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It is known that a lexicographically shellable poset is shellable, and it has been asked
whether the two concepts are equivalent. We provide a counterexample. a shellable graded poset
that is not lexicographically shellable.

1. Shellability

A pure d-dimensional simplicial complex I is shellable if its facets can be or-
k—1

dered F,, F,, ..., Fy such that E,N(1J F,) is a pure (d— 1)-dimensional complex
i=1

for k=2, 3, ..., N. Inparticular, this intersection is homeomorphic to either a (¢ — 1)-
ball or a (d— 1)-sphere. Imporiant examples of shellable conmiplexes are the boundary
complexes of simplicial polytopes [8]. Moreover, a shellable manifold must be a ball
or sphere, and a sheilable complex must have the homotopy type of a wedge of sphe-
res. Shellability has proved an important tool in polyhedral theory [11], in the topolo-
gy of Coxeter complexes and buildings [3] and in the algebra of Cohen—Macauley
rings [5, 12].

Recently, sheilability has been investigated in the context of partially ordered
sets [1,2,5,6,7,10,15]. Let P be a finite graded poset. The order complex AP is
the abstract simplicial complex whose simplexes are the chains of P. A finite graded
poset P is shellable if AP is shellable. A method, involving a labeling of the edges of
the Hasse diagram of the poset, can be used to show that a poset is shellable.

When this is possible, the poset is said to be lexicographically shellable (EL-
shellable). Precise definitions appear in {2]. Examples of EL-shellable posets include
distributive lattices, semimodular lattices and supersolvable lattices. In certain situa-
tions it is useful to consider a related labeling of the chains of the poset. If such a
labeling exists, we say that the poset is chain lexicographically shellable (CL-shellable)
[7]. An example ts Bruhat order in a Coxeter group [6]. The following result 15 also
proved in [6].

Theorem 1. EL-shellable=>C L-shellable= shellable.
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[t has been asked in 5] whether the three concepts coincide. In the next section
of this paper we provide an example of a shellable poset that is not EL or CL-shell-
able. Our technique involves finding a non-shellable complex whose barycentric
subdivision is shellable. This idea was suggested to J. Walker who independently
implemented it by finding an example smaller than ours [16].

2. A shellable, non lexicographically shellable, poset

Given a simplicial complex 4 its poset P of face< is obtained by ordering the

faces of 4 by inclusion and adjoining a top element {and a bottom element 0.
Note that the order complex 4(P— {0, l‘) is the barycentric subdivision of 4. The
following theorem, in the case where 4 is a simplicial complex (or more generally
polyhedral complex) is proved in [7]. Here the dual poset is obtained by reversing the
ordering.

Theorem 2. The dual of the poset of faces of complex A is C L-shellable if and only if
A is shellable.

In what follows Theorem 2 is applied to a finite cell complex whose cells are
simplexes, but where the intersection of two faces can possibly consist of the union
of more than one face of each simplex. For such a pseudosimplicial complex the
definition of shellability, as well as the proof of Theorem 2, carries over without alte-
ration. In fact, Bjorner [4] proves a theorem analogous to Theorem 2 for CW
complexes.
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Fig. 1

Let G be the edge colored graph in Figure 1, the color set being /= {1, 2, 3, 4}.
For JE1I let S, be the set of connected components of the subgraph of G induced
by hnes colored in J. Note that S, is the set of points of G. Let P(G) be the poset
consisting of all pairs (H, /) where J&I and HES,, together with a bottom ele-
ment 0. The elements of P(G) are ordered as follows: (H, N=<H',J) if HSH’
and JcJ’ and 0<(#,J) forall / and A. Note that P(G) also has a top element
[ =(G, I).

Theorem 3. The poset P(G) is shellable but not CL-shellable.
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Proof. To the graph G is associated a pseudosimplicial complex as follows. For each
point ¢ of G let 4 be a 3-simplex whose vertices are colored 1, 2, 3 and 4. A subsim-
plex s€Av is said to be of type J if the set of colors on the vertices of s is J. Let
X be the disjoint union of {dv{r€G}. ldentify two simplexes scAv and s'¢ 4’
if they are the same type J and if » and »” are connected by a path in G with colors
in /—J. If ~ denotes this identification let AG=X/~. By [13, Theorem 2] P(G)
is the dual of the poset of faces of 4G, and by [13, Theorems 7, 10] 4G 15 not shellable.
Therefore Theorem 2 implies that P(G) is not CL-shellable. The order complex
A'=4(P(G)—{0, 1}) is the barycentric subdivision of 4G. Now there is an edge
colored graph G’ such that A’=A4G’ and G’ is easily produced from G. Also [13,
Theorem 7] gives a simple criterion for checking the shellability of 4” in terms of G”.
A short computer calculation then substantiates that 47 is shellable. Hence 4 P(G)
is shellable, i.e. P(G) is shellable. J

Let a poset be called dual CL-shellable if its dual 1s CL-shellable. Since CL-
shellability and dual CL-shellability each imply shellability, it is natural to ask whet-
her there exists shellable graded posets which are neither CL-shellable nor dual CL-
shellable. Tf P is a graded poset which is shellable but not CL-shellable then we form
the ordinal sum Q, of P and its dual. Now Q is a shellable graded poset since ordinal
sums of shellable graded posets are shellable and graded (see [2]). But Q is ncither
CL-shellable nor dual CL-shellable since P and its dual are intervals of Q and any
iterval of a CL-shellable (dual CL-shellable) poset is CL-shellable (dual CL-shell-
able). Hence there exists shellable graded posets which are neither CL-shellable
nor dual CL-shellable.
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