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Abstract. The term special overlapping refers to a certain simple type of piecewise

continuous function from the unit interval to itself and also to a simple type of

iterated function system (IFS) on the unit interval. A correspondence between

these two classes of objects is used (1) to find a necessary and sufficient condition

for a fractal transformation from the attractor of one special overlapping IFS to

the attractor of another special overlapping IFS to be a homeomorphism and (2) to

find a formula for the topological entropy of the dynamical system associated with

a special overlapping function.
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1. Introduction

Iterated maps on an interval provide the simplest examples of dynamical systems.

Parameterized families of geometrically simple continuous dynamical systems on

an interval have a rich history because of their intricate behaviour, the insights

they provide into higher dimensional systems, and diverse applications. Numerous

papers have been written concerning their invariant measures, entropies, and

behaviours; we note in particular the works of Collet and Eckman [5], and Milnor

and Thurston [12]. Many results in the literature concern the topological entropy

of continuous systems [1, 13], but piecewise continuous maps have also received

attention, [7, 14, 20].

Figure 1. A special overlapping dynamical system (left) and the unform case (right).

One of the main results of this paper is a formula for the topological entropy of

a dynamical system ([0, 1], T ), where T is a piecewise continuous function from the

interval [0, 1] onto itself consisting of two continuous pieces, as shown on the left

in Figure 1. More precisely, we are interested in functions T : [0, 1]→ [0, 1] of the

form

T (x) =

{
g0(x) if 0 ≤ x < q

g1(x) if q ≤ x ≤ 1,
(1)

or

T (x) =

{
g0(x) if 0 ≤ x ≤ q
g1(x) if q < x ≤ 1,

(2)

where g0 : [0, 1]→ [0, 1] and g1 : [0, 1]→ [0, 1] are continuous increasing functions

such that

Prepared using etds.cls



Entropy of an Overlapping Dynamical System 3

1. g0(0) = 0, g1(1) = 1,

2. 0 < g1(q) < g0(q) < 1 for some q ∈ (0, 1), and

3. there is an s > 1 such that |gi(x) − gi(y)| ≥ s|x − y| for i = 0, 1 and for all

x ∈ [0, 1].

Note that condition 3 holds, for example, if g0, g1 are differentiable and there is an

s > 1 such that g′0(x) ≥ s and g′1(x) ≥ s for all x ∈ [0, 1]. Call such a dynamical

system a special overlapping dynamical system. It is “overlapping” in the sense

that g0([0, q)) ∩ g1((q, 1]) 6= ∅ and in the sense that, in the associated iterated

function system as described in Section 2, the images of the unit interval under the

two functions of the IFS are overlapping.

Although many important IFS properties, like the Hausdorff dimension of

the attractor, can be obtained under the assumption of the open set condition

(OSC), there is a developing literature on overlapping IFSs. The papers [16, 21]

contain results on the absolute continuity of the invariant measure of certain

IFSs with proability weights; in particular this solved a conjecture of Erdös on

Bernoulli convolutions. The papers [15, 17] further explore this direction. The

papers [9, 10, 18] concern digit expansions (β-expansions) related to overlapping

IFSs on the reals. Interesting results can be obtained for overlapping IFSs that

satisfy a weak separation condition of Lau and Ngai [11, 22] (weaker than the

OSC), IFSs that satisfy the weak separation condition include those related to

Bernoulli convolutions associated with PV numbers and also include contractive

IFSs consisting of inverses of integer matrices. The latter example applies to

properties of wavelets and to properties of self-replicating tilings.

Associated with the dynamical system T with point of discontinuity q, there

are two special itineraries, called critical itineraries α := α0, α1, α2 . . . and β :=

β0, β1, β2, . . . , where αn, βn ∈ {0, 1} for all n ≥ 0 (see Definition 12). Our main

theorem (Theorem 1.1 given below) states that the topological entropy of T is

− ln r(q) where r(q) is the smallest solution x ∈ (0, 1) to the equation

∞∑
n=0

αnx
n =

∞∑
n=0

βnx
n. (3)

The proof of this theorem relies on finding a “uniform” dynamical system that

is topologically conjugate to the dynamical system ([0, 1], T ). By uniform we mean

a function U := Ur,p of the form shown on the right in Figure 1, where the two

branches are lines of equal slope r. For such a dynamical system it is well known

that the entropy is ln r. That there exists such a topologically conjugate uniform
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dynamical system follows from [6, Theorem 1] and can also be deduced from [14].

What was not known prior to this work, is the explicit relationship between T , on

the left in Figure 1, and the parameters p and r that uniquely determine U , on the

right in Figure 1. In this paper we construct such a topologically conjugate U by

determining the parameters p and r in terms of just the two critical itineraries α

and β of T . Specifically, our main theorem is the following.

Theorem 1.1. Let ([0, 1], T ) be any special special overlapping dynamical system

with point of discontinuity q, critical itineraries α and β, and r(q) as defined in

equation (3).

1. The dynamical system ([0, 1], T ) is topologically conjugate to the uniform

dynamical system ([0, 1), Ur,p), where r = r(q) and p = (1− r)
∑∞
n=0 αnr

n.

2. The entropy of dynamical system ([0, 1], T ) is − ln r(q).

Our approach is constructive in character. We make use of an analogue of the

kneading determinant of [12], appropriate for discontinuous interval maps, and

thereby avoid a measure-theoretic existential proof such as those in [7, 14].

Our proof of Theorem 1.1 depends on a correspondence between the dynamics

of a single function, on the one hand, and iterated function systems on the other.

See [19] and the references therein for similar connections between the dynamics

related to β-expansions and Bernouilli convolutions and properties of self-similar

sets obtained from an IFS. The correspondence in this paper is such that two

dynamical systems are topologically conjugate if and only if the attractors of the two

corresponding iterated function systems are related by a fractal homeomorphism.

Indeed, one motivation for undertaking this research was our desire to establish,

and to be able to compute, fractal homeomorphisms between attractors of iterated

function systems - for applications such as those in [2].

An iterated function system (IFS) is a standard method for constructing a

self-referential fractal, the attractor of the IFS usually being a fractal. Given

two iterated function systems with the same number of functions, a method for

transforming the attractor of one to the attractor of the other has been laid out in

[3]. Figure 2 shows such a fractal transformation. Even if the attractors themselves

are mundane, the fractal transformations between them may be interesting. In

Figure 3, for example, the attractors are simply the unit square �. To visualize

the fractal transformation we can observe its effect on a “picture”. By picture

we mean a function c : � → C, where C denotes the color palate, for example
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Entropy of an Overlapping Dynamical System 5

Figure 2. The attractor of an IFS (left) and its image under a fractal homeomorphism (right).

C = {0, 1, 2, . . . , 255}3. A fractal transformation h : �→ � induces a map from a

picture on one attractor to a picture on the other attractor given by

h(c) := c ◦ h.

The question of when a fractal transformation is a homeomorphism is difficult, an

answer previously known only for a few special situations. For example, the fractal

transformation depicted in Figure 3 is a homeomorphism because it is a case of

the particular type of IFS studied in [4]. In this paper a complete solution to

when a fractal transformation is a homeomorphism is provided by Theorem 5.2

for the case of a special overlapping IFS on the unit interval, i.e. for an IFS

([0, 1]; f0, f1) consisting of two contractions f0, f1 defined on the unit interval [0, 1]

such that [0, 1] = f0([0, 1]) ∪ f1([0, 1]) and f0([0, 1]) ∩ f1([0, 1]) 6= ∅. One necessary

and sufficient condition proved as part of Theorem 5.2 is as follows: a fractal

transformation is a homeomorphism if and only if the critical itineraries α and β

associated with one IFS equal the critical itineraries associated with the other. That

the 2-dimensional fractal transformation depicted in Figure 2 is a homeomorpohism

follows from our 1-dimensional result because the 2-dimensional IFS is the cross

product of two 1-dimensional IFSs of the type considered in this paper.

The organization of the paper is as follows. Basic definitions and facts about

iterated function systems and their attractors are reviewed in Section 2. The

dynamical system associated with an IFS is also defined in that section. Fractal

transformations and how they are constructed using masks (Theorems 2.1 and

3.1) are the subjects of Section 3. The particular type of IFS that is central to

this paper, a special overlapping IFS, is defined in Section 4. A uniform IFS, a
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6 M. Barnsley, B. Harding, A. Vince

Figure 3. A fractal homeomorphism applied to the original picture.

particular case of a special overlapping IFS, is also discussed in that section. Each

point of the attractor of an IFS can be assigned an address. The address space

of the attractor of a special overlapping IFS is the topic of Section 5. The two

critical itineraries are defined in this section, and two important results are stated.

Theorem 5.1 characterizes the address space of a special overlapping IFS in terms

of the critical itineraries. Theorem 5.2 states that the following four conditions are

equivalent: (1) the address spaces of two special overlapping IFSs are equal; (2) the

corresponding critical itineraries are equal; (3) the two IFS are related by a fractal

homeomorphism; and (4) the two associated dynamical systems are topologically

conjugate. Theorems 5.1 and 5.2 lead to the main result on topological entropy,

Theorem 6.1, stated and proved, with the aid of several lemmas, in Section 6.

2. An IFS and its Associated Dynamical System

Basic results on iterated function systems and their associated dynamical systems

are contained in this section. We begin in the setting of a complete metric space

and specialize to the unit interval on the real line in Section 4.

Let X be a complete metric space. If fm : X → X, m = 1, 2, . . . ,M, are

continuous maps, then F = (X; f1, f2, ..., fM ) is called an iterated function system

(IFS). To define the attractor of an IFS, first define

F(B) =
⋃
f∈F

f(B)

for any B ⊂ X. By slight abuse of terminology we use the same symbol F for the

IFS, the set of functions in the IFS, and for the above map. For B ⊂ X, let Fk(B)
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denote the k-fold composition of F , the union of fi1 ◦fi2 ◦ · · · ◦fik(B) over all finite

words i1i2 · · · ik of length k. Define F0(B) = B. A nonempty compact set A ⊂ X is

said to be an attractor of the IFS F if

1. F(A) = A and

2. limk→∞ Fk(B) = A, for all compact sets B ⊂ X, where the limit is with

respect to the Hausdorff metric.

A function f : X→ X is called a contraction with respect to a metric d if there is

an 0 ≤ s < 1 such that d(f(x), f(y)) ≤ s d(x, y) for all x, y ∈ Rn. An IFS with the

property that each function is a contraction will be called a contractive IFS. In his

seminal paper Hutchinson [8] proved that a contractive IFS on a complete metric

space has a unique attractor.

For a contractive IFS, it is possible to assign to each point of the attractor an

“address” as follows. Let Ω = {1, 2, . . . , N}∞ denote the set of infinite strings using

symbols 1, 2, . . . , N . For a string ω ∈ Ω, denote the nth element, n ≥ 0, in the string

by ωn, and denote by ω|n the string consisting of the first n+ 1 symbols in ω, i.e.,

ω|n = ω0ω1 · · ·ωn. Moreover, we use the notation

fω|n := fω0
◦ fω1

◦ · · · ◦ fωn
.

The set Ω can be given the product topology induced from the discrete topology

on {1, 2, . . . , N}. The product topology is the same as the topology induced by

the metric d(ω, σ) = 2−k where k is the least index such that ωk 6= σk. The space

(Ω, d) is a compact metric space.

Definition 1. Let F = (X; f1, f2, ..., fN ) be a contractive IFSs on a complete

metric space X with attractor A. The map π : Ω→ A defined by

π(σ) := lim
k→∞

fσ|k(x)

is called the coding map of F .

For a contractive IFS it is well known [8] that the limit exists and is independent

of x ∈ X. Moreover π is continuous, onto, and satisfies the following commuting

diagram for each n = 1, 2, . . . , N .

Ω
sn→ Ω

π ↓ ↓ π
X →

fn
X

The symbol sn : Ω→ Ω denotes the inverse shift map defined by sn(σ) = nσ.
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8 M. Barnsley, B. Harding, A. Vince

Definition 2. A section of the coding map π is a function τ : Ω→ A such that

π ◦ τ is the identity. For x ∈ A, the string τ(x) is referred to as the address of x.

Call the set Ωτ := τ(A) the address space of the section τ .

Definition 3. Let S denote the shift operator on Ω, i.e, S(nσ) = σ for any

n ∈ {1, 2, . . . , N} and any σ ∈ Ω. A subset W ⊆ Ω will be called shift invariant

if S(W ) ⊆W . If Ωτ is shift invariant, then τ is called a shift invariant section.

The following example demonstrates the naturalness of shift invariance.

Example 1. Consider the IFS F = (R ; f0, f1) where f0(x) = 1
2 x and

f1(x) = 1
2 x+ 1

2 . The attractor is the interval [0, 1]. The coding map is

π(ω0ω1ω2 · · · ) =
1

2

∞∑
k=0

ωk

(
1

2

)k
=

∞∑
k=0

ωk

(
1

2

)k+1

.

A section τ , evaluated at a point x, is therefore a binary representation of x. If

the section is shift invariant, then τ(x) is, for all x, either a binary representation

that does not end with 111 · · · or, for all x, a binary representation that does not

end with 000 · · · . For example, if τ( 1
4 ) = .00111 · · · , then τ( 1

2 ) = .0111 · · · , not

τ( 1
2 ) = .100 · · · .
Call an IFS injective if each function in the IFS is injective. Theorem 2.1 below,

which is proved in [4], states that every shift invariant section of an injective IFS

can be obtained from a mask.

Definition 4. For an IFS F with attractor A, a mask is a partition M = {Mi, 1 ≤
i ≤ N} of A such that Mi ⊆ fi(A) for all fi ∈ F .

Definition 5. Given an injective IFS F with a mask M = {Mi, 1 ≤ i ≤ N},
the section τM associated with mask M is the function τM : A → Ω defined

as follows. Let Ωk denote the set of all finite strings of length k in the symbols

{1, 2, . . . , N}. For each k ≥ 0 define a partition Mk = {Mσ : σ ∈ Ωk} of A

recursively by taking M1 = M and

Mk+1 = {Mσ j = Mσ ∩ fσ(Mj) : σ ∈ {1, 2, . . . , N}k, 1 ≤ j ≤ N}.

A straightforward induction shows that Mk is indeed a partition of A for every

k ≥ 0, and that each such partition is a refinement of the previous partition, in

particular Mσ j ⊆Mσ for all finite σ and all j ∈ {1, 2, . . . , N}. (Note that, for some

values of σ, the sets Mσ may be empty.) Moreover, since the functions in the IFS

are contractions, the maximum diameter of the sets in Mk approachs 0 as k →∞.

Since each x ∈ X lies in a unique nested sequence

Mi0 ⊇Mi0 i1 ⊇Mi0 i1 i2 ⊇ · · · ,
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Entropy of an Overlapping Dynamical System 9

we can define τM (x) = i0 i1 i2 · · · . Note that this definition of τM is equivalent to

saying that

x ∈ fi0 ◦ fi1 ◦ fi2 ◦ · · · ◦ fik−1
(Mik)

for all k ≥ 0. That τM is indeed a section is part of Theorem 2.1 below, whose

proof appears in [4].

Lemma 2.1. With notation as above, for any injective IFS and for any finite string

σ and symbol j, we have Mjσ = Mj ∩ fj(Mσ).

Proof. The result will be proved by induction on the length of σ. Concerning length

1, it is easy to check, from the definition of the partition, that Mji = Mj ∩ fj(Mi).

Now

Mjσi = Mjσ ∩ fjσ(Mi) = Mj ∩ fj(Mσ) ∩ fjσ(Mi)

= Mj ∩ fj(Mσ) ∩ fj(fσ(Mi)) = Mj ∩ fj(Mσ ∩ fσ(Mi)) = Mj ∩ fj(Mσi),

the second to last equality using that fj is injective. 2

Theorem 2.1. Let F be a contractive and injective IFS.

1. If M is a mask, then τM is a shift invariant section of π.

2. If τ is a shift invariant section of π, then τ = τM for some mask M .

Definition 6. Let F be an injective IFS with attractor A. Given a mask M for

F , define a function T(F,M) : A→ A by

T(F,M)(x) := f−1i (x) when x ∈Mi.

The pair (A, T(F,M)) will be called the dynamical system associated with F
and M . The itinerary of a point x ∈ A is the string i0 i1 i2 · · · ∈ Ω, where ik is

the unique integer, 1 ≤ ik ≤ N , such that

T k(F,M)(x) ∈Mik .

proposition 2.1. If F is an injective masked IFS with associated dynamical sys-

tem

(A, T(F,M)), then, for all x ∈ A, the itinerary of x is its address τM (x).

Proof. By its definition, i0 i1 . . . is the itinerary of x if and only if f−1ik−1
◦ · · ·◦f−1i1 ◦

f−1i0 (x) ∈Mik for all k ≥ 0. But this is equivalent to x ∈ fi0 ◦ fi1 ◦ · · · ◦ fik−1
(Mik)

for all k ≥ 0, which, as noted above, defines the sections. 2
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3. Fractal Transformation

Consider two contractive IFSs F = (X; f1, f2, ..., fN ) and G = (Y; g1, g2, ..., gN ) with

the same number N of functions on complete metric spaces X and Y. Basically a

fractal transformation from F to G is a map h : AF → AG that sends a point in

the attractor AF of F to the point in the attractor AG of G with the same address.

More specifically:

Definition 7. Let AF and AG be the attractors and πF and πG the coding maps

of contractive IFSs F and G, respectively. A map h : AF → AG is called a fractal

transformation if there exist shift invariant sections τF and τG such that the

following diagram commutes:

AF
h→ AG

τF ↘ ↙ τG
Ω

(4)

i.e., the transformation h takes each point x ∈ AF with address σ = τF (x) to the

point y ∈ AG with the same address σ = τG(y). A fractal transformation that is a

homeomorphism is called a fractal homeomorphism.

Theorem 3.1, proved in [4], states that the fractal transformations between AF

and AG are exactly maps of the form πG ◦ τF or πF ◦ τG for some shift invariant

sections τF , τG.

Theorem 3.1. Let F and G be contractive IFSs. With notation as above

1. If h : AF → AG is a fractal transformation with corresponding sections τF

and τG, then h = πG ◦ τF and h−1 = πF ◦ τG .

2. If τF is a shift invariant section for F , then h := πG ◦ τF is a fractal

transformation.

4. Overlapping IFS

The type of IFS that is the subject of this paper is what will be called a special

overlapping IFS on the unit interval of the real line.

Definition 8. A special overlapping IFS is an IFS

F = ([0, 1]; f0(x), f1(x)),

where the functions are continuous, increasing, contractions that satisfy

f0(0) = 0, f1(1) = 1, 0 < f1(0) < f0(1) < 1.
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The attractor of a special overlapping IFS is the unit interval [0, 1]. If it were

the case that f1(0) = f0(1), then the two sets f0([0, 1] and f1([0, 1]) would be “just

touching”; since f1(0) < f0(1), they are “overlapping”.

Next we fix some notation used in the remainder of the paper. The coding map

for F will be denoted by π := πF . We consider masks for a special overlapping IFS

F of the form

M+
q = { [0, q), [q, 1] } or M−q = { [0, q], (q, 1] }, where f1(0) < q < f0(1).

Definition 9. The point q will be called the mask point.

For a masked special overlapping IFS let τ+q and τ−q denote the sections

corresponding to M+
q and M−q , respectively. The two respective address spaces

are denoted by

Ω−q = τ−q ([0, 1]), and Ω+
q = τ+q ([0, 1]).

For a masked special overlapping IFS, the associated dynamical systems, as defined

in the previous section, are ([0, 1], T+
q ) and ([0, 1], T−q ), where

T+
q (x) =

{
f−10 if x < q

f−11 if x ≥ q
and T−q (x) =

{
f−10 if x ≤ q
f−11 if x > q.

Since f0 and f1 are contractions, the inverses g0 = f−10 and g1 = f−11 satisfy the

expanding condition (3) in the introduction. Also since f1(0) < q < f0(1), we

have 0 < g1(q) < g0(q) < 1 . Therefore the dynamical system associated with a

special overlapping IFS is a special overlapping dynamical system as defined and

discussed in the introduction. We will refer to such a dynamical system as an

special overlapping dynamical system. So there is a bijection between special

overlapping dynamical systems and masked special overlapping iterated function

systems.

For our purposes, the following can serve as a definition of the entropy of a

dynamical system. Note that |Ω+
q,n| = |Ω−q,n|, so this definition is consistent with

the one in [14].

Definition 10. The topological entropy h(T±q ) of a special overlapping

dynamical system ([0, 1], T±q ) is

h(Tq) = lim
n→∞

1

n
log |Ω+

q,n| = lim
n→∞

1

n
log |Ω−q,n|,

where Ω±q,n := {ω|n : ω ∈ Ω±q }.
The following particular case of a special overlapping IFS plays an important

rolel.
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Definition 11. The IFS Ua = ([0, 1];L0(x), L1(x)), where

L0(x) = ax.

L1(x) = ax+ 1− a,
(5)

will be called a uniform IFS. The graphs of the two functions L0 and L1 are

parallel lines. When 1
2 < a < 1 the IFS Ua is special overlapping. For the IFS Ua

the coding map will be denoted by πa. For a uniform IFS with mask point p, the

sections will be denoted by µ+
(a,p) and µ−(a,p), and the associated dynamical systems

by ([0, 1], U+
(a,p)) and ([0, 1], U−(a,p)), where a < p < 1− a.

The following result concerning the uniform case follows readily from Parry [14].

Theorem 4.1. The topological entropy of the uniform dynamical systems

([0, 1], U±(a,q)) is equal to − ln(a).

Lemma 4.1. Let a ∈ (0, 1) and ω ∈ {0, 1}∞. For the IFS Ua we have

πa(ω) = (1− a)

∞∑
k=0

ωk a
k.

In particular, πa(ω) is a continuous function of a in the interval [0, 1).

Proof. For the IFS Ua we have Li(x) = ax+ i(1− a) for i = 0, 1. Iterating

Lω0
◦ Lω1

◦ Lω2
◦ · · · ◦ Lωk

(x) = akx+ (ak−1ωk−1 + · · ·+ aω1 + ω0)(1− a).

Therefore

πa(ω) = lim
k→∞

Lω|k(x) = (1− a)

∞∑
k=0

ωk a
k

for any x ∈ [0, 1]. Clearly the series converges for 0 ≤ a < 1, and it is continuous

inside the radius of convergence. 2

5. The Address Space

The lexicographic order � on {0, 1}∞ is the total order defined by σ ≺ ω if σ 6= ω

and σk < ωk where k is the least index such that σk 6= ωk. For σ, ω ∈ {0, 1}∞ with

σ � ω, define the interval

[σ, ω] := {ζ ∈ {0, 1}∞ : σ � ζ � ω},

and similarly for (σ, ω), (σ, ω], and [σ, ω). We use the notation 0 = 000 · · · and

1 = 111 · · · . Greek letters, other than coding map π and section τ , will denote

strings; lower case Roman letters will denote real numbers. Two itineraries play a

special role.
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Definition 12. For a special overlapping masked IFS F , the itineraries

αq := τ−q (q) and βq := τ+q (q)

will be called the critical itineraries.

Theorem 5.1. For a special overlapping masked IFS F with mask point q, let

Ωq = Ω+
q ∪ Ω−q .

1. if x, y ∈ [0, 1] and x > y, then (τ−q )(x) � (τ+q )(y);

2. the sections τ+q : [0, 1] → Ω+ and τ−q : [0, 1] → Ω− are strictly increasing

functions;

3. Ω−q = {ω ∈ {0, 1}∞ : Sn(ω) ∈ [0, αq] ∪ (βq, 1] for all n ≥ 0};
4. Ω+

q = {ω ∈ {0, 1}∞ : Sn(ω) ∈ [0, αq) ∪ [βq, 1] for all n ≥ 0};
5. Ωq = {ω ∈ {0, 1}∞ : Sn(ω) ∈ [0, αq] ∪ [βq, 1] for all n ≥ 0}.
6. Ωq is the closure of Ω+

q and the closure of Ω−q in the metric space {0, 1}∞.

Proof. Since the mask is fixed, we suppress the index q throughout the proof.

Also, when the superscript + or − is omitted, we mean either one.

Concerning statement 1, if x > y, then (T−)(x) > (T+)(y) as long as x, y ≤ q

or x, y ≥ q. Hence x > y implies that τ−(x) � τ+(y). If τ−(x) = τ+(y), then

x = π(τ−(x)) = π(τ+(y)) = y, a contradiction.

Statement 2 follows directly from statement 1 since τ+(x) ≥ τ−(x) for all

x ∈ [0, 1].

We next prove statement 3; the proof of statement 4 is omitted since it is done in

essentially the same way. To show that Ω−q is contained in {ω ∈ {0, 1}∞ : Sn(ω) ∈
[0, α] ∪ (β, 1] for all n ≥ 0}, assume that ω ∈ Ω−, and hence that ω = τ−(x)

for some x. If ω begins with a 0, then x ≤ q, which by the monotonicity of τ−

implies that ω = τ−(x) � τ−(q) = α. If ω begins with 1, then x > q, which

implies, using statement 1, that ω = τ−(x) � τ+(q) = β. By shift invariance

of Ω−, the shift Sω ∈ Ω− and the same argument shows that Sω lies in the set

{ω ∈ {0, 1}∞ : Sn(ω) ∈ [0, α] ∪ (β, 1] for all n ≥ 0}.
To prove containment in the other direction in statement 3, assume that

ω = ω0ω1ω2 · · · ∈ {ω ∈ {0, 1}∞ : Sn(ω) ∈ [0, α] ∪ (β, 1] for all n ≥ 0}. By

definition ω ∈ Ω− if ω lies in the image of [0, 1] under the section map. By the

definition of the section map, it is then sufficient to show that Mω|k 6= ∅ for all k.

We will show more, namely that M(Snω)|k) 6= ∅ for all k and all n. This will be done

by induction on k. The statement is obviously true for k = 0. Assuming it true for

k, we will prove it for k + 1. Fix n and let jσ = (Snω)|k+1. There are two cases,
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14 M. Barnsley, B. Harding, A. Vince

j = 0 and j = 1. We will let j = 0; the proof for j = 1 is essentially the same.

By Lemma 2.1 it is sufficient to show that M0 ∩ f0(Mσ) = Mjσ 6= ∅. Equivalently

it must be shown that there is an x ∈ Mσ such that f0(x) ≤ q. By the induction

hypothesis Mσ 6= ∅. Since 0σ � α|k and α0 = 0, also σ � α̂ := α1α2 · · ·αk. Since

α ∈ Ω−, we know that Snα ∈ Ω−, and hence Mα̂ 6= ∅, which implies that there

is a y ∈ M0α̂ such that f0(y) ≤ q. But it follows easily from the definition of the

partition Mk that if σ � α̂, then the interval Mσ precedes (or is equal to) the

interval Mα̂. Therefore there is an x ∈ Mσ such that x ≤ y. Since f0(y) ≤ q and

f0 is an increasing function, we arrive at the required f0(x) ≤ q.

To prove statement 5, let Γ = {ω ∈ {0, 1}∞ : Sn(ω) ∈ [0, αq] ∪ [βq, 1] for

all n ≥ 0}. Clearly Ω+ ⊆ Γ and Ω− ⊆ Γ. Conversely Γ ⊆ Ω+ ∪ Ω− unless

there is a σ ∈ Γ and integers m and n such that Snα and Sm = β. Depending

on whether n > m or m > n, this implies that there is an integer k such that

Sk(α) = β or Sk(β) = α. To show, by contradiction, that neither of these equalities

are possible, assume that Sk(α) = β. Since α ∈ Ω− and Ω− is shift invariant, also

β = Sk(α) ∈ Ω−. But this contradicts the characterization of Ω− given in statement

4. The equality Sk(β) = α is likewise contradicted.

Statement 6 follows from statements 3, 4, and 5. 2

Lemma 5.1. For a masked special overlapping IFS, the section τ+q : [0, 1] → Ω+
q

is continuous at all points except those in the set X+ := {x : Sn(τ+q (x)) =

βq for some n}, and is continuous from the right everywhere. Moreover, if x ∈ X+

and n is the least integer such that Sn(τ+q (x)) = βq, then

lim
y→x−

τ+q (y) = τ+q (x)|n α.

Likewise, the section τ−q : [0, 1] → Ω−q is continuous at all points except those

in the set X− := {x : Sn(τ−q (x)) = αq for some n}, and is continuous from

the left everywhere. Moreover, if x ∈ X− and n is the least integer such that

Sn(τ+q (x)) = αq, then

lim
y→x+

τ−q (y) = τ−q (x)|n β.

Proof. To simplify notation, the subscript q is omitted. Consider the section τ+;

the statement for τ− is proved similarly. The continuity at points not in X+ follows

directly from the continuity of f0 and f1 and the fact that τ+ can be viewed as an

itinerary as described in Proposition 2.1, likewise for the continuity from the right

for points in X+. From the definition of the dynamical system associated with the
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IFS, it is easy to verify that the following diagram commutes.

[0, 1]
T±

→ [0, 1]

τ± ↓ ↓ τ±
ΩF →

S
ΩF

(6)

By the commuting diagram above τ+((T+)n(x)) = Sn(τ+(x)) = β, which implies

that (T+)n(x) = q. Since n is the first such integer and if y is sufficiently close to

x, then τ+(y)|n = τ+(x)|n. If y < x, then (T+)n(y) < (T+)n(x) = q. Now

lim
y→x−

τ+(y) = τ+(x)|n lim
y→x−

τ+((T+)ny) = τ+(x)|n lim
y→((T+)nx)−

τ+(y)

= τ+(x)|n lim
y→q−

τ+(y) = τ+(x)|n lim
y→q−

τ−(y) = τ+(x)|n α,

the second to last equality because, for any m the first m entries in the itineraries

of τ−(y) and τ+(y) are equal if y is sufficiently close to (and to the left of) x. 2

Two dynamical systems (X, T ) and (Y, S) are topologically conjugate if there

exists a homeomorphism φ : X → Y such that T = φ−1 ◦ S ◦ φ. Note that

conditions 1 and 3 of Theorem 5.2 below alone provide a necessary and sufficient

condition for the fractal transformation from one overlapping IFS to another to

be a homeomorphism. The condition is simply that the critical itineraries of the

associated dynamical systems be equal.

Theorem 5.2. Given two special overlapping masked IFSs F and G with respective

mask points q and p, sections τ±F and τ±G , dynamical systems T±F and T±G , and

address spaces Ω±F and Ω±G, the following statements are equivalent.

1. The fractal transformations πG ◦ τ±F and πF ◦ τ±G are homeomorphisms.

2. The address spaces are equal: Ω+
F = Ω+

G and Ω−F = Ω−G.

3. τ+F (q) = τ+G (p) and τ−F (q) = τ−G (p).

4. The dynamical systems T+
F and T+

G are topologically conjugate, as are T−F and

T−G .

Proof. To simplify notation we omit the superscript ±. We will show that

1⇒ 4⇒ 3⇔ 2⇒ 1.

(1 ⇒ 4) Assume that h := πG ◦ τF is a homeomorphism. Since h is bijective,

ΩF = ΩG. From the commuting diagram 6 above and the fact that πG = τ−1G on

ΩG = ΩF , we have another commutative diagram for G.

ΩF
S→ ΩF

πG ↓ ↓ πG
[0, 1] →

Tg

[0, 1]
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16 M. Barnsley, B. Harding, A. Vince

Combining the two commutative diagrams we arrive at TG ◦ h = h ◦ TF or

TG = hFGTFh
−1.

(4 ⇒ 3) Let topologically conjugate dynamical systems TF and TG be related

by TG ◦h = h◦TF , where h is a homeomorphism. If q is the mask point of F and p

is the mask point of G, we claim that p = h(q). Otherwise, h ◦ TF is discontinuous

in some neighborhood of q while TG ◦ h is continuous in some neighborhood of q,

a contradiction. Now TnF (q) ≥ q if and only if TnG(p) = TnG(h(q)) = h(TnF (q)) ≥
h(q) = p. This implies statement (3).

(3⇔ 2) That (3⇒ 2) follows directly from statements 3 and 4 of Theorem 5.1.

The same statements imply that the largest element of Ω− that starts with 0 is α,

and the smallest element of Ω+ that starts with 1 is β. Therefore (2⇒ 3).

(2 ⇒ 1) To simplify notation we omit the subscript q. Assuming (2), we will

show that πG ◦ τ+F is a homeomorphism. Essentially the same proof shows that

πG ◦ τ−F is a homeomorphism. Since (2 ⇒ 3) we know that the critical itineraries

α and β of F are equal to the respective critical itineraries of G, and moreover, for

mask point p,

πG(α) = (πG ◦ τ−G )(p) = p = (πG ◦ τ+G )(p) = πG(β).

Since it follows immediately from Definition 3 that πG ◦ τ+F is a bijection, it suffices

to show that it is continuous. (That the inverse in continuous is then a consequence

of Theorem 3.1.) Because πG is continuous, Lemma 5.1 implies πG◦τ+F is continuous

at all points except perhaps those in the set X := {x : Sn(τ+(x)) = β for some n}.
Let x ∈ X. Again by Lemma 5.1, it suffices to prove that πG ◦ τ+F is continuous

from the left. But

lim
y→x−

πG(τ+F (y)) = πG( lim
y→x−

τ+F (y)) = πG(τ+F (x)|nα) = fτ+
F (x)|n(πGα)

= fτ+
F (x)|n(πGβ) = πG(τ+F (x)|nβ) = πG(τ+F (x)).

2

6. Entropy of a Special Overlapping Dynamical System

Throughout this section, F is a special overlapping IFS with mask point q, critical

itineraries α and β, and Ua is a uniform IFS with coding map πa. In Lemmas 6.1

and 6.2 we assume that there exists an a ∈ (0, 1) such that πa(α) = πa(β). In this

case let

r(q) := min {a ∈ (0, 1) : πa(α) = πa(β) } . (7)
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According to Lemma 4.1

r(q) = min

{
x ∈ (0, 1) :

∞∑
n=0

αnx
n =

∞∑
n=0

βnx
n

}
. (8)

Note that the function
∑∞
n=0(βn − αn)zn is analytic inside the unit disk in the

complex plane, and hence can have at most finitely many zeros within any closed

disk of radius less than 1. In particular,

πr(α) = πr(β).

Lemma 6.1. (1) Assume that there exists an a ∈ (0, 1) such that πa(α) = πa(β)

and let r = r(q). The map πa : Ωq → [0, 1] is increasing for 0 < a ≤ r and strictly

increasing for 0 < a < r.

(2) If there is no a ∈ (0, 1) such that πa(α) = πa(β), then the map πa : Ωq →
[0, 1] is strictly increasing for all a ∈ (0, 1).

Proof. Since it is fixed throughout the proof, the subscript q is omitted. Note that,

for any IFS Ua with a < 1
2 , it is easy to check, either because the attactor is totally

disconnected or directly from the power series, that if σ ≺ ω, then πa(σ) < πa(ω).

Concerning statement 1, let

s = inf{a ∈ (0, 1) : πa(σ) = πa(ω) for some σ, ω ∈ Ω, σ0 6= ω0}. (9)

Note that s ≤ r because α0 = 0, β0 = 1 and α, β ∈ Ω. Using the continuity of

πa(σ) in a (see Lemma 4.1) and σ (see the comments following Definition 2), and

the compactness of Ω, it follows that there exist σ, ω ∈ Ω such that πs(σ) = πs(ω).

We claim that r = s. Assume, by way of contradiction, that s < r. If we assume,

without loss of generality that σ0 = 0 and ω0 = 1, then

π 1
3
(σ) ≤ π 1

3
(α) < π 1

3
(β) � π 1

3
(ω) (10)

because by Theorem 5.1 we have σ � α and β � ω and, as mentioned above, π 1
3

is order preserving. Consider πa(σ), πa(α), πa(β), πa(ω) as functions of a ∈ [1/3, r].

(It is helpful to visualize the graphs of these these four functions.) Since s < r, we

have

πa(α) < πa(β) for
1

3
≤ a ≤ s

πa(σ) < πa(ω) for
1

3
≤ a < s

πs(σ) = πs(ω)

(11)

By the continuity of πa with respect to a and the intermediate value theorem, the

formulas 10 and 11 imply that either there is a t ∈ ( 1
3 , s) such that πt(σ) = πt(α)
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18 M. Barnsley, B. Harding, A. Vince

with σ 6= α or there is a t ∈ ( 1
3 , s) such that πt(ω) = πt(β) with ω 6= β. Since the

proof is essentially the same in either case, assume that πt(σ) = πt(α) with σ 6= α.

Since t < s, this would contradict the minimality of s (in eqaution (9)) if σ0 = 0

and α0 = 1. This is not the case, however, because α0 = 0. In order to get the

contradiction, we define two related strings σ′ and α′ such that πt(σ
′) = πt(α

′) and

σ′0 = 0 and α′0 = 1. To do this, let k be the least integer such that (Skσ)0 6= (Skα)0

and let σ′ = Skσ and α′ = Skα, which forces σ0 6= ω′0. We are now done because

Lσ|k(πt(σ
′)) = πt(σ) = πt(ω) = Lω|k(πt(ω

′)) = Lσ|k(πt(ω
′)) implies, because

Lσ|k is invertible, that πt(σ
′) = πt(ω

′). The shift invariance of Ω guarantees that

σ′, ω′ ∈ Ω. Therefore s = r.

To conclude the proof of statement 1 of the lemma, assume that a ≺ r, σ, ω ∈ Ω,

and σ ≺ ω. If σ0 = 0 and ω0 = 1, then πa(σ) 6= πa(ω) by what was proved in

the paragraph above. Since π 1
3
(σ) < π 1

3
(ω), it would follow that πa(σ) < πa(ω);

otherwise the crossing graphs would contradict s = r. Even if σ0 = ω0, we claim

that πa(σ) 6= πa(ω). Assume otherwise, that πa(σ) = πa(ω), then by letting σ′ and

ω′ be shifts of σ and ω, respectively, exactly as was done in the paragraph above,

we get πa(σ′) = πa(ω′) with σ′0 6= ω′0, which contradicts s = r.

In the case a = r and σ ≺ ω, clearly πa(σ) > πa(ω) could contradict the

continuity of πa at a = r; therefore πa(σ) ≤ πa(ω) .

Lastly consider statement 2, i.e. the case πa(α) 6= πa(β) for all a ∈ (0, 1).

Essentially the same proof as above shows that s = 1 and consequently that if

σ ≺ ω then πa(σ) < πa(ω) for all a < s = 1. 2

Lemma 6.2. Assume that there exists an a ∈ (0, 1) such that πa(α) = πa(β) and let

r = r(q). For any integer n > 0, if Sn(β) ≺ α, then πr(S
n(β)) < πr(α). Similarly

if Sn(α) � β, then πr(S
n(α)) > πr(β).

Proof. The following are readily verifiable facts about the partitions of [0, 1] that

are part of Definition 2 of the sections associated with the masks M+
q and M−q .

Denote the kth partitions by (Mk)+ and (Mk)−.

1. The sets in partitions (Mk)+ (except the last) and (Mk)− (except the first)

are half open intervals of the form [·, ·) and (·, ·], respectively.

2. The endpoints of the intervals in (Mk)+ have the same endpoints as the

intervals in (MK)−. Denote the set of open intervals by Mk.

3. Given any interval I in Mk, the first k elements in the address (either + or

− address) of any two points in I are equal.

4. If (x, y) is an interval in Mk whose elements have address beginning with
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θθ1θ2, where θ has length k− 2 and θ1, θ2 ∈ {0, 1}, then the address τ+(x) of

x is {
θ0β if θ1θ2 = 01

θβ if θ1θ2 = 10,

and the address τ−(y) of y is{
θα if θ1θ2 = 01

θ1α if θ1θ2 = 10.

We will prove that Sn(β) ≺ α implies πr(S
n(β)) < πr(α). That Sn(α) � β

implies πr(S
n(α)) < πr(β) has essentially the same proof. Assume that Sn(β) ≺ α.

There exists a k (sufficiently large) and three open intervals I1 = (x1, y1), I2 =

(x2, y2), I3 = (x3, y3) ∈Mk with the following properties:

5. y1 ≤ x2 < y2 ≤ x3,

6. τ(z)|k = α|k for all z ∈ I3,

7. y3 = q,

8. τ(z)|k = Sn(β)|k for all z ∈ I1,

9. either the last two elements τ(z)|k are 01 for all z ∈ I2, or the last two

elements τ(z)|k are 10 for all z ∈ I2, and

10. Sn(β) = τ+(z0) for some z0 ∈ [x1, y1).

The existence of the intermediate interval I2 follows from the facts that the right

endpoint y3 of I3 is fixed at q (statement 7) and that the lengths of the intervals

of Mk tends to 0 as k →∞. If statement 9 were false, then there would exist a k,

an interval I ∈ Mk, and a finite string θ such that τ(z) = θ0 or τ(z) = θ1 for all

z ∈ I, which is impossible (again because the lengths of the intervals of Mk tends

to 0 as k →∞).

By statement 2 of Theorem 5.1 and by propertiy 4 above, if the last two elements

of the finite I2-address is 01, then

Sn(β) = τ+(z0) � τ+(x2) = θ0β and θα = τ−(y2) � τ−(y3) = α. (12)

If the last two elements of the finite I2-address is 10, then

Sn(β) = τ+(z0) � τ+(x2) = θβ and θ1α = τ−(y) � τ−(y3) = α. (13)

Consider the first case above; the proof for the second case is essentially the

same. From the inequalities above and by Lemma 6.1 (since θ0β and θα lie in
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Ω), we have πr(S
n(β)) ≤ πr(θ0β) and πr(θα) ≤ πr(α). The proof is complete if

πr(θ0β) < πr(θα). But using Lemma 4.1

πr(θα)− πr(θ0β) = rk(πr(α)− πr(0β)) = rk(1− r)(πr(α)− rπr(β))

= rk(1− r)(πr(α)− rπr(α)) = rk(1− r)πr(α) > 0,
.

2

Lemma 6.3. There exists an a ∈ (0, 1) such that πa(α) = πa(β).

Proof. Assume, by way of contradiction, that πa(α) < πa(β) for all a ∈ (0, 1). Let

a be arbitrary in the interval (0, 1). By statement 2 of Lemma 6.1, the map πa is

strictly increasing on Ωq. Let p = πa(β). For ω ∈ Ω+
q we claim that

U+
(a,p)(πaω) = πa(Sω),

where U+
(a,p) is the uniform dynamical system. This would imply that the address

space Ω+
q is an invariant subset of the dynamical system U+

(a,p). This, in turn, would

imply that the entropy of the special overlapping dynamical system T+
q is less than

or equal to the entropy of the uniform dynamical system U+
(a,p), which, according

to Theorem 4.1, equals − ln a. Since this is true for all a ∈ (0, 1), the entropy of T+
q

must be 0, which is not possible for a dynamical system where the two continuous

branches are expansive.

To prove the claim, let U = U+
(a,p). First note, from Lemma 6.1, that if

πa(ω) < p = πa(β) then ω ≺ β, and hence ω0 = 0. Likewise if πa(ω) ≥ p = πa(β)

then ω � β, and hence ω0 = 1. Therefore if πa(ω) < p then

U(πa(ω)) = U((1− a)

∞∑
n=0

ωna
n) = (1− a)

( ∞∑
n=0

ωn+1a
n +

ω0

a

)

= (1− a)

∞∑
n=0

ωn+1a
n = πa(Sω),

and if πa(ω) ≥ p, then

U(πa(ω)) = U((1− a)

∞∑
n=0

ωna
n) = (1− a)

( ∞∑
n=0

ωn+1a
n +

ω0

a
− 1

a

)

= (1− a)

∞∑
n=0

ωn+1a
n = πa(Sω).

2

Lemma 6.4. Let r = r(q) and p = πr(α) = πr(β). If the uniform IFS Ur with

coding map πr, has mask point p and sections µ+
(r,p) and µ−(r,p), then µ−r,p(p) = α

and µ+
r,p(p) = β.
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Proof. We will prove that µ+
(r,p)(p) = β; the proof that µ−(r,p)(p) = α is essentially

the same. Let U := U+
(r,p) be the dynamical system associated with the uniform

IFS and let ω := µ+
(r,p)(p). For all n ≥ 0, we will prove the following by induction

on n:

1. ωn = βn and,

2. Un(p) = πr(S
nβ).

Since both β and ω begin with a 1, both statements are true for n = 0. Assuming

the two statements true for n− 1, we will prove that they are true for n.

Starting with statement 2:

Un(p) = U(Un−1(p)) = U(πr(S
n−1β)) = U((1− r)

∞∑
k=0

βn−1+kr
k)

= (1− r)
∞∑
k=0

βn+kr
k = πr(S

nβ).

The second to last equality above comes from the following direct calculation: if

ωn−1 = 0, then by the induction hypothesis βn−1 = 0 and

U((1−r)
∞∑
k=0

βn−1+kr
k) = (1−r)

∞∑
k=0

βn+kr
k+

βn−1
r

= (1−r)
∞∑
k=0

βn+kr
k = πr(S

nβ),

and if ωn−1 = 1, then βn−1 = 1 and

U((1−r)
∞∑
k=0

βn−1+kr
k) = (1−r)

∞∑
k=0

βn+kr
k+

βn−1
r
−1

r
= (1−r)

∞∑
k=0

βn+kr
k = πr(S

nβ).

Concerning statement 1, if βn = 0, then by statement 4 of Theorem 5.1 we

have Snβ ≺ α. Therefore, by Lemma 6.2 and statement 2 which we have just

proved, we have Un(p) = πr(S
nβ) < πr(α) = p. By the definition of the itinerary

of p this implies that ωn = 0, and hence ωn = βn. If, on the other hand,

βn = 1, then by statement 3 of Theorem 5.1 we have Snβ � β, and therefore

Un(p) = πr(S
nβ) ≥ πr(β) = p. Again by definition of the itinerary of p, we have

ωn = 1 and hence ωn = βn. 2

Theorem 6.1. Let ([0, 1], T ) be any special overlapping dynamical system with

mask point q, critical itineraries α and β, and r(q) as defined in equations (7)

or (8).

1. The dynamical system ([0, 1], T ) is topologically conjugate to the uniform

dynamical system ([0, 1), Ur,p), where r = r(q) and p = (1− r)
∑∞
n=0 αnr

n.

2. The entropy of dynamical system ([0, 1], T ) is − ln r, where r the smallest
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solution x ∈ [0, 1] to the equation

∞∑
n=0

αnx
n =

∞∑
n=0

βnx
n.

Proof. Statement 1 follows immediately from Lemma 6.4 and from the equivalence

of statements 3 and 4 of Theorem 5.2. Statement 2 then follows immediately from

Theorem 4.1 and the fact that two topologically conjugate dynamical systems have

the same entropy. 2
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