (generated by the roots of certain Lie algebra). A basis for A in IR’
is any n of the n + i vertices of an n-simplex centered at the origin. A particular choice
for these n + 1 vertices b0, bl,..., b, is

where ci (((n i)(n + 1))/(n i + 1)n)1/2. Note that the bi are unit vectors. Let V,
denote the Voronoi domain of the lattice A. The closure of Vz and Va are a regular
hexagon and truncated octahedron, respectively. In general, the n-dimensional Voronoi
region is an n-dimensional permutahedron, congruent to a polytope with (n + 1)! ver-
tices obtained by taking all permutations of the coordinates of the point (-n/2, (-n +
2)/2, (-n + 4)/2,..., (n 2)/2, n/2) in If(’+1 [2]. It is known [2] that the packing radius
of this lattice is 1/2 and the covering radius is 1/2 v/(n + 2)/3. So, in applying Theorem 6,
take

D A fq AB-(V,),
QAQ- BAB-,
3n/r V/3( / 2),

where B is the matrix whose columns are the basis vectors bi.
Example. The matrix

discussed earlier in this section satisfies the hypotheses of Corollary 5 and also the hy-
potheses of Theorem 6 when A0 A. Applying each of these results, two fundamental
domainsD and D2 are obtained, each ofwhich induces a rep-tiling of Zz. These funda-
mental domains are indicated by circled dots in Figs. 6(b) and 6(c). Note that all three
fundamental domains in Fig. 6 are slightly different.

In dimensions 1 and 2, Theorem 6 is best possible in the following sense. Consider
the matrix 2I whose unique singular value is exactly 2. According to the remarks follow-
ing Corollary 1 of Theorem 3, this matrix admits no fundamental domain S such that S
induces a rep-tiling of Z’.

7. An algebraic construction. In this section, tessellations with a ring structure are
constructed, allowing for multiplication, as well as addition, of lattice points. This con-
struction generalizes radix representation, where the base is an algebraic integer, and
the hexagonal tessellation used in image processing.

To construct the lattice, consider a monic polynomial f(x) xn -a,_x- +.
a0 E Z[x]. In the quotient ring A, Z[x]/(f), let c x+(f). Then A, has the structure
of a free abelian group Aj, with basis (1, c, a2,..., cd-l). Af can be realized (in many
ways) as a lattice in ]R’ by embedding the n basis elements as n linearly independent
vectors in R’. For example, the basis vectors can be identified with the standard unit
vectors along the coordinate axes of IR’. According to Proposition 3, questions about
aggregate tessellation are independent of how Af is realized. Now AI is the basic lattice
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518 ANDREW VINCE

of our construction. Addition and multiplication of lattice points is just addition and
multiplication in the ring Ay Z[z]/(f).

In the special case that f(z) is irreducible over Z, then, as rings, AI Z[z]/(f)
Z[c], where c is any root of f(x) in an appropropriate extension field of the rationals.
For example, if f(z) zz + 1, then the lattice AI is the ring of Gaussian integers
with basis (1, i) and can be realized as the square lattice in the complex plane. If f(z)
z2 / z + 1, then the lattice Aj, can be realized as the hexagonal lattice in the complex
plane with basis (1,-1/2 + x/-/2i). More generally, if f(z) is any monic quadratic with
complex roots c,, then Aj, Z[c] {a + bc a, b Z} can be considered a lattice
in the complex plane. In this case, the addition and multiplication in the lattice Z[c] is
the ordinary addition and multiplication of complex numbers.

To obtain a replicating tessellation, let fl be any element of the lattice Aj, and define
the linear transformation

Af’AA

A(x)

If S is a finite set of lattice points, then the address sos sm denotes the lattice point

m m

i=0 i=0

where si E S. In otherwords, (An, S) is a rep-tiling pair for Aj ifand only ifeach element
of Aj, has a unique radix representation base with coefficients in S. Proposition 2
applies directly to this situation.

COROLLARY 6. If every element of Ay has a unique base finite address with coeffi-
cients in S, then S is a complete set of residues ofA modulo 3Aj, and IsI is the absolute
value ofthe constant term in the characteristic polynomial ofAn.

Proof. de(Aa)l is the constant term in the characteristic polynomial of

AI.
Consider two special cases of the above construction.
Radix representation of algebraic numbers. Let fl be an algebraic integer and S a

finite set of elements in Z[fl]. The relevant question is: Does every element of Z[/] have
m

8 S? xn xn-1a unique radix representation ’i=0 i, where si e If f(x) + a,-i +
+ a0 Z[z] is the minimal monic polynomial for/, then Aj, Z[/] and with respect

to the basis (1, ,...,-)

(0 0 0 -ao ’
1 0 0 --al

0 1 0

\ 0 0 1 -an- )

acts on the cubic lattice Z’. Now every element ofZ[] has a unique radix representation
base if and only if S induces a rep-tiling of Z’. By part 1 of Corollary 6 the cardinality
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REPLICATING TESSELLATIONS 519

of a fundamental domain S is IN()I, where N() (-1)’a0. N() is the norm of fl
and can alternatively be defined as the product of all conjugates of .

Gilbert [8] asks about the case where S {0, 1,..., N() 1}. Consider the ex-
ample/ -1 + i and S {0, 1}; then Z[] Z[i], and this is exactly Example 2 of
the Introduction concerning the Gaussian integers. Corollary 2 of Theorem 4 applies to
this situation. Multiplication by the complex number is a similarity (the composition
of a 7r/4 rotation and a stretching by a factor of x/-), and hence, to determine whether
or not every element of Z[] has a base finite address, it is sufficient to check that each
element in the ball of radius max{181 s S}/ll i in the complex plane has a finite
address. There are exactly 21 Gaussian integers within a ball of radius 1/f- 1. Testing
with Algorithm A shows that all 21 have finite addresses (for example, -1 10111 and
-2 i 110010111). Therefore, every Gaussian integer has a unique base/3 finite ad-
dress. For/3 satisfying a quadratic polynomial z +ca:+d, Gilbert states [8] that every ele-
ment of Z[/3] has a unique radix representation with coefficients in S {0, 1,..., Idl 1 }
if and only if d > 2 and -1 < c <_ d.

Generalized balanced ternary. The following example simultaneously generalizes
the balanced ternary representation of integers in the first example of the Introduc-
tion and the two-dimensional hexagonal tessellation of the third example. Let f()
x’ + z’- +... + 1 and denote by A, Z[x]/(f) the corresponding n-dimensional
lattice. As previously mentioned, A and A can be realized as the integer and hexagon
lattices in dimensions 1 and 2, respectively. Let w x + (f) denote the image of x in
the quotient ring A, and note that w’+ 1 in A,. Let 2 . With respect to the

12 t.on--1)basis(1,w,

r 2 0 0 0 1 ’
-1 2 0 0 1

0 -I 2 0 1

0 0 0 2 1

\ 0 0 0 1 3/
Define Sn {co + elW + e2w

2 +"" + enw ei E {0, 1}}. Note that 2’+1 1
because 1 + w + + wn 0 and also det(A) 2+1 1. Therefore, S, has the
appropriate number of elements to serve as a fundamental domain for A. For n 1,
we have

AI =,

S {-1,0, 1},
An (3),

which leads to the balanced ternary representation of the integers. For n 2, with
respect to the standard basis, we have

A the hexagonal lattice,
5 2_i=5
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520 ANDREW VINCE

5’ {0, 1, w,..., w5 w is a 6th root of unity},

An= /g

_
2 2

which leads to the hexagonal rep-tiling of the third example in the Introduction.
COROLLAgY 7. The generalized balanced ternary pair (A, S,) yields a rep-tiling of

An.
The proof of Corollary 7 will follow from some properties of the addition and mul-

tiplication of addresses in the generalized balanced ternary. An element s e0 +
e,, + e2,,2 + + e,w’ e S, can be encoded by a corresponding binary string b
e,e,_l e0. Note that, as in ordinary integer notation, the order of the digits is re-
versed. In the generalized balanced ternary, addition and multiplication can be carried
out by simple and fast bit string routines. Define three operations on such binary strings
as follows. First, b b’ is circular base 2 addition; a carry from the ith column goes to
the (i + 1)st column mod(n + 1). Note that the column numbers increase to the left.
This first operation is equivalent to ordinary addition mod(2’+ 1). For example,
1011 @ 1110 1010. Second, b El b’ is base 2 addition with no carries. For example,
1011 El 1010 0001. Third, T(s) is the shift one position to the right mod(n + 1). For
example, T(1011) 1101. Using the facts that w’+ 1 and 2 w + 3 it can be
routinely checked that if s, s’ e S,, then in A, we have

s + s’ so + s/,

where

bso bs @ b,,

b T[b Et b, El (b8 @ bs,)].

(The latter expression for bl yields a 1 or 0 at those positions where a carry in b b,,
has or has not, respectively, occurred.) Addition of addresses is accomplished by using
the carry rule above (sum so; carry sl). Addition corresponds to vector addition
in R’. Multiplication also uses the rule for addition and 0.0 0.1 1 0 0 and
1.1 1. For example with n 2, let x (110) + (010) and y (101) + (110). Then
x + y (100) + (001)fl + (ll0)fl2 and xy (010) + (100)/ + (001)fl2. (We have used
the fact that 111 000.)

Proof of Corollary 7. Note (1) S contains a basis 1, w,..., wn- for the lattice A,.
Also, the comments above concerning bit string operations imply that and (2) S -4- S
S + S. The corollary then follows immediately from Theorem 4.

Remark. The .eigenvalues of An for the generalized balanced ternary are {2 w
w is an (n+ 1)st root of unity, w # 1}. Therefore, as n c, the minimum modulus of
an eigenvalue tends to 1, but (A/3, S,) is a rep-tiling pair for all n. This gives the example
mentioned at the end of 3.

Appealing geometric properties of the generalized balanced ternary tessellation can
be obtained by embedding the generator vectors 1, w,..., w’ for the lattice An at the
points b0, b, that generate the dual root lattice A as descibed in the previous section.
Then the Voronoi regions in dimensions 2 and 3, as previously mentioned, are regular
hexagons and truncated octahedra, respectively.

Acknowledgments. The author thanks both referees for their valuable suggestions,
in particular, for drawing our attention to recent references and for the proof of the last
part of Proposition 4.
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