A SHELLABLE POSET THAT IS NOT LEXICOGRAPHICALLY SHELLABLE

A. VINCE and M. WACHS

Received 6 April 1983 Revised 19 October 1984

It is known that a lexicographically shellable poset is shellable, and it has been asked whether the two concepts are equivalent. We provide a counterexample, a shellable graded poset that is not lexicographically shellable.

1. Shellability

A pure d-dimensional simplicial complex Γ is *shellable* if its facets can be ordered $F_1, F_2, ..., F_N$ such that $F_k \cap (\bigcup_{i=1}^{k-1} F_i)$ is a pure (d-1)-dimensional complex for k=2, 3, ..., N. In particular, this intersection is homeomorphic to either a (d-1)ball or a (d-1)-sphere. Important examples of shellable complexes are the boundary complexes of simplicial polytopes [8]. Moreover, a shellable manifold must be a ball or sphere, and a shellable complex must have the homotopy type of a wedge of spheres. Shellability has proved an important tool in polyhedral theory [11], in the topology of Coxeter complexes and buildings [3] and in the algebra of Cohen—Macauley rings [5, 12].

Recently, shellability has been investigated in the context of partially ordered sets [1, 2, 5, 6, 7, 10, 15]. Let P be a finite graded poset. The order complex ΔP is the abstract simplicial complex whose simplexes are the chains of P. A finite graded poset P is shellable if ΔP is shellable. A method, involving a labeling of the edges of the Hasse diagram of the poset, can be used to show that a poset is shellable.

When this is possible, the poset is said to be lexicographically shellable (EL-shellable). Precise definitions appear in [2]. Examples of EL-shellable posets include distributive lattices, semimodular lattices and supersolvable lattices. In certain situations it is useful to consider a related labeling of the chains of the poset. If such a labeling exists, we say that the poset is chain lexicographically shellable (CL-shellable) [7]. An example is Bruhat order in a Coxeter group [6]. The following result is also proved in [6].

Theorem 1. *EL-shellable* \Rightarrow *CL-shellable* \Rightarrow *shellable*.

AMS subject classification (1980): 05 C 65, 06 A 10.

It has been asked in [5] whether the three concepts coincide. In the next section of this paper we provide an example of a shellable poset that is not EL or CL-shellable. Our technique involves finding a non-shellable complex whose barycentric subdivision is shellable. This idea was suggested to J. Walker who independently implemented it by finding an example smaller than ours [16].

2. A shellable, non lexicographically shellable, poset

Given a simplicial complex Δ its poset P of faces is obtained by ordering the faces of Δ by inclusion and adjoining a top element $\hat{1}$ and a bottom element $\hat{0}$. Note that the order complex $\Delta(P - \{0, 1\})$ is the barycentric subdivision of Δ . The following theorem, in the case where Δ is a simplicial complex (or more generally polyhedral complex), is proved in [7]. Here the dual poset is obtained by reversing the ordering.

Theorem 2. The dual of the poset of faces of complex Δ is CL-shellable if and only if Δ is shellable.

In what follows Theorem 2 is applied to a finite cell complex whose cells are simplexes, but where the intersection of two faces can possibly consist of the union of more than one face of each simplex. For such a *pseudosimplicial complex* the definition of shellability, as well as the proof of Theorem 2, carries over without alteration. In fact, Björner [4] proves a theorem analogous to Theorem 2 for CW complexes.

Let G be the edge colored graph in Figure 1, the color set being $I = \{1, 2, 3, 4\}$. For $J \subseteq I$ let S_J be the set of connected components of the subgraph of G induced by lines colored in J. Note that S_o is the set of points of G. Let P(G) be the poset consisting of all pairs (H, J) where $J \subseteq I$ and $H \in S_J$, together with a bottom element $\hat{0}$. The elements of P(G) are ordered as follows: (H, J) < (H', J') if $H \subseteq H'$ and $J \subset J'$ and $\hat{0} < (H, J)$ for all J and H. Note that P(G) also has a top element $\hat{1} = (G, I)$.

Theorem 3. The poset P(G) is shellable but not CL-shellable.

Proof. To the graph G is associated a pseudosimplicial complex as follows. For each point v of G let Δv be a 3-simplex whose vertices are colored 1, 2, 3 and 4. A subsimplex $s \in \Delta v$ is said to be of type J if the set of colors on the vertices of s is J. Let X be the disjoint union of $\{\Delta v | v \in G\}$. Identify two simplexes $s \in \Delta v$ and $s' \in \Delta v'$ if they are the same type J and if v and v' are connected by a path in G with colors in I-J. If \sim denotes this identification let $\Delta G = X/\sim$. By [13, Theorem 2] P(G) is the dual of the poset of faces of ΔG , and by [13, Theorems 7, 10] ΔG is not shellable. Therefore Theorem 2 implies that P(G) is not CL-shellable. The order complex $\Delta' = \Delta (P(G) - \{\hat{0}, \hat{1}\})$ is the barycentric subdivision of ΔG . Now there is an edge colored graph G' such that $\Delta' = \Delta G'$ and G' is easily produced from G. Also [13, Theorem 7] gives a simple criterion for checking the shellability of Δ' in terms of G'. A short computer calculation then substantiates that Δ' is shellable. Hence $\Delta P(G)$ is shellable, i.e. P(G) is shellable.

Let a poset be called *dual CL-shellable* if its dual is CL-shellable. Since CL-shellability and dual CL-shellability each imply shellability, it is natural to ask whether there exists shellable graded posets which are neither CL-shellable nor dual CL-shellable. If P is a graded poset which is shellable but not CL-shellable then we form the ordinal sum Q, of P and its dual. Now Q is a shellable graded poset since ordinal sums of shellable graded posets are shellable and graded (see [2]). But Q is neither CL-shellable nor dual CL-shellable since P and its dual are intervals of Q and any interval of a CL-shellable (dual CL-shellable) poset is CL-shellable (dual CL-shellable). Hence there exists shellable graded posets which are neither CL-shellable nor dual CL-shellable graded posets which are neither CL-shellable nor dual CL-shellable.

References

- [1] K. BACLAWSKI, Cohen-Macauley ordered sets, J. Algebra 63 (1980), 226-258.
- [2] A. BJÖRNER, Shellable and Cohen-Macauley partially ordered sets, Trans. Amer. Math. Soc. (1) 260 (1980), 159–183.
- [3] A. BJÖRNER, Some combinatorial and algebraic properties of Coxeter complexes and Tits buildings, *Advances in Math.*, to appear.
- [4] A. BJÖRNER, Posets and regular CW complexes, preprint.
- [5] A. BJÖRNER, A. GARSIA and R. STANLEY, An Introduction to Cohen—Macauley partially ordered sets, in: Ordered Sets (Ivan Rival, ed.) Reidel, Dordrecht, 1982, 583—615.
- [6] A. BJÖRNER and M. WACHS, Bruhat order of Coxeter groups and shellability, Advances in Math. 43 (1982), 87—100.
- [7] A. BJÖRNER and M. WACHS, On lexicographically shellable posets. Trans. Am. Math. Soc. 277 (1983), 323--341.
- [8] H. BRUGGESSER and P. MANI, Shellable decompositions of cells and spheres, Math. Scand. 29 (1972), 197-205.
- [9] G. DANARAJ and V. KLEE, Which spheres are shellable?, Ann., Discrete Math. 2 (1978), 33-52.
- [10] A. GARSIA, Combinatorial methods in the theory of Cohen-Macauley rings, Advances in Math. 38 (1980), 229-266.
- [11] P. McMullen, The maximum number of faces of a convex polytope, Mathematika 17 (1970), 179-184.
- [12] R. STANLEY, Cohen-Macauley complexes, in: Higher Combinatorics (M. Aigner, ed.), Reidel, Dordrecht/Boston, 1977.
- [13] A. VINCE, A non-shellable 3-sphere. Europ. J. of Combinatorics, to appear.

6

- [14] A. VINCE, Graphic matroids, shellability and the Poincaré Conjecture, Geometriae Dedicata, 14 (1983), 303-314.
- [15] M. WACHS, Quotients and Coxeter complexes and buildings with linear diagram, Europ. J. of Combinatorics, to appear.
- [16] J. WALKER, A poset which is shellable but not lexicographically shellable, preprint.

Andrew Vince

Michelle Wachs

Department of Mathematics University of Florida Gainesville, FL 32611 U.S.A. Department of Mathematics University of Miami Coral Gables, FL 33124 U.S.A.

260