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ABSTRACT 

The concept of strongly balanced graph is introduced. It is shown that 
there exists a strongly balanced graph with u vertices and e edges if and 
only if I s u - 1 s e s (2"). This result is applied to a classic question 
of Erdos and Renyi: What is the probability that a random graph on 
n vertices contains a given graph? A rooted version of this problem is 
also solved. 

1. INTRODUCTION 

The graphs in this paper are finite, undirected, without loops and multiple 
edges. Throughout the paper let u ( G )  = IV(G)l,e(G) = IE(G)I, 

and 

m(G) = maxd(H)  
HCG 

A graph G is balanced if d ( H )  S d ( G )  for all subgraphs H of G ,  i .e. ,  
m ( G )  = d ( G ) .  The notion of balanced graph originated in the work of Erdos 
and RCnyi on random graphs [3]. Let Kn,p be a random graph obtained from n 
isolated vertices by independent addition of each edge with probability 
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p = p ( n ) .  They proved that if G is a balanced graph then 

Later Bollobas generalized (1.1) to arbitrary graphs by replacing d ( G )  with 
m(G):  

Bollobas' method involving the "grading of graph" is somewhat sophisticated 
and we refer to 121. Recently, Gyori, Rothschild, and Rucinski [4) proved the 
conjecture of Karonski and Rucinski [8]: 

For any graph G there exists a balanced graph F 2 G 
such that m ( F )  = m(G) .  (1.3) 

Results (1.1) and (1.3) easily imply (1.2). For more about random graphs 
see (51. 

Remark. It has been found very recently 191 that both approaches to the gen- 
eralization of (1.1) are unnecessarily complicated. The simplest way of proving 
(1.2) is by the same "second moment method" used in (31. Erdos and Rtnyi 
did not observe this possibility and, so, introduced the notion of balanced 
graph. Fortunately this notion, and some variations of it, are of interest in their 
own right. 

For a nonempty (e(G) # 0) graph G define 

e ( G )  
v(G)  - 1 

d * ( G )  = 

and call G srrongly balanced if d*(H)  G d * ( G )  for all nonempty subgraphs H 
of G. It is easy to check that if G is strongly balanced then G is connected and 
each of its blocks B has the same value of the proportion d * ( B ) .  Obviously 
every strongly balanced graph is balanced, but the converse is not true. Graphs 
GI and G2 in Figure 1 are both balanced but not strongly balanced. In particu- 
lar, all trees, cycles and complete graphs are strongly balanced. 

In Section 2 it is shown that for all 1 S u - 1 S e S (;), there exists a 
strongly balanced graph with u vertices and e edges. We use a construction 
which is a modification of that from [4]. This result allows us to greatly sim- 
plify the proof of (1.3). This is done in Section 3. In Section 4, a rooted ver- 
sion of (1.2) is proved. Moreover, some distributional results are presented in 
which the notion of strongly balanced graph plays a crucial role. 
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G1 G2 

FIG. 1 .  Balanced. but not strongly balanced, graphs 

2. STRONGLY BALANCED GRAPHS 

Since a strongly balanced graph G must be connected, u(G) - 1 e ( G )  must 
hold. Conversely let u and e be any integers such that 1 S u - 1 < e c  
(3. Below we construct a strongly balanced graph B (u,  e )  with u vertices and 
e edges. 

Throughout this section set n = u - 1 and express e = kn + r where k and 
r are integers and 0 S r < n. Note that n 3 2k - 1 and n 3 2k if r > 0. 
Denote by C ( n , k )  a graph with vertex set { 1 , 2 ,  . . . ,n} and edge set {{x, y}: 
lx - yl  S k - 1, modulo n } , k  2 2 .  Denote by D ( n , k )  the graph obtained 
from C(n,k) by joining a new vertex n + 1 to all vertices of C ( n ,  k ) .  Let 
R ( n ,  r)  be the following set of points almost equidistributed around C(n,  k): 

R ( n , r )  = {x:J(x - I ) r / n J  < Ixr/nI, 1 < x s n , x  an integer} 

Note that IR(n, r)\ = r ,  and for any n’ consecutive modulo n integers, less than 
n ’ r / n  + 1 of them belong to R ( n ,  r ) .  Five cases are now considered separately. 

Case I. k = 1 and r = 0. Let B (u ,  e )  be any tree with u vertices and e edges. 

Case 2. k = 1 and r = 1 .  Let B ( u , e )  be a u-cycle. 

Case 3 .  
C ( n ,  2)  by joining a new vertex n + 1 to all vertices from R ( n ,  r ) .  

k = 1 and r > 1 .  Let B (u, e )  be the graph obtained from the cycle 

Case 4 .  
tained from K ,  by adding one vertex and e - (;) edges. 

k > 1 and n G 2k.  Then e 5 (;). Define B(u,  e )  to be a graph ob- 

Case 5 .  k > 1 and n 3 2k + 1 .  Let B ( u , e )  be the graph obtained from 
D ( n ,  k )  by adding the r edges { x , x  + k } , x  E R ( n ,  r ) .  Note that the condition 
n 2 2k + 1 assures that these r edges are distinct. 

In each of the five cases the graph B (u, e )  has u vertices and e edges. Exam- 
ples of Cases 3 and 5 are shown in Figure 2 .  In the proof of the main theorem 
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B (7,lO) B (7,14) 

FIG. 2. Strongly balanced graphs. 

we make use of a deficit function f for a graph G; for any subgraph H of G let 

f ( H )  = d*(G)(u(H) - 1) - e(H) 

Note that f (G)  = 0 and that G is strongly balanced if and only if 

for all subgraphs H of G. It is easy to check that 

for all subgraphs HI and H 2  of G. If H I  and H I  have at most one vertex in com- 
mon thenf(H, U H,) 3 f(Hl) + f ( H z ) .  In this case if HI U H2 violates condi- 
tion (2.1) so must either HI or H2. This means that we can restrict ourselves to 
2-connected subgraphs when checking whether a graph is strongly balanced. 

Theorem 1. There exists a strongly balanced graph with u vertices and e 
edges if and only if 1 u - 1 6 e (;). 

Proof. It is sufficient to show that each of the five graphs B ( u , e )  is 
strongly balanced. This is trivial in Cases 1 and 2. Otherwise let H be a 
2-connected subgraph of B = B (u ,  e ) .  

In Case 3 if n + 1 @ V ( H )  then H = C ( n ,  2) and f ( H )  = [(n + r ) / n ]  * 
( n  - 1) - n > 0. On the other hand let n + 1 E V ( H )  and n’ = u ( H )  - 1. 
Then H contains less than n ’ r / n  + 1 edges incident to vertex n + 1. Hence 

f ( H )  = ( 1  + r / n ) ( u ( H )  - 1) - E ( H )  

> (1  + r / n ) n ’  - (n’ - I + n ‘ r / n  + 1) = O 
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In Case 4 assume the worst possibility, that H is a complete proper subgraph 
of B .  Then 

In Case 5 it may be assumed that iz + 1 E V ( H ) ;  otherwise it is easy to 
check that d*(H + (n + 1)) > d * ( H ) .  Let B ,  = B(u ,  ns + r )  and leth be the 
corresponding deficit function: J ( H )  = d*(B,)(u(H) - 1) - e ( H ) .  It is easy 
to check that f,(H) a 0 for all subgraphs H of B ,  implies f , + , ( H )  2 0 for all 
subgraphs H of B , ,  ], s = 2 , 3 , .  . . . Let B :  denote the graph which looks like 
B ,  but the r additional edges are now replaced by loops at the vertices of 
R ( n ,  r ) ;  let H ’  be the subgraph corresponding to H and letf,’ be the correspond- 
ing deficit function. It is again easy to check that f : ( H ’ )  2 0 impliesf,(H) > 
0. Hence it is sufficient to prove that f;(H ’) 2 0 for all 2-connected subgraphs 
of B ’. Since there are less than n ‘ r / n  + 1 loops in H ’, we have 

f S ( H ’ )  = ( 2  + r / n )  ( u ( H ’ )  - 1) - e (H’ )  

> (2 + r / n ) n ‘  - (n ’  - 1 + n‘ + n ’ r / n  + 1) = 0 ,  

wheren’ = u ( H ’ )  - 1. I 

Problem. The proof of Theorem 1,  in fact, can be slightly strengthened so 
that the constructed strongly balanced graphs with the exception of trees are 
str ia  in the following sense: For all proper subgraphs H of G there is strict in- 
equality d * ( H )  < d * ( G ) .  The problem arises of finding a graph G with given 
number of vertices and edges which maximizes 

d * ( G )  - max d * ( H ) .  

Even more natural is the similar question for balanced graphs, since strictly bal- 
anced graphs play an important role in random graph theory (see [2 ,6 ,7] ) .  

H g G  

3. AN APPLICATION 

The following theorem appeared in [4] in conjunction with the random graph 
problem discussed in the introduction. Using Theorem 1 results in a significant 
simplification of the proof. 

Theorem 2. 
as a subgraph with m(F)  = m(G) .  

For any graph G, there exists a balanced graph F containing G 
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Proof. For any graph H define the deficit as 

where m = m(G). It is easily verified that 

for any graphs HI, H I .  Note that for 
- 
H = U H we have ~ ( g )  = 0 .  

HCC 
c(H)=O 

If v (n)  = v (G)  we are done. If not, a graph G ‘  3 C will be constructed such 
that m(G’) = m(G) and 

v (G’ )  - v@’) < v ( G )  - u @ ) ,  where H ’  = U H .  
HCG’ 

The result then follows by induction. Let 

E* = min E(H)  and E(G* )  = E* 
HCC 
HER 

Note that m 2 E* > 0. 
The first inequality comes from considering a subgraph H obtained from n 

by adding one isolated vertex. For this H we have E(H)  = m. Without loss of 
generality we may assume G* 3 k; choose x E V(G*)  - V(G). Let u and e 
be any positive integers such that u - 1 S e S (3 and 

(3.1) mu - e = m - E * .  

Since the right-hand side of Eq. (3.1) is rational, the existence of such a solu- 
tion is assured by the elementary theory of linear Diophantine equations. By 
Theorem 1 there is a strongly balanced graph B with u vertices and e edges. 
Now let G ’  be the graph obtained by adjoining B to G at vertex x, i.e., 
V(B) n V ( G )  = {x}. Equation (3.1) is equivalent to 

T h u s g ‘  2 B U G* and 

v(G ’) - ~ ( k  ’) S u(B U G )  - v(B U G *) = u(G) - u(G *) < u(G) - u(R) . 
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It only remains to show that m(G’) = m(G) ,  equivalently &(Ho) 2 0 for any 
subgraph Ho of G ’ .  Let Bo = Ho f l  B and Go = H ,  fl G .  Without loss of gen- 
erality we may assume B, # 0; let uo, eo be the number of vertices and edges 
of Bo. Because B is strongly balanced, 

e 
6- e0 

uo- 1 u -  1 ’  

which, in turn, implies that 

e - eo e 
u - u o  u - 1  

3 -  > m ;  

the last inequality follows from (3.1). Thus 

If G, = 0, then &(HO) = &(BO) > E ( B )  2 0; the last inequality follows from 
(3.1) because rn 3 E * .  If Go # 0, then by the definition of G * ,  &(GO) 3 
e(G *). Therefore 

&(HO) = &(BO) + &(GO) - &(B0 n Go) > E ( B )  + E(G*)  - rn = 0 .  I 

A comparison of the proof in 141 with that above reveals that the constructed 
graph F in each case requires the same number of new vertices. The problem 
from [4] of determining the minimum such F is still open. 

4. ROOTED SUBGRAPHS OF A RANDOM GRAPH 

The concept of strongly balanced graph is central to the proof of Theorem 2 
which, in turn, immediately implies Bollabas’ result (1.2) on random graphs. 
In this chapter we give a rooted version of (1.2) as well as some distributional 
results, in which a modification of the notion of strongly balanced graph plays 
a crucial role. 

Recall that by random graph K,r,p we mean a graph obtained from the com- 
plete graph K, on vertex set { 1, . . . , n} by an independent deletion of each edge 
with probability 1 - p , p  = p ( n ) .  

Let G be a graph. We call a subgraph Go of K,, a rooted copy of G if 
1 E V(Go) and Go = G. Denote by X,,(G) the random variable which counts 
all the rooted copies of G in Kn,D.  Our main result concerns the probability that 
a random graph contains at least one rooted copy of G. In order to prove this 
theorem we need a lemma for which we introduce the following terminology. 
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We call a subgraph Go of K,, an x-rooted copy of G if 1 E V(G,,) and there is an 
isomorphism between Go and G which maps 1 to x. Denote by X,(G,x) the 
number of all x-rooted copies of G in K n + .  The lemma will be proved by the 
so-called “second moment method’ used in proving (1.1) in 131. Recall that for 
every graph G, e ( G )  3 1 ,  

e(G 1 d*(G)  = 
u(G)  - 1 ‘  

Lemma. 
let x E V ( G ) .  If we denote 

Let G be an arbitrary graph with u vertices and e edges, e 3 1 ,  and 

m.: = m.:(G) = max d*(H) 
xEHCC; 
d H ) P I  

then 

Proof. Assume pn”“: + 0 as n + CQ. Let H be a subgraph of G with 
x E V(H) and d* (H)  = m:. Number all x-rooted copies of H in K, ,  say, 
H , ,  H 2 , .  . . , and put 

1, if HI C K , , p  
0, otherwise YI = { 

i = 1 , 2  , . . . .  ThenX,(H,x) = &Yl,EYj = p P I H ) , i  = 1 , 2  , . . . ,  and 

Prob(X,(G,x) > 0) S Prob(X,(H,x) > 0) S EX,,(H,x) 

Thus the first statement of (4.1) is proved. Let X = X,,(G,x). To prove 
the other one we make use of the following consequence of Tchebysheff‘s 
inequality: 

varx E(X(X - 1)) 1 

(Em2 
+ -  - 1 .  - 

(EX)2 EX 
P(X = O ) S - -  

As was done for X,,(H,x) above, we can express X,l(G,x) as a sum of 0-1 ran- 
dom variables, say, X,(G,x) = ~ . , Z , ,  with €2, = p p ,  i = 1 , 2 , .  . . . Hence 
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where c ( G , x )  and c are appropriate constants, i.e., both do not depend on n .  
Let us split 

where E '  is the sum taken over all ordered pairs of (i, j )  which correspond to 
the pairs, say, (G, , G j ) ,  of edge-disjoint x-rooted copies of C in K,l. It is easy to 
check that 

since XyId(";') (v!!;!.J = (:It) and c, < c(G,x), s = 0 ,  . . . , u - I ,  where s + 1 
is the number of common vertices in a pair of edge-disjoint x-rooted copies of 
G in K,. Thus 

1 + - .  E " P ( X  = 0) s - 
(EX)' EX (4.3) 

w 

Let G; and G, be two x-rooted copies of G in K ,  with at least one edge in com- 
mon. Then, by the definition of m.:, 

and 

O((EX)'(pn''"':)-') = o((EX)') 

(4.4) 

provided pn"": + x as n + a. This, together with (4.2) and (4.3), completes 
the proof. I 

Remark. 
rooted) subgraphs, giving a "new" elementary proof of (1.2). 

The above proof can be easily adapted to the case of ordinary (not 
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Theorem 3. 
If we denote 

Let G be an arbitrary graph with u vertices and e edgcs, e 1 .  

m* = m*(G)  = min m,*(G) 
xEV(GI 

then 

0, ifpn""' + 0,  as n + x 

1, ifpn'!"'-+ X ,  as n + X .  
lim Prob(X,(G) > 0) = 
n -- 

Proof. For every x E V ( G )  let Hx stand for a subgraph of G with 
x E V(H,) and m:' = d*(H) .  Then, if pn"'"' -+ 0, 

Prob(X,, ( G )  > 0) S 2 Prob(X,, (HI, x) > 0) = o (1) 
XEVIG)  

by the lemma and the definition of m*. On the other hand, applying the lemma 
for G and x E V ( G )  such that m: = m * ,  we have 

Prob(X,(G) > 0) 2 Prob(X,(G,x) > 0) = 1 - o ( l ) ,  

provided pn""' + m. I 

In the remainder of the paper we consider the asymptotic distribution of 
X,,(G) as n 3 X .  As usual (see [6,7]), we may expect Poisson distribution 
when p = p ( n )  is of the same order of magnitude as n-"m* ,  and a "normal 
phase" in the case pn  ' I r n *  3 x but not too fast. 

Assume first 

pn""*--, c > o as n -+ x .  

It can be deduced similarly to (4.2) that 

Since any asymptotic Poisson distribution requires 

lirn EXn(G) = A ,  X > 0 ,  
n-+z 

we arrive, via (4.5) at the necessary condition d*(G) = tn*(G),  which means 
there is a vertex x E V ( G )  such that for all subgraphs H of G containing 
x,d*(H) S d*(G). We call a graph G with the above property locally strongly 
balanced. 
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Remark. Every strongly balanced graph is locally strongly balanced. There is 
no such relationship between balanced and locally strongly balanced graphs. 
The graph in Figure 3(a) is balanced but not locally strongly balanced, whereas 
the graph in Figure 3(b), conversely, is locally strongly balanced but not bal- 
anced. The graph in Figure 3(c) has both properties. 

Note also that in proving Theorem 2 it was not necessary to require B strongly 
balanced; it would have been enough to assume that the auxiliary graph B is 
both balanced and locally strongly balanced. 

Although the locally strongly balanced property is necessary, it is not suffi- 
cient for asymptotic Poisson distribution. The property must be strengthened as 
follows. A graph G has property P if for every vertex x E V ( C )  for which 
d * ( H )  6 d*(G)  for all subgraphs H of G containing x, we have strict inequal- 
ity d * ( H )  < d*(G)  for all proper subgraphs H of G containing x. A graph G is 
called locally strictly balanced if G is locally strongly balanced and has prop- 
erty P. A locally strictly balanced graph is the analog of a strictly balanced 
graph [ 5 , 6 ]  for the unrooted case. Observe that trees are not locally strictly bal- 
anced but cycles and complete graphs are. Define 

7) = d*(G) - max max d * ( H )  (4.6) 
xES rEHCG 

4 H I a I  

as a measure of the extent of locally strict balance, where 

s = {x E V(G):m,*(G)  = d * ( C ) } .  

Theorem 4. Let C be a locally strictly balanced graph, let O,, 02,  . . .be the 
orbits of the vertex set of G under the action of its automorphism group, and let 
x, E O , , i  = 1,2,. . .Define the set T = { i : m : ( G )  = d*(G)}.  If 

(b) 

FIG. 3 
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then 

lim Prob(X,,(G) = k )  = hk exp{-A}/k!, k = 0 ,  1 , .  . . , (4.7) 
n-30 

where A = c'CIET [a(G,xi ) ] - l  and a(G,x) is the number of automorphisms of 
G which fix x .  

Pruuf. 
the fact that 

We prove (4.7) for x,i = ~ l E T X n ( G , x i ) .  The result will then follow by 

lim Prob(X,,(G) - x,, > 0)  = 0 
,I -% 

by the lemma. According to a result from 111 (see also [ 6 ] )  

sup (Prob(x, E A )  - Prob(Y,, E A ) (  S 2p' + 4E"/EX, ,  (4.8) 
A C % +  

where Y, has Poisson distribution with EY,, = Ex,* and E" is the expectation of 
the number of all ordered pairs of x,-rooted copies of G in K,i,p, i E T,  with at 
least one edge in common. Then, as in (4.4) 

To complete the proof note that EX,  -+ A as n + x .  I 

The assumption of locally strict balance in Theorem 4 is not only sufficient, 
but also necessary. In fact, if G is locally strongly balanced but not locally 
strictly balanced, then there is a vertex x E V ( G )  and a proper subgraph H of 
G such that 

(i) x E V ( H )  
(ii) d*(H)  = m f ( H )  = d * ( G )  = d * .  

Assume pn"d* += c > 0, so EX,,(G) + A > 0. Then 

E{X,(G)[X,,(G) - I]} 2 E'  + E" 

where E '  is the expected number of pairs of vertex disjoint rooted copies of G 
in Kn,p, whereas E" is the expected number of pairs of x-rooted copies of G in 
Kn.p whose intersection is exactly H .  Then E I -+ A' and 



STRONGLY BALANCED GRAPHS-RANDOM GRAPHS 263 

Thus lim inf E{X,(G) [X,(G) - I]} > A* and X,(G) cannot converge in distri- 
bution to Poisson distribution. 

For Y,, with Poisson distribution if EY, + r: then, by the Central Limit Theo- 
rem, the sequence (Yn - E Y , ) / m  has asymptotically standard normal distri- 
bution, and so does (X,(G) - E X n ( G ) ) / m ,  as long as the right-hand 
side of (4.8) tends to zero. We conclude the paper with a result establishing the 
“normal phase” of X ,  (G ). 

n - a  

Theorem 5 .  
(4.6). If 

Let G be a locally strictly balanced graph and let q be as in 

but 

then for every x E (-w, “) 

1 ‘  /-xe-r2’’dr\  = 0 .  I 
lim IProb{(X,(G) - EX,,(G))/- < x}  - 
n - r x  

Remark. The greater q. the longer the “normal phase” that can be estab- 
lished. This corresponds to the problem from Section 2. For instance, if G is a 
cycle on u vertices or G = Ku then q = l/(u - l),  which is the trivial upper 
bound for q (taking H as G with an edge deleted). 
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