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Let T be a tree all of whose internal vertices have degree at least
three. In 1983 Jamison conjectured in JCT B that the average order
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a proof is provided. In addition, it is proved that the average order
of a subtree of T is at most three quarters the order of T . Several
open questions are stated.
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1. Introduction

The order of a tree is the number of its vertices. The following notation will be used throughout
the paper. For a tree T , its order is denoted n := n(T ) and the number of leaves n′ := n′(T ). This paper
concerns the average order of a subtree of a tree T . If T has N subtrees (not including the empty tree)
of orders n1,n2, . . . ,nN , then let

μT := 1

N

N∑
i=1

ni

denote the average order of subtrees of T . If T has order n, call

DT := μT

n

the density of T . The density allows us to compare average subtree order of trees of different sizes.
The density is also the probability that a vertex chosen at random from T will belong to a randomly
chosen subtree of T . In [1] Jamison conjectured that if T is a tree whose internal vertices have degree
at least three, then the average order of a subtree is at least half the order of T . In other words, for
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Fig. 1. Star Sn .

Fig. 2. Caterpillar C j with j + 2 leaves.

such a tree, DT � 1
2 . The bound given below is the main result of this paper. The proof of the lower

bound appears in Section 2 and the proof of the upper bound in Section 3.

Theorem 1. If T is a tree all of whose internal vertices have degree at least three, then

1

2
� DT <

3

4
.

Both bounds are best possible in the sense that there exists an infinite sequence {Sn} of trees such
that limn→∞ D Sn = 1/2 and a sequence {C j} of trees such that lim j→∞ DC j = 3/4. The sequence Sn
of stars of order n, shown in Fig. 1, is an example in the first case. The sequence {C j} of caterpillars
with j + 2 leaves shown in Fig. 2 is an example in the second case. In fact, the exact formula for the
density

DC j = 27 j2 j−1 − 3 · 2 j+2 + 4 j + 16

(2 j + 2)(9 · 2 j − j − 6)

can be derived using the recursions in Lemma 1. (The somewhat complicated derivation involves
solving recurrences giving the parameters of C j+1 in terms of the parameters of C j . The recurrences
are obtained by taking the root in Lemma 1 as a vertex of degree 3 at one of the two ends of the
caterpillar.)

This paper concerns exclusively those trees whose internal vertices have degree at least 3. They are
also referred to as homeomorphically irreducible trees and series reduced trees. Let this family of trees be
denoted T3. It is known [1] that, for trees in general (no restriction on the degrees), the tree of order
n that minimizes the average order is the path Pn , in which case μPn = (n + 2)/3. Therefore, for trees
in general, DT � 1/3, and this is best possible. Examples appear in [1] of sequences {T j} of trees such
that DT j → 1 as j → ∞. So, in the general case, the trivial upper bound DT � 1 is best possible.

Concerning trees whose internal vertices have degree at least 3, several questions remain open.
The first question concerns the upper bound of 3/4 on the density. Consider the ratio diam(T )/n′(T )

of the diameter to the number of leaves of a tree T in T3. The ratio diam(T )/n′(T ) is close to 1 if
and only if both n′(T )/n(T ) is close to 1/2 and diam(T )/n(T ) is close to 1/2. Moreover, n′(T )/n(T ) is
close to 1/2 if and only if the average degree of an internal vertex is close to 3, and diam(T )/n(T ) is
close to 1/2 if and only if T is “stretched out.” This motivates the following question.

Question 1. Is it the case that a sequence {T j} of distinct trees in T3 satisfies

lim
j→∞

DT j = 3

4

if and only if diam(T j)/n′(T j) → 1?
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Fig. 3. Joining k copies of Ch .

Fig. 4. Complete k-ary tree of height h (k = 4 and h = 3).

The next two questions concern the lower bound of 1/2 on the density.

Question 2. For a sequence {T j} of distinct trees in T3, what are necessary and sufficient conditions
for DT j → 1/2?

Consider the following two conditions on a sequence {T j} of distinct trees in T3.

1. Bounded diameter. There is a number B such that diam(T ) � B for all T ∈ {T j}.
2. Unbounded degree. For any number B there is a T ∈ {T j} and a vertex v of T such that deg(v) � B .

Clearly the bounded diameter condition implies the unbounded degree condition. However, even the
bounded diameter condition is not a sufficient condition for DT j → 1/2 as j → ∞. An example is as
follows. Fix integer h, and let Ch be the caterpillar defined above, with v0 an arbitrarily chosen vertex
of Ch . Using k disjoint copies of Ch , let Tk be the tree formed by joining the k copies of the vertex
v0 in the caterpillars to an isolated vertex v . See Fig. 3. It can be shown using Lemma 1 that, for h
sufficiently large, DTk � 1/2 as k → ∞. But clearly {Tk} has bounded diameter.

There are certainly sequences {T j} of bounded diameter for which DT j → 1/2 as j → ∞. For
example, let h be fixed and let Tk be the complete k-ary tree of height h (see Fig. 4) or simply consider
the sequence {S j} of stars on j vertices. Then calculation using Lemma 1 shows that DTk → 1/2 as
k → ∞. This motivates the following question.

Question 3. For a sequence {T j} of trees in T3, is either the bounded diameter or the unbounded
degree condition a necessary condition for DT j → 1/2?

Moon and Meir [2] determined the average density over all trees of order n to be 1 − e−1 ≈ .6321
as n → ∞.

Question 4. What is the limit of the average density over all trees in T3 of order n as n → ∞?

2. Proof of the lower bound

A tree with no internal vertices of degree 2 satisfies the first of the following inequalities, and if
there is at most one internal node of degree 2, then the second

2n′ � n + 2, 2n′ � n + 1. (1)

A root of a tree is a designated vertex, its children the adjacent vertices.
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(∗) It is assumed throughout this section that each internal vertex, with the possible exception of the root, has
degree at least 3. The root is assumed to have degree at least 2.

For a tree rooted at vertex v , the number of subtrees containing the root, and the number not
containing the root, are denoted N(v) and N(v), respectively. Each subset L of leaves of a tree rooted
at v determines a unique subtree containing v , i.e., the subtree whose vertices are those with a
descendant in L. Thus there is an injection from the set of subsets of leaves into the set of rooted
subtrees, giving N(v) � 2n′

. Clearly, if the tree is not a star rooted at the center, then the inequality is
strict

N(v) > 2n′
. (2)

The average order of a subtree containing the root, and not containing the root, are denoted μ(v)

and μ(v), respectively. The following formula relates the parameters of the unrooted tree to those of
the rooted tree

μT = μ(v)N(v) + μ(v)N(v)

N(v) + N(v)
.

Letting D(v) = μ(v)/n and D(v) = μ(v)/n denote the densities for subtrees containing and not con-
taining the root, respectively, the above equation becomes

DT = D(v)N(v) + D(v)N(v)

N(v) + N(v)
. (3)

If v1, v2, . . . , vk are the children of the root v , let T1, T2, . . . , Tk denote the connected compo-
nents of T − v , considered as trees rooted at v1, v2, . . . , vk , respectively. Let Ni, Ni,μi,μi denote the
number of subtrees of Ti containing the root vi , not containing the root, the average order of those
containing the root, and not containing the root, respectively.

Lemma 1. The following recursive formulas are valid for a rooted tree:

N(v) =
k∏

i=1

(Ni + 1), μ(v) = 1 +
k∑

i=1

μi
Ni

Ni + 1
,

N(v) =
k∑

i=1

(Ni + Ni), μ(v) =
∑k

i=1(μi Ni + μi Ni)∑k
i=1(Ni + Ni)

.

Proof. The recursion for N(v) is clear. The recursion for N(v) comes from the fact that there is an ob-
vious bijection between the set of subtrees rooted at v and the set of k-element subsets {t1, t2, . . . , tk}
where ti is a rooted subtree of Ti – including the empty tree.

Concerning the recursion for μ(v), let S be the sum of the orders of all rooted subtrees of T . As
explained above, each rooted subtree ti of Ti is contained in exactly

∏
j �=i(N j + 1) rooted subtrees

of T . The subtree ti therefore contributes n(ti)
∏

j �=i(N j + 1) toward the sum S . Hence all the subtrees
of Ti combined contribute μi Ni

∏
j �=i(N j + 1). Summing over all subtrees T1, T2, . . . , Tk gives

S =
k∑

i=1

μi Ni

∏
j �=i

(N j + 1) + N(v),

the term N(v) being the contribution from the root v . Hence, using the recursion for N(v),

μ(v) =
∑k

i=1 μi Ni
∏

j �=i(N j + 1) + N(v)

N(v)
= 1 +

k∑
μi

Ni

Ni + 1
.

i=1
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Fig. 5. Figure a (on the left) and b (on the right).

The recursion for μ(v) is clear by splitting the subtrees of the Ti into those that contain and do
not contain their root, respectively. �
Lemma 2. If T is a tree rooted at vertex v, then N(v) > N(v).

Proof. It is easy to verify by induction that, for any positive integers Ni , it is the case that∏k
i=1(Ni + 1) � 2

∑k
i=1 Ni if k � 2. The first case k = 2 is equivalent to (N1 − 1)(N2 − 1) � 0. The

induction step from k − 1 to k is equivalent to Nk � 2.
The statement of the lemma is again proved by induction, on the order of T . It is trivially true

for the tree of order 1 (a single vertex). Applying this inequality above, the induction hypothesis, and
Lemma 1 to any tree T satisfying our assumption (∗) gives

N(v) =
k∏

i=1

(Ni + 1) � 2
k∑

i=1

Ni >

k∑
i=1

(Ni + Ni) = N(v). �

Lemma 3. If T is a tree rooted at vertex v then, except for the graph in Fig. 5b, we have

D(v) � 1

2

(
1 + 1

n′ + 1

)
.

Proof. Let T1, . . . , Tk be the subtrees as defined earlier. Let k1 be the number of such subtrees of
order 1, k2 the number isomorphic to the rooted tree in Fig. 5a, and k3 the number isomorphic to
the rooted tree in Fig. 5b. Let T1, . . . , Tk′ be the remaining subtrees. The proof proceeds by induction
on the order of the tree T . It is easy to check that the statement is true for the rooted tree of order 1
and the rooted tree of order 3. (The rooted tree of order 2 is not relevant because the root is assumed
to have at least 2 children.) Applying the induction hypothesis to the recursion for μ(v) in Lemma 1
yields the following. The induction hypothesis can be used in the second inequality below because
each tree Ti , i = 1,2 . . . ,k′ , is not the tree in Fig. 5b. Inequality (2) implies Ni � 2n′

i + 1 � 2n′
i + 2 for

subtrees Ti with n′
i � 3, which is also used

μ(v) = 1 +
k∑

i=1

μi
Ni

Ni + 1
= 1 + 1

2
k1 + 8

5
k2 + 31

11
k3 +

k′∑
i=1

μi
Ni

Ni + 1

� 1 + 1

2
k1 + 8

5
k2 + 31

11
k3 + 1

2

k′∑
i=1

(
1 + 1

n′
i + 1

)
ni

Ni

Ni + 1

� 1 + 1

2
k1 + 8

5
k2 + 31

11
k3 + 1

2

k′∑
i=1

(
1 + 1

n′
i + 1

)(
2n′

i + 2

2n′
i + 3

)
ni

� 1 + 1

2
k1 + 8

5
k2 + 31

11
k3 +

k′∑
i=1

n′
i + 2

2n′
i + 3

ni .

To prove that μ(v) � 1
2 (1 + 1

n′+1 )n it now suffices to prove
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1 + 1

2
k1 + 8

5
k2 + 31

11
k3 +

k′∑
i=1

n′
i + 2

2n′
i + 3

ni

� 1

2

(
1 + k1 + 3k2 + 5k3 +

k′∑
i=1

ni + 1 + k1 + 3k2 + 5k3 + ∑k′
i=1 ni

1 + k1 + 2k2 + 3k3 + ∑k′
i=1 n′

i

)
,

which simplifies to

1 + 1

5
k2 + 7

11
k3 +

k′∑
i=1

ni

2n′
i + 3

� 1 + k1 + 3k2 + 5k3 + ∑k′
i=1 ni

1 + k1 + 2k2 + 3k3 + ∑k′
i=1 n′

i

. (4)

To prove the inequality above, first consider the case k′ = 0. In this case it is sufficient to show
that

f (k1,k2,k3) :=
(

1 + 1

5
k2 + 7

11
k3

)
(1 + k1 + 2k2 + 3k3) − (1 + k1 + 3k2 + 5k3) � 0.

Since we are assuming throughout this section that the root has degree at least 2, we have
k1 + k2 + k3 � 2. It is easy to check that f (k1,k2,k3) � 0 for all values where k1 + k2 + k3 = 2. Taking
partial derivatives reveals that f (k1,k2,k3) is non-decreasing with respect to k1 for all k1,k2,k3 � 0
and non-decreasing with respect to both k2 and k3 if either k2 � 1 or k3 � 1. This implies that
f (k1,k2,k3) � 0 for all values where k1 + k2 + k3 � 2.

Next consider the case k′ > 0. From the paragraph above, either f (k1,k2,k3) � 0 or k1 = k3 = 0,
k2 = 1. In either case, a little elementary algebra shows that inequality (4) holds if

1 +
k′∑

i=1

ni

2n′
i + 3

� 1 + ∑k′
i=1 ni

1 + ∑k′
i=1 n′

i

.

Since ni � n′
i + 1, we have ni

2n′
i+3 > 1

3 . Also, since 2n′
i � ni + 1 from inequality (1), we have

2 >
1+∑k′

i=1 ni

1+∑k′
i=1 n′

i

. Therefore, if k′ � 3, then

1 +
k′∑

i=1

ni

2n′
i + 3

> 1 + 3(1/3) = 2 >
1 + ∑k′

i=1 ni

1 + ∑k′
i=1 n′

i

.

This only leaves the case k′ � 2, in which case we need to show

1 + n1

2n′
1 + 3

� 1 + n1

1 + n′
1

and 1 + n1

2n′
1 + 3

+ n2

2n′
2 + 3

� 1 + n1 + n2

1 + n′
1 + n′

2
.

The case k′ = 1 (on the left) simplifies to n′
1(2n′

1 + 3) � n1(n′
1 + 2), which in turn follows from the

fact that 2n′
1 � n1 + 1 from inequality (1). Although algebraically tedious, the case k′ = 2 can similarly

be verified using the fact that 2n′
i � ni + 1. �

In the tree T , let v0 be a vertex that maximizes N(v), i.e., N(v0) � N(v) for all vertices v . Call v0
a maximizing vertex.

Lemma 4. If T is a tree rooted at a maximizing vertex v0 , then

N1 �
∏
i �=1

(Ni + 1).
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Proof. Let v1, v2, . . . , vk be the children of the root v0. Let v0, u1, u2, . . . , us be the vertices adjacent
to v1, and let N(ui) denote the number of subtrees of T − v1 rooted at ui . Let N0 denote the number
of subtrees of T − v1 rooted at v0. By the recursions for N(v0) in Lemma 1,

N(v0) = (N1 + 1)
∏
i �=1

(Ni + 1) = N1

∏
i �=1

(Ni + 1) +
∏
i �=1

(Ni + 1),

N(v1) = (N0 + 1)

s∏
i=1

(
N(ui) + 1

) =
(

1 +
∏
i �=1

(Ni + 1)

)
N1 = N1

∏
i �=1

(Ni + 1) + N1.

The result now follows from the assumption that N(v0) � N(v1). �
Lemma 5. If T is a tree rooted at a maximizing vertex v0 with deg(v0) � 3, then

k∏
i=1

(Ni + 1) >
4

9

(
k∑

i=1

Ni

)2

.

Proof. Order the children of v0 so that N1 � N2 � · · · � Nk . Consider

f (N1) =
∏k

i=1(Ni + 1)

(
∑k

i=1 Ni)
2

as a function of variable N1 (the other Ni considered as constants). Taking the derivative reveals that
the function is increasing if N1 � (

∑
i �=1 Ni) − 2 and decreasing if N1 � (

∑
i �=1 Ni) − 2. By the shape

of the graph of f (N1) and by Lemma 4, the function f can attain a minimum only if N1 = N2 or
N1 = ∏

i �=1(Ni + 1). It can be checked that f (N2) � f (
∏

i �=1(Ni + 1)), so the minimum is attained

for N1 = ∏
i �=1(Ni + 1). (The inequality is easy to check when k = 2. For k � 3, let P = ∏k

i=3 Ni and

S = ∑k
i=3 Ni , and express the inequality in terms of P , S , and q := N2, regarding these variable as real

numbers. Holding P fixed, it follows from some algebra that the inequality is true if it is true when all
the factors of P and summands of S are equal to q, i.e., P = qr , S = rq, where r is not necessarily an
integer. Once this substitution is made, additional algebra suffices to verify the inequality.) Therefore∏k

i=1(Ni + 1)

(
∑k

i=1 Ni)
2

= f (N1) � f

(∏
i �=1

(Ni + 1)

)
= (

∏
i �=1(Ni + 1))(

∏
i �=1(Ni + 1) + 1)

(
∑

i �=1 Ni + ∏
i �=1(Ni + 1))2

.

Letting a = ∏
i �=1(Ni + 1) and b = ∑

i �=1 Ni , it is sufficient to show that

a(a + 1)

(a + b)2
>

4

9
.

By the inequality used in the proof of Lemma 2 we have, in the case deg(v0) � 3,

b

a
=

∑
i �=1 Ni∏

i �=1(Ni + 1)
� 1

2
.

Therefore

a(a + 1)

(a + b)2
� a(a + 1)

(a + a/2)2
= 4

9

(
1 + 1

a

)
>

4

9
. �

Lemma 6. If T is a tree rooted at a maximizing vertex v0 with deg(v0) � 3, then

N(v0) >
1

9
N(v0)

2.
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Fig. 6. The exceptions.

Proof. Using Lemmas 1, 2, and 5, we have

N(v0) =
k∏

i=1

(Ni + 1) >
4

9

(
k∑

i=1

Ni

)2

= 1

9

(
k∑

i=1

(Ni + Ni)

)2

>
1

9

(
k∑

i=1

(Ni + Ni)

)2

= 1

9
N(v0)

2. �

Lemma 7. For a tree T all of whose internal vertices have degree at least three and a maximizing vertex v0 , we
have DT > 1

2 if any one of the following conditions hold.

(a) N(v0) � n′N(v0);
(b) N(v0) � 9n′;
(c) N(v0) � 9n′ 2 .

Proof. By formula (3), DT > 1
2 if and only if(

2D(v0) − 1
)
N(v0) >

(
1 − 2D(v0)

)
N(v0).

Clearly D(v0) � 1/n. This and Lemma 3 imply that the above inequality holds if

N(v0) > (n′ + 1)

(
1 − 2

n

)
N(v0).

Inequality (1), namely 2n′ � n + 2, implies that this is the case if

N(v0) � n′N(v0), (5)

which is condition (a) in the statement of the lemma. It is routine to check that a leaf of T cannot be
the maximizing vertex. Hence v0 has degree at least 3 and by applying Lemma 6, the above inequality
holds if N(v0) � 9n′ , which is statement (b) of the lemma. If, on the other hand, N(v0) < 9n′ , then
condition (a) holds if N(v0) � 9n′ 2, which is condition (c) in the statement of the lemma. �
Proof of the lower bound in Theorem 1. By (2) we have N(v0) � 2n′ � 9n′ 2 for n′ � 10. Therefore,
by condition (c) in Lemma 7, it is sufficient to verify conditions (a), (b) or (c) for all trees with 9
or fewer leaves. There are relatively few such trees. Moreover, as we systematically constructed the
trees according to the number subtrees of order one in T − v0, many possibilities could be quickly
eliminated by using Lemmas 2 and 4. Only the star S4 and the 8 in Fig. 6 failed to satisfy any of the
conditions of Lemma 7. The density of each of these was computed and found to be at least 1

2 . �
3. Proof of the upper bound

Again, it is assumed throughout this section that the degrees of all internal vertices of rooted trees
are at least 3, except possibly the root.
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Proof of the upper bound in Theorem 1. It will be shown that, for any tree T rooted at vertex v , all
of whose internal vertices have degree at least three,

(i) D(v) < 3
4 and

(ii) D(v) < 3
4 .

The upper bound then follows immediately from Eq. (3). Statements (i) and (ii) are proved in the next
two lemmas. �
Lemma 8. If T is a tree rooted at v with deg(v) � 2, then

D(v) � 3

4

(
1 − 1

3n

)
.

Proof. Let T1, . . . , Tk be the subtrees as defined earlier. Let k1 be the number of such subtrees of
order 1, and let T1, . . . , Tk′ be the remaining subtrees. The proof proceeds by induction on the order
of the tree T . It is easy to check that the statement is true for th rooted tree of order 3. Consider
any tree satisfying assumption (∗). Applying the induction hypothesis to the recursion for μ(v) in
Lemma 1 yields the following

μ(v) = 1 +
k∑

i=1

μi
Ni

Ni + 1
= 1 + 1

2
k1 +

k′∑
i=1

μi
Ni

Ni + 1

� 1 + 1

2
k1 + 3

4

k′∑
i=1

(
1 − 1

3ni

)
ni

Ni

Ni + 1

� 1 + 1

2
k1 + 3

4

k′∑
i=1

(
1 − 1

3ni

)
ni

= 1 + 1

2
k1 + 3

4

k′∑
i=1

ni − k′

4
.

To prove that μ(v) � 3
4 (1 − 1

3n )n = 3
4 (1 + k1 + ∑k′

i=1 ni) − 1
4 it now suffices to prove

1 + 1

2
k1 + 3

4

k′∑
i=1

ni − k′

4
� 3

4

(
1 + k1 +

k′∑
i=1

ni

)
− 1

4
,

which simplifies to 2 � k1 + k′ , which is true because k1 + k′ = deg(v) � 2. �
Lemma 9. If T is a tree rooted at v with deg(v) � 2, then

D(v) <
3

4
.

Proof. Let T1, . . . , Tk be the subtrees as previously defined. Let k1 be the number of such subtrees of
order 1, and let T1, . . . , Tk′ be the remaining subtrees. The proof proceeds by induction on the order
of the tree T . It is easy to check that the statement is true for the rooted tree of order 3. Applying
Lemma 8 and the induction hypothesis to the recursion for μ(v) in Lemma 1 yields

μ(v) =
∑k

i=1(μi Ni + μi Ni)∑k
(Ni + Ni)

	⇒

i=1
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D(v) =
∑k

i=1(Dini Ni + Dini Ni)

n
∑k

i=1(Ni + Ni)
= k1 + ∑k′

i=1(Dini Ni + Dini Ni)

(1 + k1 + ∑k′
i=1 ni)(k1 + ∑k′

i=1(Ni + Ni))

<
k1 + 3

4

∑k′
i=1 ni(Ni + Ni)

(k1 + ∑k′
i=1 ni)(k1 + ∑k′

i=1(Ni + Ni))
.

To prove that D(v) < 3/4 it now suffices to prove

3

4

((
k1 +

k′∑
i=1

ni

)(
k1 +

k′∑
i=1

(Ni + Ni)

)
−

k′∑
i=1

ni(Ni + Ni)

)
� k1.

Because

k′∑
i=1

ni

k′∑
i=1

(Ni + Ni) �
k′∑

i=1

ni(Ni + Ni),

it suffices to prove

3

4
k1

(
k1 +

k′∑
i=1

(Ni + Ni)

)
� k1,

which is true because

3

4
k1

(
k1 +

k′∑
i=1

(Ni + Ni)

)
� 3

4
k1(k1 + k′) = 3

4
k1 deg(v) � 3

2
k1. �
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