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ABSTRACT 

A decomposition result for planar graphs is used to prove that the spectral radius 

of a planar graph on n vertices is less than 4 + 3(n - 3) Moreover, the spectral 

radius of an outerplanar graph on n vertices is less than 1 + JZ+&-X 

1. INTRODUCTION 

All graphs are finite, undirected, without loops and multiple edges. Let G 
be a graph with vertices vi, vp, . . . , v,. The complement in G of a subgraph 
H is the subgraph of G obtained by deleting all edges in H. The join 

G, V G, of two graphs G, and G, is obtained by adding an edge from each 
vertex in G, to each vertex in G,. Let K, be the complete graph and P, the 
path with n vertices. Let 6(G) and A(G) be the minimum and the maximum 
degree of vertices in G. The spectral radius r(G) of G is the largest 
eigenvalue of its adjacency matrix A(G). 

Spectra of graphs have been studied in recent years, but the results are 
often weak when applied to planar graphs. In 1978, A. J. Schwenk and R. J. 
Wilson [6] asked, in particular, what can be said about the eigenvalues of a 
planar graph. For ten years after this paper little work was done on this 
problem. Then in 1988 Hong Yuan [7] p roved that the spectral radius of a 
planar graph on n vertices is less than or equal to d5n - 11 . In [3] Cvetkovid 
and Rowlinson conjectured that K, V P,, _ 1, with spectral radius very close to 
1 + 6, is the unique graph with the largest spectral radius among all 
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outerplanar graphs with n vertices. In this paper we improve some decampo- 
sition results for planar graphs to show that r(G) < 4 + dm for any 

planar graph G on n vertices. Moreover, r(G) < 1 + dx + &?? 
for any outerplanar graph on II vertices. 

2. RESULTS 

LEMMA 1 (Courant-Weyl inequality) [4]. Let A a& B be two real 

symmetric matrices of order n. lf C = A + B then r(C) < r(A) + r(B). 

LEMMA 2 (Hong Yuan) [7]. IfG is a graph with n vertices, m edges, and 

no isolated vertices. then 

r(G) < J2m - n + 1 

with equality if and only if G is the disjoint union of either a star or a 

complete graph with copies of K,. 

LEMMA 3 (Bamette) [l]. i’f G is planar and S-connected, then G has a 

spanning tree with maximum degree at most 3. 

The following lemma is easy to prove. 

LEMMA 4. Let T be a tree with at least one vertex of degree 3. Color 

Some vertices of degree 3 red. Then there exists a red vertex v with at least 

two neighbors that are not adjacent to any other red vertices. 

LEMMA 5. A maximal planar graph with at least four vertices has a 

disjoint edge decomposition into a spanning tree with maximum degree at 

most 4 and a spanning subgraph with no isolated vertices. 

Proof. For a spanning tree T of the graph G let !? denote the comple- 
ment of T in G. Color the isolated vertices of T red. Consider the set S of all 
spanning trees T of G with the following properties: 

(1) A(T) G 4. 
(2) All red vertices have degree 3 in G. 
(3) For any vertex v, if deg,(u) = 4 then v is adjacent to no red vertex. 

We first claim that S is not empty. Since G is maximal, G is 3konnected, and 
by Lemma 3, G has a spanning tree T with A(T) < 3. This verifies 
conditions (1) and (3). Since G is 3-connected, a red vertex v must satisfy 
deg,(v) = deg,(v) = 3, verifying condition (2). 
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Let T be a spanning tree in S such that T has the least number of 
isolated vertices. If T has no isolated vertex, we are done. Otherwise, by 
Lemma 4 there exists a red vertex u with at least two neighbors that are not 
adjacent to other red vertices. Construct a new tree T’ as follows by edge 
switching on a single K,. Let x, y, .z be the three vertices adjacent to u 
where x and y are not adjacent to other red vertices. Then the edges 
UX, uy, uz E T and xy, yz, zx E 7. Now let T’ = T - ux + xy. Clearly T’ is 
a spanning tree of G. We claim that conditions (I)-(3) hold for I”. Only 
vertex y has increased its degree in the spanning tree. Since y was adjacent 
to red vertex u, by condition (3) we have deg,,( y) = deg,( y) + 1 < 3 + 1 

= 4. Hence ACT’) < 4, veri$ii condition (1). Since ux, zy E F, vertices U, 
x, y, and z are not isolated in T’. In particular, vertex u is no longer red in 7. 
Hence the the set of isolated vertices of F is a proper subset of the set of 
isolated vertices of T. This verifies that condition (2) holds for I”, and also 
condition (31, because vertex y, the only possible vertex of degree 4 in T’ not 
of degree 4 in T, was adjacent to no red vertex besides u. 

The fact that the complement of T’ in G has one less isolated vertex than 
the complement of T contradicts the minimality of the number of isolated 
vertices. n 

THEOREM 1. lf G is a planar graph with n > 3 vertices, then 

r(G) <4+ J5jF-F). 

Proof. Suppose n > 4; otherwise the result is obvious. Let G’ be a 
maximal planar graph containing G as a spanning subgraph. By Lemma 5, G’ 
can be decomposed into a spanning tree T with maximum degree at most 4 
and a spanning subgraph H with no isolated vertex. Then A(G’) = A(T) + 
A(H) implies, by Lemma 1, that r(G’) < r(T) + r(H). Since the largest 
eigenvalue of a graph is less than or equal to the maximum degree with 
equality if and only if the graph is regular [2], then r(T) < A(T) < 4. Since 

H has (3n - 61 - (n - 1) = 2n - 5 edges and no isolated vertices, by 

Lemma 2, r(H) < J2(2n - 5) - n + 1 = Jw. Therefore r(G) < 

r(G’> < 4 + J3(n-3). n 

- 
It is not difficult to show that r(K, V C,p,> = 1 + d2n-3, and that 

r( P, V P, _ 2) is between 1 + Jzn-3 and 2 + \/2n-3. After examining 
the spectral radius of several other families of graphs and some small graph‘s’ 
we conjecture that P, V Pnp2 and K, V Crr_2 are optimal in the following 
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sense: 

CONJECTURE 1. If G is a planar graph with n vertices, then 

r(G) < ‘(I’, V P,_,) < 2 + J2n-3. 

- 
Moreover, if S(G) = 4 then r(G) < r(K, V C,_,) = I + m. 

REMARK. To prove the conjecture it is tempting to try to find a spanning 
subgraph of G with small maximum degree, such that its complement in G 
has about 3n/2 edges and no isolated vertices. The same argument used in 
Theorem 1 would then im rove the bound of Theorem 1 from order of 
magnitude J3n to order P 2n . However, the graph Pz V P, _2 allows no such 
decomposition. Another approach is required if the conjecture is true. 

3. OUTERPLANAR GRAPHS 

An outerplanar graph G is a graph which can be embedded in the plane 
so that all vertices are on one face, say the outer face. An internal triangle is 
a triangle with no edge on the outer face. Let U, (n 2 4) be the set of all 
such maximal outerplanar graphs which have n vertices and no internal 
triangles. Rowlinson [5] proved that K, V I’,_, is the unique graph in U,, 
with maximal spectral radius. Moreover, he and Cvetkovic [3] conjectured 
that K, V E’,,-, is the unique graph with maximal spectral radius among all 
outerplanar graphs with n vertices. It is not difficult to prove that the largest 
eigenvalue of K, V P, _ , is between 1 + & - 2/(2 + n - 26) and 1 

+ 6. The theorem in this section comes close to confirming the conjecture 
of Rowlinson and Cvetkov& 

Clearly, a maximal outerplanar graph can be decomposed into a spanning 
e-regular subgraph, the outer face, and its complement in G with exactly 
n - 3 edges. Furthermore, we have the following improvement. 

LEMMA 6. A maximal outey?lanar graph G has u spanning subgraph H 

with the fkllowing properties: 

(1) 
(2) 
(3) 
(4) 

2. (5) 

A(H) < 4. 
The complement of H in G hns no isolated vertices. 

H consists of a single cycle together with some pendant edges. 

No two vertices of degree 4 in H are adjacent. 
If H has a vertex with degree 4, then H also has a vertex with degree 
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Proof. If the order n of G is less than 7, then Lemma 6 can be routinely 
checked. Suppose that n > 7. Let C = (viva *a. v,) be the Hamiltonian 
cycle of G on the outer face, and D = (ok,, vk,, . . , vk } the set of all vertices 
of degree 2 in G. It is easy to prove that IDI > 2 and no two vertices of D 
are adjacent in G. Let vi E D. By the maximality of G, vi_ 1 must be 
adjacent to vi + 1, with the convention v, + 1 = vl. Further, either vi+ I or vi-i 
has degree at least 4. Let F be the subgraph of G obtained from C by 
adding the set of edges {vk,_ivk,+i, vk,_rvk,+i,. . , v~,_~v~,+~}. Further, let 
H be the subgraph of G obtained from F by the following procedure. For 
each vk E D let u and y be the two neighbors of vk,. There are three cases: 

Case 1. If one of the neighbors of vk,, say u, has degree 3, then delete 
the edge uvk, from F. 

Case 2. If one of the neighbors of oki, say u, has degree 4 and is 
adjacent to another vertex v in D, then delete the edges uvk and uv from 
F. Since G is maximal, the second neighbor x of o is adjacent to y. Since 
TZ > 7, the degrees of x and y are at least 4; moreover, neither x nor y can 
assume the role of u, and so neither of the edges XV or yvk is deleted from 
F. (In Figure 1 the dark arcs are in F and the dotted arcs are those deleted 
from F.) 

Case 3. Otherwise delete D~,U from F, where u is either neighbor of 

vk,. 

Now the remaining graph H is clearly a spanning subgraph satisfying 
properties (11, (21, and (3). Concerning property (41, assume vertices x and z 
are adjacent in H and both have degree 4 in H. Then x and z also have 
degree 4 in F, which implies that x and z are both adjacent to a vertex y 

FIG. 1. Case (2) of Lemma 6. 
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with degree 2 in F. But by the construction, either xy or zy was deleted 
from F in forming H, making it impossible for both x and y to have degree 
4. This is a contradiction. Concerning property (51, note that the pendant 
vertices of H are the vertices of D. Let Q denote the set of vertices on the 
cycle of H (nonpendant vertices). Since 1 DI < in, therefore IQ] > &. If 
there are no vertices of degree 2 and at least one vertex of degree 4 in Q, 
then the total number of vertices in H is greater than 2(n/2) + 1 = 12 + 1, 
a contradiction. n 

REMARK. Note that if G = K, V F,, ~, , then G does not have a span- 
ning, unicyclic, connected subgraph with maximum degree 3 such that its 
complement in G has no isolated vertices. In this sense Lemma 6 cannot be 
improved. 

LEMMA 7. If H is the graph in Lemma 6, then 

r(H) < 1 + dx < 3. 

Proof. Let L, be the graph in Figure 2. We claim that H can be 
decomposed into an edge disjoint union of subgraphs I and J where each 
component of Z is isomorphic to K, and each component of ] is isomorphic 
to a subgraph of l’s or L,. 

To see this let C = (u,, u2,. . , us) be the cycle in H. If s is even, let Z 
consist of every other edge in C and let J consist of all edges in H not in 1. 
Properties (3) and (4) in Lemma 6 guarantee that the claim is true. 

If s is odd, let I’ consist of every other edge in C beginning at a vertex of 
degree 2, if such a vertex exists. Let J’ consist of all edges in H not in I’. 
Then all components of C \ I’ are isomorphic to K, except one that is 
isomorphic to P,. Let the three consecutive vertices of the P, component 
mentioned above be x, y, z. If y is adjacent to a vertex 0 other than x or z 
in H, then let Z = 1’ + ye and J = J’ - ye. Otherwise let Z = I’ and 
J = J’. If H h as no vertices of degree 4, then each component of J is 

FIN:. 2. The graph L,. 
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isomorphic to a subgraph of 9j. If there is a vertex of degree 4 in H, then by 
property (5) of L emma 6, the graph H has a vertex with degree 2, which 
without loss of generality can be chosen to be vertex x. Then each compo- 
nent of J is isomorphic to a subgraph of L,. This verifies the claim in the odd 
case. 

Since r(Z) = 1 and r(J) = maxIr(Z’,), r(L5N = r(L5) = dz, by 

Lemma 1 we have r(H) < r(Z) + r(J) < 1 + dx < 3. n 

THEOHEM 2. Zf G is an outerplanar graph tlith n vertices, then 

r(G)<l+dz+dx. 

Proof. Let G’ be a maximal outerplanar graph containing G as a 
spanning graph. Let H be the unicyclic subgraph of Lemma 6, and F its 
complement in G’. Since F has no isolated vertices and (2n - 3) - n = n - 

3 edges, Lemma 2 yields r(F) < 42( n - 3) - n + 1 = Jn-5. By Lem- 

mas 1 and 7, r(G) < 1 + 4s + da. 
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