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Abstract: The concepts of separation index of a graph and of a surface
are introduced. We prove that the separation index of the sphere is 3. Also
the separation index of any graph faithfully embedded in a surface of genus
g is bounded by a funtion of g. � 2002 Wiley Periodicals, Inc. J Graph Theory 41: 53–61, 2002

1. GRAPH ISOMORPHISM

This first section on the Graph Isomorphism Problem is meant only as motivation
for the concept of separation index, which is defined formally in Section 2. In
Section 3 we prove that the separation index of the sphere is 3. The separation
index of faithfully embedded graphs is discussed in Section 4, and a few open
questions are posed.

The literature on the Graph Isomorphism Problem is extensive, but we have
mentioned just a few references below. The Graph Isomorphism Problem is to
determine, given two graphs, whether they are isomorphic. Graph Isomorphism
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holds a special position among algorithmic questions because its complexity is
problematic. It is known that, for planar graphs, there exist a linear time algorithm
to solve Graph Isomorphism [6]. For graphs of bounded degree [9] or for graphs
of bounded eigenvalue multiplicity [1], there exist polynomial time algorithms.
But for graphs in general, it is not known whether the problem is polynomial,
NP-complete, or neither.

One common approach to graph isomorphism is to devise an efficient method
to partition the vertex set. Moreover, many methods for partitioning are based on
probing the graph from a fixed vertex or fixed vertices. Consider the following
example. Fix a vertex v in a graph G and a natural number N. Partition the vertex
set V of G according to the number of walks of length N from v to each vertex.
This produces a partition of V into blocks Bi consisting of those vertices with i
such walks. Given two graphs G and G0 and fixed vertices v and v0, respectively,
we obtain partitions into blocks fBig and fB0

ig, respectively. For the existence of
an isomorphism � from G and G0 taking v to v0, it is necessary that � take Bi onto
B0
i for each i. In particular, we must have jBij ¼ jB0

ij for each i. If this necessary
condition holds, then one can check all potential bijections to determine whether
one of them is a graph isomorphism. Checking becomes more efficient the finer
the partition is. (Of course, this would have to be done for each pair of fixed
vertices ðv; v0Þ; but there are just Oðn2Þ such pairs.) As an example consider the
graph in Figure 1a with N ¼ 2. The labels indicate the number of walks of length
2 to each of the vertices from vertex v. This provides a partition of the vertices
into blocks of sizes 1, 1, 2, 2. If there existed another graph with the same para-
meters (there does not), then 4 ¼ 1 � 1 � 2 � 2 bijections would have to be tested.

A refinement of this procedure would be to probe from several, say k, fixed
pairs of vertices instead of just one pair, resulting in a set f�1; �2; . . . ; �kg of
partitions of V . Let � be the meet of �1; �2; . . . ; �k, the partition of V such that
vertices x and y are in the same block if they are in the same block of �i for each i.
Then the efficiency of checking for isomorphism depends on how fine is the
partition �. Figure 1a,b provides two partitions, but their meet does not result in a
refinement of either individually. Figure 1a,c, on the other hand, provides two
partitions �1 and �2 whose meet separates the set of vertices in the sense that
each block of the meet has size 1.

Figure 1. Probing from vertex v.
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Best possible is when the set of partitions separate V . In this case only one
bijection of the vertex sets of G and G0 would be required to test for isomorphism
of G and G0. However, if AutðGÞ denotes the automorphism group of G, then any
method that probes from a fixed vertex v cannot distinguish between vertices
in the same orbit of the stabilizer subgroup AutðGÞv of v. (This is the case in
Figure 1a,b for the vertices labeled 1 and for those labeled 2.) No method of
probing from vertex v can give a partition finer than the orbit partition of the
stabilizer of v. This observation leads to the problem of determining the least
number of vertices such that the meet of the orbit partitions of the respective
stabilizers separates the set of vertices.

2. SEPARATION INDEX

In this section, the notions of separation index of a graph and separation index
of a surface are formally defined. Let V ¼ f1; 2; . . . ; ng. The set of partitions of
V form a lattice, where the partial order is � < � if � is a finer partition than �.
For example, for n ¼ 6 the partition ð12Þð34Þð56Þ is finer than ð1234Þð56Þ. The
meet in the lattice will be denoted by ^ , so that x and y are in the same block of
� ^ �, if and only if, x and y are in the same block of � and in the same block of �.
The 0 and 1 denote, respectively, the partition into singletons and the partition
with a single block. A set f�1; �2; . . . ; �kg of partitions is said to separate V if
�1 ^ �2 ^ � � � ^ �k ¼ 0. In other words, for any two elements u; v 2 V , there
exists a j such that u and v lie in different blocks of �j.

Consider a finite group � acting on V . Let �v � � denote the stabilizer of
v 2 V . Moreover, let �ðvÞ denote the orbit partition of �v. In other words, the
blocks of �ðvÞ are the orbits of �v acting on V . Elements v1; v2; . . . ; vk of V are
said to separate V if the set f�ðv1Þ; �ðv2Þ; . . . ; �ðvkÞg of orbit partitions separates
V . We define the separation number of �, denoted sepð�Þ, as the minimum
number k of elements of V that suffice to separate V :

sepð�Þ ¼ minfk j k elements separate Vg:

If, for example, �v is trivial for all v, then sepð�Þ ¼ 1. At the other extreme, if �
consists of the full symmetric group of permutations of V , then sepð�Þ ¼ n� 1.

Let G be a connected graph on n vertices, without multiple edges or loops.
Define the separation index of G as the separation index of its automorphism
group AutðGÞ acting on the vertex set:

sepðGÞ ¼ sepðAutðGÞÞ:

If, for example, Kn is the complete graph, then sepðKnÞ ¼ n� 1. More
generally, if G is a complete r-partite graph, then sepðGÞ ¼ n� r. If Cn is a cycle,
then sepðCnÞ ¼ 2. Clearly sepðGÞ ¼ 1 if and only if the stabilizer of some vertex
acts trivially.
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Let S be a closed surface (compact and without boundary). The separation
index of S, denoted sepðSÞ, is defined as the minimum number k such that k

vertices suffice to separate any 3-connected graph embedded in S:

sepðSÞ ¼ minfk j sepðGÞ � k for any 3-connected graph embedded in Sg:

The condition that G be 3-connected is needed. Consider, for example, the two
families of graphs: An ¼ K1 _ Kn and Bn ¼ K2 _ Kn, where n � 2 and the
complement of Kn consists of n isolated vertices. The join G _ H denotes the
graph obtained from the disjoint union of graphs G and H by adding the edges
fuvju2VðGÞ; v2VðHÞg. Then An is 1-connected, but not 2-connected, and Bn is
2-connected but not 3-connected. Both An and Bn are planar for all n, but the
separation indices, sepðAnÞ ¼ n� 1 and sepðBnÞ ¼ n, are arbitrarily large.

3. SEPARATION INDEX OF THE SPHERE

It can be shown that a nontrivial automorphism of a 3-connected planar graph can
have at most 2 fixed points. This means that the pointwise stabilizer AutðGÞfa;b;cg
of 3 distinct vertices a; b; c must be trivial. Notice, however, that this is not as
strong a statement as Theorem 3.1 below. If �ðabcÞ denotes the orbit partition of
AutðGÞfa;b;cg, then �ðabcÞ � �ðaÞ ^ �ðbÞ ^ �ðcÞ with equality often not the case.
Consider, for example, the two antipodal points on the 3-cube and any distinct
third point.

Theorem 3.1. The separation index of the sphere is 3.

Proof. The separation index is at least 3 because two points do not suffice to
separate K4.

To show that 3 vertices suffice, let G be a 3-connected planar graph. By a
theorem of Whitney [17] (or see [16]), G has a unique embedding in the 2-sphere.
This also implies that each automorphism of G induces an automorphism of the
embedded graph M. By automorphism of M is meant a graph automorphism
that preserves faces, an automorphism of M considered as a map on the sphere.
Let B be the barycentric subdivision of M with each vertex of B colored 0, 1, or 2
according to the dimension of the face it represents, 0 for a vertex, 1 for an edge,
and 2 for a face. The colors on the three vertices of any triangle in B are 0, 1,
and 2. Now, let G0 be the edge-colored dual graph of B constructed as follows.
Inside each triangle of B there corresponds a vertex of G0. Two vertices of G0 are
joined by an edge colored i, if the corresponding two triangles in B share an edge
whose two colors do not include i. Hence each vertex in G0 has degree 3 with
incident edges colored 0, 1, and 2. Let AutðBÞ and AutðG0Þ denote the color
preserving automorphism groups of B and G0, respectively. Each automorphism
of M corresponds to a color preserving automorphism of B, which in turn corres-
ponds to a color preserving automorphism of G0. Therefore AutðG0Þ ffi AutðBÞ ffi
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AutðMÞ ffi AutðGÞ. These are not just group isomorphisms. Each automor-
phism in AutðGÞ induces a unique automorphism in AutðMÞ, in AutðBÞ and in
AutðG0Þ.

Consider the lexicographic order on all words in the alphabet f0; 1; 2g where
0 < 1 < 2. For example, 21 < 012 and 01 < 02. For vertices u; v 2G0 let dðu; vÞ
denote the minimum word whose corresponding edge path in G0 is from u to v.
Fix a vertex v0 2G0 and let fv0 ; v1; . . . ; vkg be the orbit of v0 under AutðG0Þ.
Define

Ni ¼ fv 2G0: dðvi; vÞ < dðvj ; vÞ 8j 6¼ ig:

If hUi denotes the graph induced by vertex set U, note that

(1) fNi : i ¼ 0; 1; . . . ; kg forms a partition of the vertex set of G0.
(2) hNii is connected for each i.
(3) hNii ffi hNji for all i; j, where the graph isomorphism is color preserving.

The second statement is an easy exercise. The last statement follows from that
fact that AutðG0Þ acts transitively on the set fv0 ; v1; . . . ; vkg of vertices.

A new map M0 on the sphere, related to the original map M, will now be
constructed as follows. Start with the triangulation B. To each set Ni of vertices of
G0 there corresponds a set Bi of triangles in B. The union of the (closed) triangles
in any such Bi is connected and simply connected, simply connected because the
2-sphere cannot be partitioned into a finite number of homeomorphic, connected,
nonsimply connected regions. From each Bi remove any edge common to two
triangles corresponding to two vertices in Ni. Then remove any isolated vertices.
If we do this for all i, a map M0 on the sphere is obtained. It has no vertices of
degree 1. There may be vertices of degree 2, which will be mentioned later.

Before proceeding, a degenerate case must be considered. The map M0 will
have one face (no edges and no vertices) exactly when AutðG0Þ is trivial. In this
case AutðGÞ is also trivial and hence sepðGÞ ¼ 1, and the theorem is proved.

Each element of AutðBÞ acts on the map M0. Hence AutðGÞ also acts on M0

as a group of map automorphisms. Since AutðG0Þ acts simply transitively on
fv0; v1; . . . ; vkg, the group AutðGÞ acts simply transitively on the set of faces of
M0. The classification of maps on the sphere that are face transitive is elementary,
combinatorial, and well known [3]. They are the duals of the semi-regular
polyhedra (the duals of the Platonic and Archimedean solids, and the duals of
the prisms and antiprisms) and two degenerate cases that will be considered
separately at the end of the proof. The degenerate cases aside, each semi-regular
polyhedron P can be realized in Euclidean 3-space so that each automorphism of
P as a map on the sphere is induced by a symmetry of P. A symmetry of P is an
isometry of 3-space preserving P. Since a polyhedron and its dual have the same
automorphism and symmetry groups, respectively, each automorphism of the dual
of P as a map on the sphere is induced by a symmetry of the dual of P.
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So far the argument has been combinatorial. We now take into consideration
the Euclidean metric. We consider M0 realized as a polyhedron in Euclidean 3-
space as described in the previous paragraph. (To be accurate, M0 is realized as
such a polyhedron with possible additional vertices of degree 2 on some edges.
Recall that M0 may have such vertices of degree 2.) The group AutðM0Þ, and
hence the group AutðGÞ, act as groups of symmetries of M0. This action can be
extended to an action of AutðGÞ on B as follows. First fill in just one face of M0 by
appropriately triangulating it to correspond to B. Then extend this triangulation
to all faces of M0 by letting the group AutðGÞ, regarded as a symmetry group
which acts simply transitively on the faces of M0, act on the first face. Since
AutðGÞ acts as a group of symmetries on this realization of B, so AutðGÞ also acts
as a group of symmetries on the induced realization of M (by removing the extra
vertices and lines in the barycentric subdivision B). Consequently AutðGÞ acts as
a group of symmetries on a realization of G.

Every finite group of isometries is a subgroup of the orthogonal group Oð3Þ.
Hence AutðGÞ acts as a finite subgroup of Oð3Þ on G. Let O denote the fixed point
of Oð3Þ. In the polyhedral realization of M0, each face contains at least one point
(not O) corresponding to a vertex of G. This is sufficient to guarantee that, in
the realization of G, there exists three distinct vertices a; b; c such that the
corresponding vectors a ¼ ~Oa; b ¼ ~Ob and c ¼ ~Oc do not lie in a plane. We now
show by contradiction that a; b; c separate the vertices of G. Assume the contrary,
that two distinct vertices u; v of G are simultaneously in the same orbit of each of
the three stabilizers AutðGÞa; AutðGÞb; AutðGÞc. Since u and v lie in the same
orbit of AutðGÞa, then u and v both lie on a circle in a plane orthogonal to vector
a. Likewise, u and v lie in a plane orthogonal to b and in a plane orthogonal to c.
Since a; b; c do not themselves lie in a plane, the three planes orthogonal to a; b
and c, respectively, intersect in at the most a single point, contradicting that both
u; v lie in this intersection.

The proof is now complete except for the two degenerate cases mentioned
earlier. The first case is when M0 has exactly two faces, each bounded by the
same, say m-gon. Then AutðGÞ consists of exactly two elements, the identity and
an involution g. If G has a vertex whose stabilizer is trivial, then sepðGÞ ¼ 1.
Otherwise, the involution stabilizes every vertex of G, which would imply that g
is the identity, which is a contradiction.

The other degenerate case occurs when M0 is the dual of the case just
described; M0 consists of two points, say a and b, joined by m (multiple) edges.
Then AutðGÞ, acting simply transitively on the faces of M0, must be a cyclic group
of order m. In its action on the vertices of G, a generator of AutðGÞ can be
expressed as the disjoint product of cycles, each of length m, and possibly one
cycle of length 2 (reversing a and b). In this case sepðGÞ � 2. &

The proof of Theorem 3.1 could be simplified by using a theorem that states
the following: each finite group of homeomorphisms of the 2-sphere is topologi-
cally equivalent to a finite subgroup of the orthogonal group Oð3Þ. An immediate
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corollary of this and Whitney’s Theorem is that any 3-connected graph G can be
embedded in the unit sphere such that the automorphism group of G is a subgroup
of the orthogonal group Oð3Þ acting on the unit sphere in 3-space. This is
essentially what is shown as part of our proof of Theorem 3.1 The topological
theorem appears in an article by Babai et al. [2] (see also the book of Gross and
Tucker [4]). Babai et al. [2] state that they later learned that the result was found
in 1919 by Kerékjártó [8], but mentioned the need for a proof ‘‘in modern language
and accuracy.’’ Their proof is somewhat long, so our short proof may be of inde-
pendent interest.

The proof of Theorem 3.1 could also be shortened using a generalization of
Steinitz’ Theorem due to Mani [10]. Steinitz’ Theorem states that, to any finite,
3-connected, planar graph G, there exists a 3-dimensional convex polyhedron
P such that G is isomorphic to the 1-skeleton of P. Mani [10] further showed that
such a P exists with the property that every automorphism of G is induced by a
symmetry of P. All known proofs of Steinitz’ Theorem are fairly difficult; see
[18] for a version a little shorter than [14] or [5]. The proof of Theorem 3.1 in this
study is self contained in that it makes no reference to Steinitz’ result.

4. OPEN PROBLEMS

Some questions that suggest themelves:

Question 1. Does every surface have a finite separation index?

Question 2. What are the separation indices of the torus? and of the projective
plane?

Let Sg denote the orientable surface of genus g. The genus �ðGÞ of a graph G
is the minimum g such that G embeds in Sg. Ringel [13] determined the genus of
the complete bipartite graphs, in particular �ðK3;nÞ ¼ dn�2

4
e. Since sepðK3;nÞ ¼

nþ 1 we have

sepðSgÞ � 4gþ 3: ð1Þ

In particular, the separation index of the torus is at least 7.

Question 3. Does equality always hold in equation 1?

Some of the questions posed above become more tractible when restricted to
Whitney embeddings of graphs, a notion we now define. Whitney’s Theorem [17]
(mentioned in the proof of Theorem 3.1) states that every automorphism of a
3-connected planar graph maps face boundaries of the embedded graph to face
boundaries. An embedding of a graph G in a surface such that every auto-
morphism of G maps face boundaries to face boundaries is called a Whitney

embedding by Hutchinson [7] and a faithful embedding by Negami [12]. There
is a nice sufficient condition for an embedding of a graph to be Whitney,
conjectured by Hutchinson [7] and proved by Thomassen [15], that uses the
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notion of edge-width. The edge-width of an embedded graph G is the length of
the smallest noncontractible cycle in G. A large-edge-width embedding (abbre-
viated LEW-embedding) of a graph in a surface is one whose edge-width is larger
than the maximum length of a face boundary. (See [11] for more in LEW-
embedding.)

Theorem 4.1 (Thomassen [15]). A LEW-embedding of a 3-connected graph is
a Whitney embedding.

The answer to Question 1 can be answered in the affirmative when restricted to
Whitney embeddings on surfaces of genus greater than 1. The result is likely not
best possible, but it does show finiteness.

Theorem 4.2. If G is Whitney embedded on a surface of genus g > 1, then
sepðGÞ � 168ðg� 1Þ.

The proof of Theorem 4.2 relies on the following lemma. Here Sn denotes the
symmetric group acting on the set ½n� ¼ f1; 2; . . . ; ng.

Lemma. If � is a subgroup of Sn, then sepð�Þ � j�j.
Proof. If, for some k 2 ½n�, the stabilizer �k consists of just the identity e,

then fkg separates ½n� and sepð�Þ ¼ 1. So, for each k 2 ½n�, let gk 2 �k; gk 6¼ e.
Define an equivalence relation on ½n� by i � j if gi ¼ gj. There are clearly at
most j�j equivalence classes. These equivalence classes partition ½n�. Let
A ¼ fa1; i2; . . . ; amg; m � j�j be a set consisting of exactly one element from
each equivalence class. It now suffices to show that A separates ½n�. Let s; t be
distinct elements of ½n�. Then s � ai for some i; in other words gs ¼ gai . So gai
leaves s fixed. Hence s and t lie in different orbits of �ai . &

Proof of Theorem 4.2. Considering AutðGÞ as a group of permutations of the
vertices of G, the lemma above implies sepðGÞ � jAutðGÞj. According to
Hurwitz’s Theorem (see [4, pg. 296]), the order of any finite group acting as
homeomorphisms on the surface of genus g > 1 has order at most 168ðg� 1Þ.
Since the embedding of G is a Whitney embedding, each automorphism of G
induces a homeomorphism of the surface. Hence jAutðGÞj � 168ðg� 1Þ. &

In the case of embeddings on a not necessarily orientable surface with Euler
characteristic � < 0, a similar proof shows that sepðGÞ � �84�.

The last question concerns the validity of a statement much stronger than
Theorem 4.2. Call G a Whitney graph if G has a Whitney embedding.

Question 4. The separation index of any Whitney graph is at most 3.
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