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Abstract

In an increasingly interconnected world, the development of computer friendly

systems for the display and analysis of global data is an important issue. This

paper concerns a method for computer representation and manipulation of global

data based on multi-resolution subdivisions of regular polyhedra. In particular, the

problem of efficiently indexing the cells of such a discrete global grid is addressed.

1 Digital Earth

The subject of this report, the representation and analysis of global data, has a history
that dates back several millenia. Maps, possibly the earliest depiction of geographical
information, are easily understood and appreciated regardless of language or culture.
The oldest known maps are preserved on Babylonian clay tablets from about 2300
B.C. That the Earth is spherical was known by Greek philosophers by the time of
Aristotle (about 350 B.C.). Ptolemy’s map (about 85-165 A.D.) depicted the Old World
from about 60N to 30S latitudes. The first whole world maps began to appear in the
early 16th century, following voyages by Columbus and others to the New World. In
1569 Mercator published a map of the world intended as an aid to navigation, using a
projection method now known by Mercator’s name. Buckminster Fuller invented the
geodesic dome in the late 1940’s. Geographic information systems (GIS) emerged in the
1970-80s. The emphasis over the past few decades has been on the computer display
and analysis of georeferenced information and remotely sensed data about the Earth,
collected by organizations and institutions. As more global datasets are acquired and as
the world becomes more interconnected, this endeavor becomes increasingly important.
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This paper concerns such a computer representation of global data, called a discrete
global grid, that is based on cellular subdivisions of regular polyhedra. An array of
data consists of one data element for each grid cell. The user has the flexibility to
define the meaning of grid cell values according to the application at hand. Traditional
digital image processing in the plane is carried out on a rectangular grid. For some
applications, however, hexagonal grids are advantageous. Hexagonal grids have a higher
packing density, approximate circular regions, and each cell has equal distance from its
six immediate neighbors. The most commonly used grids on the sphere are those based
on latitude-longitude coordinates. On the sphere, however, an (almost) hexagonal grid
is an even more natural choice than in the plane. The hexagons have almost the same
shape and size as compared with a lat/long grid.

There is a substantial recent literature on the subject of spherical grids based on
tessellations of regular polyhedra, including [1, 3, 8, 13]. One commonly mentioned is
an aperture 3, multi-resolution tessellation of the sphere into mainly hexagons. Multi-
resolution means that there is not just a single tessellation, but a hierarchical sequence
of progressively finer tessellations. Going further in the sequence zooms in on smaller
areas. Aperture 3 refers to the approximate ratio between the areas of hexagons at
successive tessellations in the sequence. In fact, this small ratio is one of the features
that makes an aperture 3 tessellation appealing. Such a tesselation of the sphere will
be referred to as an aperture 3 hexagonal discrete global grid (A3H). A mathematical
construction is given in Section 2 of this paper. Figure 1 shows a few levels of resolution
of such an A3H.

Of the numerous research challenges in the field, this paper concentrates on the prob-
lem of efficiently addressing or indexing the cells of A3H. While Section 2 describes the
geometry and basic data structure of A3H, the rest of the paper provides two methods
of indexing its cells, which we call barycentric indexing and radix indexing. The first
method, based on an investigation of the barycenters of the cells in A3H, was developed
in [18]. The second is based on a generalization of the concept of positional number sys-
tems (radix systems) for the integers [17]. The particular radix system discussed here
for A3H was developed in conjunction with Canadian based company the PYXIS inno-
vation [12]. Each of the two methods has advantages in providing efficient algorithms
for the relevant applications. Indexing based on quad tree data structures is appropriate
for certain discrete global grids not discussed in this paper [2, 5, 7, 11, 15]. Proofs of
theorems appearing in this paper have been referenced but not included.

2 The geometry of A3H

A3H is obtained by tessellating a regular polyhedron, then projecting the tessellated
polyhedron onto the surface of the sphere. For this paper the relevant regular polyhedra
are the octahedron and the icosahedron. Before giving the construction, the following
basic geometric operations are introduced.

The barycenter β(X) of a set X = {x1,x2, . . .xn} of points in R
3 is given by
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Figure 1: A3H.

β(X) =
1

n

n
∑

i=1

xi.

By a tessellation T of a polyhedron or of the sphere, we mean a collection of closed,
non-overlapping cells that cover the surface. On a polyhedron the edges are straight
lines and, on the sphere, arcs of great circles. For a tessellation T , the notation V (T )
and E(T ) denote the set of vertices and edges, respectively. For a tessellation T let

β(T ) = {β(t) | t ∈ T}

denote the set of barycenters of its cells. (Here t is considered as the set of its three
vertices.) Two basic operations on tessellations are the dual and centoid subdivision.
They are defined as follows and illustrated in Figure 2.

1. The dual. For a tessellation T with vertex set V , the dual tessellation D(T ) has
vertex set β(T ). Two vertices of D(T ) are joined by an edge if and only if the
corresponding cells of T share an edge.

2. Centroid subdivision. The centroid subdivision C(H) of tessellation H has vertex
set V (H)∪β(H). The edge set of C(H) is the union of E(H) and the set of edges
formed by joining β(h) to each vertex of h for all h ∈ H .
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Figure 2: Basic operations on a tessellation.

Construction

Let P be either the regular octahedron or icosahedron. Define a sequence (Tn, Hn)
of dual pairs of tessellations of P as follows. First, T0 is the polyhedron itself centered
at the origin of R3. The sequence is then defined recursively in terms of the dual and
centroid subdivision:

Hn = D(Tn)

Tn+1 = C(Hn).

The sequence Hn, n ≥ 0, of tessellations is the one called the A3H. We leave open until
the next section whether A3H is based on the octahedron or icosahedron, i.e., whether
T0 is the octahedron or icosahedron. The number n is called the resolution of A3H. The
dual tessellations Tn and Hn are shown, in part, in Figure 3. In fact, Figure 3 shows a
patch of two successive subdivisions Tn, Tn+1 and Hn, Hn+1. Note that Vn := V (Tn) is
the set of cell centers of the the tessellation Hn.

Properties

The following properties of A3H are either obvious or easily proved by induction.

1. The tessellation Tn is a triangulation for each n, i.e., the faces are triangles. More-
over, the triangulation Tn contains exactly c · 3n triangles where c = 8 or 20
depending on whether T0 is an octahedron or icosahedron.

2. The nth resolution Hn of A3H contains exactly c

2
(3n − 1) hexagons and either 6

squares or 12 pentagons, dependeing on whether T0 is an octahedron or icosahe-
dron.

3. The sets of barycenters of cells of the A3H are nested: V0 ⊂ V1 ⊂ V2 ⊂ · · · .

4. The ratio of the area of a hexagon in Hn to the area of a hexagon in Hn+1 is 3.
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Figure 3: Two successive subdivisions.

5. Each hexagonal (pentagonal) cell x of Hn intersects exactly 7 cells (6 cells) of
Hn+1, a centroid cell, with the same barycenter as x, and 6 vertex cells (5 vertex
cells) whose centers are the vertices of x. See Figure 3.

6. Each cell x ∈ Hn intersects either 1 or 3 cells of Hn−1, one cell in the case that x
is a centroid cell, three cells in the case that x is a vertex cell.

Projection onto the Sphere

There are various methods for projecting A3H from the tessellated polyhedron onto
the surface of the 2-dimensional sphere, for example by central projection from the
origin. No projection method can be both equal area (areas related by a constant
scaling factor) and conformal (angles preserved). One of the most common equal area
projections, due to Snyder, is well suited to the icosahedron and is called the icosahedral
Snyder equal area projection (ISEA3H). The projection formulas can be found in [14].

3 Indexing A3H

Recall that the nth resolution of A3H is denoted Hn. The set of barycenters of the
cells in Hn is denoted Vn and, when no confusion arises, we will identify a cell with its
barycenter. Indexing is a means to reference or address the cells in Hn (points in Vn).
So an index function is an injection

I : Vn →Wn,

where Wn is referred to as the index set. A good index function is one that allows
for efficient implementation of algorithms for the relevant applications. This requires
the efficient handling of relevant data stuctures and fast algebraic operations on indices
corresponding to local vector operations on the cell centers. In Sections 4 and 5 two
methods are introduced for indexing A3H.

5



4 Barycentric Indexing

Barycentric indexing of the cells of A3H is based on the tessellations of the regular
octahedron as described in Section 2. Thus T0 is the octahedron centered at the origin
of R3, and H0, the 0th resolution of A3H, is the cube. The first resolution H1 is the
truncated octahedron. As will be explained soon, the index set Wn consists of all strings
of n + 3 digits, each digit taken from the set {−1, 0, 1} of “trits”. Thus the index set
Wn has size 27 · 3n while Hn has 4 · 3n + 2 cells.

To define the index function, first place the vertices of the octahedron T0 at the six
points (±1, 0, 0), (0,±1, 0), (0, 0,±1) in R

3. Theorem 1 gives the Cartesian coordinates
of the set Vn of cell centers of A3H on the surface of the octahedron (prior to projection
onto the sphere). The proofs of Theorems 1-3 appear in [17]. All congruences in this
section are modulo 3.

Theorem 1 The set Vn of barycenters of cells of the octahedral A3H at resolution n is
given by

Vn =











{ 1

3
n

2
(a, b, c) : a, b, c ∈ Z, |a|+ |b|+ |c| = 3

n

2 } if n is even

{ 1

3
n+1
2

) (a, b, c) : a, b, c ∈ Z, |a|+ |b|+ |c| = 3
n+1

2 , a ≡ b ≡ c} if n is odd.

Define the A3-coordinates of a point in Vn, or the corresponding cell in Hn, as
the ordered triple (a, b, c) of integers as given in Theorem 1. In other words the A3-

coordinates of the cell with center (1/3
n

2 ) (a, b, c), n even, or (1/3
n+1

2 ) (a, b, c), n odd, is
simply (a, b, c). Hence the A3-coordinates of a cell of Hn is an ordered triple (a, b, c) of
integers such that

|a|+ |b|+ |c| = 3
n

2 if n is even

|a|+ |b|+ |c| = 3
n+1

2

a ≡ b ≡ c mod 3
if n is odd.

Given the A3-coordinates of a cell x, the location of x in terms of the Cartesian
coordinates of its center is immediately known via Theorem 1. Each cell x ∈ Hn is
adjacent to either 5 or 6 cells called neighbors of x. The centroid and vertex children of
x are the centroid and vertex cells, respectively, of x, as defined by Properties 5 and 6
in Section 2. Call the cells at resolution n−1 that overlap x the parents of x. Theorems
2 and 3 give simple rules, in terms of A3-coordinates, for the following basic procedures
that are essential for global grid applications. Given the A3-coordinates of an arbitrary
cell x at any resolution,

• determine the neighbors, children, and parents of x; and

• perform local algebraic operations in the vicinity of the cell.
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Theorem 2 A3 addressing satisfies the following properties.

1. The neighbors of a cell in Hn with A3-coordinates (a1, a2, a3) have A3-coordinates
(b1, b2, b3), where, for i = 1, 2, 3,

|ai − bi| ≤
{

1 if n is even
2 if n is odd.

2. The centroid child in Hn+1 of (a, b, c) ∈ Hn is
{

3 (a, b, c) if n is even
(a, b, c) if n is odd.

3. Cell (a, b, c) ∈ Hn is a centroid child if and only if
{

a ≡ b ≡ c if n is even
a ≡ b ≡ c ≡ 0 if n is odd.

4. The vertex children of (a, b, c) are, in either the even or odd case, the neighbors of
the centroid child as given by item (1).

5. The parent in Hn−1 of a centroid child (a, b, c) ∈ Hn is
{

(a, b, c) if n is even
1
3
(a, b, c) if n is odd.

6. Let x = (a, b, c) ∈ Hn be a vertex child.

For n even, the cell x has exactly three neighbors (d, e, f) with the property that
d ≡ e ≡ f . These three are the A3-coordinates of the parents of (a, b, c) in Hn−1.

For n odd, the cell x has exactly three neighbors (d, e, f) with the property that
d ≡ e ≡ f ≡ 0. For these three the triples 1

3
(d, e, f) are the A3-coordinates of the

parents of (a, b, c).

Using the A3-coordinates, a local vector arithmetic can be efficiently implemented
as follows. By “local” we mean centered at any cell of Hn and restricted to a single
face of the octahedron. By “vector arithmetic” we mean usual vector addition and
multiplication by scalars for vectors contained on a single face of the octahedron.

The octant of a triple (a, b, c) of integers is the ordered triple of signs (+ or −) of the
three entries. The octant of (5,−2, 2), for example, is (+,−,+). Two points of Vn lie
on the same face of the octahedron if and only if their A3-coordinates are in the same
octant. Let x0 be the A3-coordinates of a fixed cell x0 ∈ Hn. Let x1 and x2 be the
A3-coordinates of two other cells x1 ∈ Hn and x2 ∈ Hn in the same octant as x0. Let
v1 denote the vector pointing from the center of x0 to the center of x1; similarly v2 the
vector pointing from the center of x0 to x2.
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Theorem 3 1. With notation as given above, the vector sum v1+v2 points from x0

to x1+x2−x0, where the sum of the xi in the above formula is the usual addition
in R

3. The formula is valid as long as x1 + x2 − x0 lies in the same octant as x0.

2. For an integer k, the scalar product k v1 points from x0 to k x1 + (1− k)x0.

We have shown that each A3H cell can be represented as an ordered triple of integers
called the A3-coordinates. An indexing scheme for A3H is now introduced for referencing
the cells at any level of resolution n using a string of n+3 “trits.” The balanced ternary
is a base 3 positional number system using the digit set D = {−1, 0, 1}, with D often
referred to as the set of trits. The integer 8, for example, has the balanced ternary
representation 8 = (1)(0)(−1). Relevant to our application are the following properties
of the balanced ternary. Further information can be found in Knuth’s “The Art of
Computer Programming” [9].

1. Every integer, positive or negative, has a unique representation in the balanced
ternary. Moreover, every integer between −3n/2 and 3n/2 has a unique represen-
tation of the form

n−1
∑

k=0

dk 3
k,

where dk ∈ D.

2. The negative of an integer in balanced ternary is obtained by merely changing the
sign of each digit.

3. Two integers in balanced ternary are congruent modulo 3 if and only if they have
the same last digit. In particular, an integer is divisible by 3 if and only if the last
digit in its balanced ternary representation is 0.

Given A3-coordinates (a, b, c), encode this triple as a string S of n + 3 trits as follows.
The cases n even and odd are considered separately.

Even n = 2k. The first k + 1 trits in S represent the integer a.

The second k + 1 trits represent the integer b.

The third integer c is given by the formula c = ± (3k−|a|− |b|), where the ±1 is the
last trit in S.

Odd n = 2k − 1. The first k + 1 trits in S represent the integer a.

The second k + 1 trits represent the integer b.

The third integer c is given by the formula c = ±(3k − |a| − |b|), where the ± is
chosen to make a ≡ b ≡ c (mod 3).

The index function I : Vn → Wn for A3H is now defined as follows. For a point
x ∈ Vn, let (a, b, c) be its A3-coordinates, and let S be the balanced ternary string
encoding of (a, b, c) as explained above. Then define I(x) = S. It should now be
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apparent, from Theorems 1, 2, and 3 and the stated properties of the balanced ternary,
that the essential operations on the cells of the octahedral A3H can be performed using
elementary base 3 arithmetic applied to the indices.

5 Radix Indexing

The indexing function for A3H introduced in this section is based on tessellations of the
regular icosahedron. Thus T0 is the regular icosahedron; H0 is the dodecahedron; and
the first resolution H1 is the truncated icosahedron. The indexing is first defined on
planar “tiles.”. Thirty two such tiles are then assembled to form the icosahedral A3H.

This indexing scheme is based on a 2-dimensional generalization of positional number
systems for the integers. It is a fundamental result in number theory that if b is an integer
greater than 1, then every positive integer has a unique representation of the form

N
∑

i=0

bi · di,

where the digits di belong to a set D = {0, 1, 2, . . . , b − 1}. It was remarked in the
previous section that every integer, positive or negative, has a unique representation of
the above form if b = 3 and D = {−1, 0, 1}. This is the balanced ternary system. The
set of integers is a 1-dimensional lattice. Analogous positional number systems exist
for higher dimensional lattices. A 2-dimensional lattice is the set of all integer linear
combinations of two linearly independent vectors in R

2. The hexagonal lattice is the
lattice generated by the vectors (1, 0), (1

2
, 1
2

√
3). Call a triple (L,B,D) a 2-dimensional

radix system if L is a 2-dimensional lattice, B is linear map (2 × 2 matrix) such that
B(L) ⊂ L, and D is a finite subset of L that includes the origin. The set D is called the
digit set and B the base. A natural, but difficult, question is for which radix systems
does there exist a unique representation of each lattice point x ∈ L in the form

x =

N
∑

i=0

Bi(di), (1)

where di ∈ D. See [16] for partial answers and references. As is standard for the base
10 radix system (Z, (10), {0, 1, 2, 3, 4, 5, 6, 7, 8, 9}), for any radix system we will use the
abbreviated notation

x = dN dN−1 · · · d1 d0
instead of the form (1).

For the purposes of this paper, L is the hexagonal lattice. The base is 3, more
precisely B is the linear transformation given by multiplication by 3. The hexagonal
lattice L is the set of centers of the hexagonal grid and, if no confusion arises, we will
identify each lattice point in L with the corresponding hexagon of which it is the center.
For the set of digits, initially take

D′ = {0, 1, ω, ω2, ω3, ω4, ω5, ω + ω2, ω4 + ω5},
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these 9 lattice points shown as shaded hexagons in Figure 4, where in complex number
notation ω = 1

2
+ 1

2

√
3 i. Although the proof is omitted, this radix system (L,B,D′)

has the property that every point in L has a unique representation in the form given in
equation (1) above.
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Figure 4: Digit set.

Next expand the digit set D′ with 9 elements to the digit set

D = {0, ωk, ωk−1 + ωk : 1 ≤ k ≤ 6}

with 13 elements as shown in Figure 4. To simplify notation, for 1 ≤ k ≤ 6, make the
following replacements:

ωk ← 0 k
ωk + ωk+1 ← k 0.

(2)

Hence in the radix system (L,B,D), each lattice point x ∈ L can be expressed as
x = (e2N+1 e2N) · · · (e3 e2) (e1 e0) or simply

x = e2N+1 e2N · · · e3 e2 e1 e0, (3)

where each ei ∈ {0, 1, 2, 3, 4, 5, 6}. In the radix system (L,B,D) the representation of
lattice points in the form of equation (1), equivalently (3), is no longer unique. For
example the lattice point 1 + ω (see Figure 4) can be expressed as either 0140 or 60
because 0140 = (01)(40) = 3ω + (ω4 + ω5) = 1 + ω = ω6 + ω7 = 60. We have used the
identities ω6 = 1 and 1 + ω2 + ω4 = 0, which can also be used to prove the following
theorem.

Theorem 4 In the hexagonal radix system (L,B,D) every element of L can be written
uniquely in the form (3) with the restriction that there exist no two consecutive non-zero
digits, i,e, between any two non-zero digits there is at least one zero.
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In analogy to decimals, next introduce the notation . e1 e2 · · · e2N−1 e2N , where ei ∈
{0, 1, 2, 3, 4, 5, 6} with no two consecutive non-zero digits. Before the replacement (2)
this is . d1 d2 · · · dN , where di ∈ D, which stands for

x =

N
∑

i=1

3−i · di, di ∈ D.

Define Pn to be the set all points in the plane of the form .e1 e2 · · · en where ei ∈
{0, 1, 2, 3, 4, 5, 6} with no two consecutive non-zero digits. If n is odd, the implicit
(n + 1)st digit is 0. For ease of notation, the decimal point will be dropped. For
example, 105 represents the point in the plane:

(10)
1

3
+ (50)

1

9
= (ω + ω2)

1

3
+ (ω5 + 1)

1

9
=

1

9
(5ω − 1).

The set Pn is a subset of points of an hexagonal lattice, the larger the n, the finer the
lattice (points closer together). The integer n will be referred to as the resolution of Pn.
Figure 5 shows two resolutions P1 and P3. (For clarity, the set P2 is omitted from the
figure, but each hexagon of P2 has area in the ratios 1/3 and 3 to the hexagons in P1

and P3, respectively, and each hexagon of P2 is rotated by 30o relative to those in P1

and P3.) For a given hexagon (or corresponding lattice point), the string e1 e2 · · · en
will be referred to as its index. If Wn is the set of all strings of length n with elements
from the set {0, 1, 2, 3, 4, 5, 6}, no two consecutive non-zero, then define

I : Pn →Wn

by I(x) = e1 e2 · · · en for x ∈ Pn. The indices are also shown in Figure 5. The next
result lists properties of the sets Pn, n ≥ 0. (Note that P0 consists just of the origin.)

Theorem 5 The set Pn, n ≥ 0, satisfy the following properties.

1. The Pn are nested: P0 ⊂ P1 ⊂ P2 ⊂ · · · .

2. The ratio of the area of a Pn hexagon to the area of a Pn+1 hexagon is 3.

3. The hexagons in Pn, n even, are oriented a 30o rotation to the hexagons in Pn, n
odd.

4. The number of hexagons in Pn is 1
5
(3n+2 − (−2)n+2).

5. Pn has 6-fold rotational symmetry about the origin.

Tree Data Structure

The data structure underlying the sets Pn, n ≥ 0, has the form of a tree T. The
set of nodes of T is ∪{Pn : n ≥ 0}. The nodes at depth n are the cells at resolution
n. Each node x at depth n has 7 children, one at level n + 1 and six at depth n + 2.
The child x0 at depth n + 1 is the centroid cell (as defined by Property 5 in Section
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Figure 5: P1 and P3.

2) of x while the six children at depth n + 2 are the vertex cells of x0. Note that the
children and parents of a cell as defined in Section 4 do not correspond exactly to the
children and parent of a cell in T. The basic idea here is that each cell x at resolution
n generates

• one centroid child x0 at resolution n + 1 with the same center as x, and

• five or six vertex children at resolution n+ 2 centered at the vertices of x0.

It can be shown that the indexing is closely related to the data structure. If α ∈ Wn is
the index of a hexagon of Pn at resolution n, then

• α 0 ∈ Wn+1 is the index of its centroid child, and

• α 0 k ∈ Wn+2, 1 ≤ k ≤ 6, are the indices of its 6 vertex children.

Face tiles and Vertex Tiles

The sets Pn will be referred to as a face tiles. The construction is now altered slightly
to obtain a vertex tile. For each 1 ≤ k ≤ 6 construct a set Pn,k as follows. The set Pn

can be partitioned into 6 subsets, each one approximataely a 60o wedge of Pn. More
precisely, for 1 ≤ k ≤ 6, let P

(k)
n be the set of all x ∈ Pn such that the first non-zero

digit in the index I(x) is k. Let P ′

n,k denote the set of hexagons obtained from Pn by

removing those in P
(k)
n

P ′

n,k = Pn \P(k)
n .

12



Given an index α, let α+ denote the result of adding 1 (modulo 6) to every non-zero
digit in α. Now construct Pn,k as follows. Remove the edge in P ′

n,k that is contained
only on the hexagon centered at the origin. The hexagon at the origin now becomes
a pentagon. Identify, in pairs, the other edges in P ′

n,k that are contained on exactly
one hexagon of P ′

n,k as follows. Identify each such edge common to hexagons with
indices α and β in Pn with the edge common to hexagons α+ and β+. Whereas each
Pn possesses 6-fold rotational symmetry about the origin, each Pn,k possesses 5-fold
symmetry. Geometrically the six sets Pn,k, 1 ≤ k ≤ 6, are identical, but their indexing
is not. With the indexing ignored, denote each Pn,k simply by P∗

n. While Pn is planar,
P∗

n is not. The tile P∗

n is called a vertex tile.

Indexing the Icosahedral A3H

We are now in a position to define the radix indexing on the isocahedral A3H. It is
based on the following theorem, which is illustrated in Figure 6 depicting the 20 faces
of the icosahedron flattened onto the plane.

Theorem 6 For each n ≥ 1, the (n+1)st resolution Hn+1 of A3H is the non-overlapping
union of 20 copies of face tile Pn−1, each such tile centered at the barycenter of a
triangular face of the icosahedron, and 12 copies of vertex tile P∗

n, each such tile centered
at a vertex of the icosahedron.

In Figure 6, H2 is shown as a non-overlapping union of 20 copies of P0 (a single
hexagon at the center of each triangle of the icosahedron) and 12 copies of P∗

1 (6 cells
centered at each vertex of the icosahedron). For clarity, the identifications of the edges
of P1 to form P∗

1 has not been made in the figure. Also the indices are omitted.

The indexing at resolution n+ 1 on A3H is inherited from the indexing on copies of
tiles Pn−1 and P∗

n. Label the vertices of the icosahedron Uk, U
′

k, 1 ≤ k ≤ 6, where Uk

and U ′

k are antipodal to each other. Then at vertices Uk and U ′

k of Hn+1 provide the
indexing of patch Pn,k. Label the faces of the icosahedron Fk, 1 ≤ k ≤ 20. At face Fk of
Hn+1 provide the indexing of patch Pn−1. There still remains some ambiguity because
of the possible rotations of the patches about their centers (6-fold symmetry of face tiles
and 5-fold symmetry of vertex tiles). In practice the vertex tiles are labeled A-T and
the face tiles 1-12, their relative positions given by a table.

6 Conclusion

This paper concerned the display and processing of global data on a discrete global
grid, in particular, on the aperture 3 hexagonal discrete global grid A3H. After a brief
geometric description, the focus was on the problem of indexing the cells of A3H. Two
indexing schemes were introduced, barycentric indexing on the octahedral A3H and
radix indexing on the icosahedral A3H, both leading to efficient processing.
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Figure 6: Unfolded Icosahedron
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