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Abstract

This paper considers representations of graphs asrectangle-visibility graphsand asdoubly linear graphs.
These are, respectively, graphs whose vertices are isothetic rectangles in the plane with adjacency determined
by horizontal and vertical visibility, and graphs that can be drawn as the union of two straight-edged planar graphs.
We prove that these graphs have, withn vertices, at most 6n− 20 (respectively, 6n− 18) edges, and we provide
examples of these graphs with 6n− 20 edges for eachn> 8.  1999 Elsevier Science B.V. All rights reserved.
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1. Introduction

A thickness-two graphG is one whose edge set can be partitioned into two planar graphs, each on
one copy of the vertex set ofG. These graphs are of theoretical interest and arise in a multitude of
applications. For example, it is an NP-complete problem to determine whether a graph has thickness two
[11], and the upper bound on their chromatic number is known only to lie between 9 and 12 [6,8,14].
Thickness-two graphs arise in models for printed circuit boards [7,8] and in VLSI design and layout [21]
in which all connections are either horizontal or vertical and so divide naturally into two planar layers.

We study thickness-two graphs and their representations asrectangle-visibility graphsand asdoubly
linear graphs; in [15] it is shown that recognizing the former graphs is an NP-complete problem. We
show that the most (edge) dense thickness-two graphs have neither rectangle-visibility nor doubly linear
representations, though these graph representations are ubiquitous among thickness-two graphs of lower
density.

A bar-visibility graph[10,22] is one whose vertices can each be represented by a closed horizontal line
segment in the plane, having pairwise disjoint relative interiors, with two vertices adjacent in the graph
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if and only if the corresponding segments arevertically visible. Two segments are consideredvertically
visiblewhen there is a nondegenerate rectangleR such thatR intersects only these two segments, and the
horizontal sides ofR are subsets of these two segments. (For variations on this definition, see [13,18].)
Clearly, a bar-visibility graph is planar. Not all planar graphs are bar-visibility graphs since the latter
are characterized as those planar graphs for which there is a planar embedding with all cut vertices on a
common face [18,22].

A natural two-directional analog is that of arectangle-visibility graph, a graph whose vertices can each
be represented by a closed rectangle in the plane with sides parallel to the axes, having pairwise disjoint
interiors, with two verticesx andy adjacent in the graph if and only if the corresponding rectangles are
vertically or horizontally visible (with horizontal visibility defined analogously to vertical). Note that the
bands of visibility may cross. Every planar graph is a rectangle-visibility graph [10], and it is clear that
every rectangle-visibility graph has thickness at most two. Even more, a rectangle-visibility graph is the
union of two bar-visibility graphs. Our main result on these graphs is that a rectangle-visibility graph
with n vertices has at most 6n− 20 edges, as distinguished from thickness-two graphs which can have
as many as 6n−12 edges. (The latter fact follows from Euler’s formula for planar graphs, which implies
that a planar graph withn vertices has at most 3n− 6 edges.) In addition, we show that for everyn > 7
there is a rectangle-visibility graph with 6n− 20 or fewer edges.

It is a consequence of a classical theorem of Steinitz on polyhedra (see [17]) that every planar graph
G has alinear or straight-line embeddingin the plane. This means that
(1) every edge is a straight line segment,
(2) no vertex lies in the interior of an edge, and
(3) edges do not cross.
If, instead of property (3), we require that
(3′) the edges ofG can be partitioned into two subsets, each without crossings,
thenG is calleddoubly linear. Again it is clear that doubly linear graphs have thickness at most two.
We prove that a doubly linear graph withn vertices has at most 6n− 18 edges, and for eachn > 7 we
give an example of a doubly linear graph with 6n − 20 or fewer edges. We give examples of doubly
linear graphs that are not rectangle-visibility graphs but conjecture that every rectangle-visibility graph
is doubly linear.

Section 2 of this paper contains basic examples of rectangle-visibility and doubly linear graphs, as well
as examples that are essential to the main results of the paper. Sections 3 and 4 deal with the existence
question for rectangle-visibility and doubly linear graphs, respectively, with a given number of vertices
and edges, and Section 5 concludes with open questions. The concepts considered in this paper come
from [7,10], and from the Workshop on Visibility Representations, McGill University Bellairs Research
Institute, held in February 1993. The results of this paper (without proofs) have been announced in [9],
and subsequent results on rectangle-visibility graphs appear in [2–5,15,16].

2. Examples

2.1. Complete graphs

Figs. 1 and 2 show a rectangle-visibility and a doubly linear representation, respectively, of the
complete graphK8. This is the largest complete graph so representable sinceK9 has thickness three
[1,19].
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Fig. 1. A rectangle-visibility rep-
resentation ofK8. Fig. 2. A doubly linear representation ofK8.

2.2. Dense graphs

It is not hard to add another rectangle, visible to six others, to Fig. 1 (respectively, a vertex with six
straight-line edges to Fig. 2) to obtain a rectangle-visibility representation (respectively, a doubly linear
representation) ofK9 minus two edges; it can be arranged for these missing edges to be either mutually
incident or nonincident. These graphs andK8 have 6n− 20 edges,n= 9,8, respectively.K9 minus one
edge (K9− e) has thickness two with 6n− 19 edges [20]. Theorem 1 will show thatK9− e is therefore
not a rectangle-visibility graph, though it is the union of two bar-visibility graphs. We conjecture that
K9− e is not doubly linear.

Figs. 3 and 4 are rectangle-visibility representations that attain the upper bound 6n−20 of Theorem 1
on the number of edges for a given numbern of vertices. They are representative of infinite families of
such graphs and are used in the proof of Theorem 3 in the next section.

Fig. 3. A rectangular representa-
tion with n= 16.

Fig. 4. A rectangular representa-
tion of n= 17.
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Fig. 5. A rectangle-visibility repre-
sentation ofK5,5 plus four edges. Fig. 6. A doubly linear representation ofK5,5.

2.3. Complete bipartite graphs

Fig. 5 shows a rectangular representation ofK5,5 plus four edges, and Fig. 6 shows a closely related
doubly linear representation ofK5,5. Fig. 5 can be extended to a rectangular representation ofK5,6 plus
edges by adding a long rectangle along the left side, and Fig. 6 can be similarly extended to a doubly
linear representation ofK5,6. In [3,4] it is shown thatKp,q with p andq at least 5 is not a rectangle-
visibility graph (and thatK5,5 minus an edge andK5,5 plus an edge are rectangle-visibility graphs). Thus
K5,5 andK5,6 are doubly linear graphs, but not rectangle-visibility graphs. These examples point up an
essential difference between the two classes of graphs: namely, that although a subgraph of a doubly
linear graph is also doubly linear, the same is not true for rectangle-visibility graphs.

2.4. The join of graphs

Some infinite families of graphs having rectangle-visibility and doubly linear representations can be
obtained in terms of thejoin. The join of two disjoint graphsG andH is the union of these two graphs
together with an edge joining verticesg andh, for each vertexg of G and vertexh of H , and is denoted
G+H . It is not difficult to obtain, for everyn, a rectangle-visibility and a doubly linear representation
of the join ofK4 andPn and the join ofK4 andCn, wherePn andCn are, respectively, the path and the
cycle onn vertices. In these examplesK4 cannot be replaced byK5 for n > 12, since these graphs would
containK5,13 which, by Euler’s formula, has thickness at least 3.

It is also not hard to show that ifG is a 2-connected planar graph or, more generally, a bar-visibility
graph, thenP2+G is a rectangle-visibility graph. Moreover, ifG is a planar graph, thenP2+G is doubly
linear. Note that, as long asG contains a cycle,P2 +G is not planar since it contains a homeomorph
of K5.
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3. Rectangle-visibility graphs

In this section we examine the number of edges possible in a rectangle-visibility graph and in a graph
that does not have a rectangle-visibility representation.

Theorem 1. A rectangle-visibility graph onn> 5 vertices has at most6n− 20 edges.

Proof. For 56 n6 8, the value 6n−20 is at least as large as the number of edges in the complete graph
Kn, and so this bound holds immediately for these values ofn.

LetG be a rectangle-visibility graph withn > 8 vertices and rectangular representationR∗. LetR be
a rectangle inR∗, and defineN(R) (respectively,E(R), S(R) andW(R)) to be the set of rectangles in
R∗ that intersect with positive area the one-way infinite band of all points “north” (respectively, “east”,
“south” and “west”) ofR.

SelectR1 to be the rectangleR with N(R) empty and with the greatesty-coordinate for its bottom.
Note that ifR′ is visible toR1 horizontally, thenN(R′) is empty; otherwise there is another rectangle
with N(R) empty andy-coordinate larger thanR1’s for its bottom. MoveR1 northward until its bottom
is at least two units above the top of any other rectangle; then make the height ofR1 one unit and expand
it horizontally until it is as wide as the whole representation with two additional units of width to the left
and to the right. The newR1 has retained all its previous visibilities and may have gained some. Note
thatS(R1) is not empty in the new configuration sincen > 1.

Next selectR2 with S(R2) empty and with the leasty-coordinate of its top,R2 6= R1. Again if R′ is
visible toR2 horizontally, thenS(R′) is also empty. MoveR2 southwards until its top is at least two
units below the bottom of every other rectangle; then makeR2 one unit high and as wide as and directly
belowR1. The newR2 has retained all its previous visibilities. Note that in the new representation|S(R1)|
and|N(R2)| are each at least two since they are visible to each other andn > 2.

SelectR3 with W(R3) empty and with thex-coordinate of its rightmost side as small as possible. Note
thatR3 6=R1 andR3 6=R2. If R3 seesR′ vertically, thenW(R′) is empty as argued previously. MoveR3

westward until its left side is even with the left sides ofR1 andR2. MakeR3 one unit wide and increase
its height until it is one unit below the bottom ofR1 and one unit above the top ofR2. The newR3 retains
all previous visibilities. Note thatE(R3) is not empty sincen > 3. Finally, repeat this same procedure
with R4 selected to haveE(R4) empty and thex-coordinate of its left side as large as possible. (See Fig. 1
for an example of the positioning ofR1, R2, R3 andR4.)

LetG′ be the resulting rectangle-visibility graph of these rectangles so thatG is a subgraph ofG′. The
graphG′ decomposes into two planar graphs,G′h andG′v , which represent, respectively, the horizontal
and vertical visibilities ofG′. Now count the edges ofG′,G′h andG′v. In G′h the vertices corresponding
toR1 andR2 have degree 0 and so, by Euler’s formula,∣∣E(G′h)∣∣6 3(n− 2)− 6= 3n− 12.

In G′v the vertices corresponding toR3 andR4 have degree 2 and so∣∣E(G′v)∣∣6 3(n− 2)− 6+ 4= 3n− 8.

Thus,∣∣E(G)∣∣6 ∣∣E(G′)∣∣6 6n− 20. 2
The following is an immediate corollary of Theorem 1.
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Corollary 2. LetG′ with n> 5 vertices be a subgraph of a rectangle-visibility graphG. ThenG′ has at
most6n− 20 edges.

See [3,4] for similar proofs that a bipartite rectangle-visibility graph and a bipartite subgraph of
a rectangle-visibility graph withn vertices has at most 4n − 12 edges. Bipartite rectangle-visibility
examples with at most 4n− 16 edges are given also for eachn > 7, and for eachn> 16 bipartite graphs
with n vertices and 4n− 12 edges are known that are subgraphs of rectangle-visibility graphs [12].

Next we show that the bound of Theorem 1 is best possible for alln > 8. (For n 6 8, as noted
in Section 2, the complete graphs give the best possible bound.) Figs. 3 and 4 show rectangular
representations with 6n− 20 edges andn = 16 and 17 vertices, respectively, and the next result shows
that this pattern holds for alln> 8.

Theorem 3. There is a(connected) rectangle-visibility graph withn vertices and6n−20edges for each
n> 8.

Proof. First, for eachn of the formn= ks +4 with k, s > 1, we describe a representation with (mainly)
squares, 3 units by 3 units. Then we show how to vary this forn= p+ 4 wherep is a prime.

We usei andj as coordinates of the squares. Let

LL = {iu+ jv | 06 i 6 k− 1, 06 j 6 s − 1},
whereu and v are the vectors(4,−2) and (2,4), respectively. LL is the set of lower-left corners of
squares in the construction. LetS be the set of 3× 3 squares{

(x, y)− (x + 3, y + 3) | (x, y) in LL
}
.

(See Fig. 3 for the case ofk = 4, s = 3.)
In addition, put a tall rectangle to the left of the squares and to the right of the squares, stretching

slightly above them. Then above all the squares and rectangles place a long, horizontal rectangle,
stretching from the left to the right of the configuration below. Similarly place a long rectangle below the
whole configuration.

The four rectangles just placed around the outside form aK4, having 6 edges. The remaining edges
are between squares or between one rectangle and a square and fall into two sets, horizontal and vertical.

First we count the edges in the vertical set by examining the rectangle or square at the bottom of each
such edge.
(a) The long rectangle at the bottom sees all squares withj = 0, j = 1, ori = k−1. There are 2k+ s−2

such squares.
(b) No other rectangle sees a square from below.
(c) Squares withj = s − 1 see only the top rectangle from below. There arek such squares.
(d) Squares withi = 0 andj 6= s − 1 see the top rectangle and one other square. There ares − 1 such

squares.
(e) All other squares see three objects from below. There are(k− 1)(s − 1) such squares.
Totaling (a)–(e) we get

e= 2k + s − 2+ 0+ k · 1+ (s − 1) · 2+ (k − 1)(s − 1) · 3= 3ks − 1 edges.
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A similar count shows the number of horizontal edges also equals 3ks − 1. Thus the total number of
edges is 2(3ks − 1)+ 6= 6ks + 4= 6n− 20 sincen= ks + 4, demonstrating the theorem whenn− 4
is composite.

Suppose now thatn = p + 4 for some primep. Perform the previous construction withn − 1 =
p − 1+ 4 rectangles and 6(n− 1)− 20= 6n− 26 edges. Then add a unit square with lower-left hand
corner at(4.5,1.5). This added square sees 6 other objects, four vertically and two horizontally, and
blocks no previous visibility. (See Fig. 4 for the case ofn = 13+ 4.) Thus we haven rectangles with
6n− 20 visibility edges. 2

Rectangle-visibility graphs with fewer edges are also possible, as given in the next result. Simple
graphs with 6 vertices and 16 edges or with 7 vertices and 22 edges do not exist, thus the exceptions. The
result follows by taking essentially the same rectangular arrangements as in the proof of Theorem 3 and
adding additional rectangles in fairly obvious ways.

Corollary 4. With the exception of the cases(n,m) = (6,16) and (7,22), the following holds for all
n> 4:
(a) for eachm with 06m6 6n− 20, there is a rectangle-visibility graph withn vertices andm edges,
(b) for eachm with n− 16m6 6n− 20, there is a connected rectangle-visibility graph withn vertices

andm edges.

Families of graphs withn′ > 9 vertices andm′ > 35 edges that are not representable by rectangles can
also be found. For any 06m6 6n− 20 take a rectangle-visibility graphG with n vertices andm edges,
as guaranteed by Corollary 4, and form the disjoint union ofG with K9− e to obtain a graph withm+35
edges andn+ 9 vertices. By Corollary 2, the new graph is not a rectangle-visibility graph sinceK9− e
has more than 6n− 20,n= 9, edges. Connected graphsG together withK9− e plus an adjoining edge
similarly give connected examples.

4. Doubly linear graphs

The results in this section parallel those of Section 3. Our upper bound on the number of edges
for a graph with a doubly linear representation is 6n − 18. We give, for eachn > 8, an example of a
doubly linear graph with 6n− 20 edges, two short of the upper bound. An embedding is called anear-
triangulationof the plane if all faces, except possibly for the infinite face, are bounded by three edges.

Lemma 5. LetG be a maximal linear near-triangulation of the plane with vertex setV , and letL be a
line through a vertexv of V . LetV1 andV2 be the subsets ofV on either side ofL andV3 all vertices on
L so thatV = V1∪ V2∪ V3. If V1 is nonempty, then there is an edge ofG from v to some member ofV1.

Proof. Without loss of generality, not all vertices lie onL; otherwiseV1 andV2 are both empty. LetP
the boundary of the external, infinite face ofG; by maximality,P is a convex polygon. Successive pairs
of neighbors ofv form triangles aroundv and so form angles less thanπ at v, except for one pair when
v lies onP . Thus if v does not lie onP , v has a neighbor inV1 and inV2. If v lies onP and ifL is a
support line ofP (i.e., all vertices ofG lie on or on one side ofL), then all neighbors ofv lie in V1∪V3 by
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maximality, and at least one neighbor lies offL and inV1. If L is not a support line, thenv has neighbors
in bothV1 andV2, for example, its two neighbors onP . 2

We shall use Lemma 5 whenV1 is a singleton{u}. We then call the edgeuv a forced edgeof the
triangulation.

Theorem 6. If G is a doubly linear graph withn> 4 vertices, thenG has at most6n− 18 edges.

Proof. The bound is best possible forn= 4, but forn= 5, 6, 7 and 8, the complete graphs show thatG

has at most 6n− 20 edges. Thus we may assumen > 8.
LetG be drawn as a doubly linear graph in the plane and two-color the edges ofG so that the two sets,

R andB, each form a straight-line planar embedding. AssumeG is maximal, i.e., no edge can be added
without destroying double-linearity.

Add as many edges toR as possible, retaining straight-line planarity, givingR′. Similarly, add edges
to B giving B ′. Each edge added toR must be inB, and each edge added toB must be inR by the
maximality assumption. Thus, the numberd of duplicate edges (edges in bothR′ andB ′) equals the
number of edges that have been added. Furthermore, ifh is the number of edges on the convex hull of
the embeddedG, then the number of edges inR′ or B ′ is 3n− 6− (h− 3), so the total number of edges
in G is 2(3n− 6− h+ 3)− d = 6n− 12− 2h+ 6− d. Sets = 2h+ d − 6 so thatG is s edges short of
being the union of two complete planar triangulations.

To showG has at most 6n− 18 edges, it suffices to show thats > 6. We examine cases based on the
number of edgesh on the convex hull. Note that bothR′ andB ′ contain all edges of the convex hull so
thatd > h.

Case 1. h> 4. Sinced > h, s > 3h− 6> 6.
But we can do better forn > 8. Forh > 5, we haves > 3h− 6> 9. Forh = 4, there must be some

vertexv inside the convex hullabcd. (Assume thatabcd is the clockwise order of the exterior vertices.)
Let e be the intersection point of the two diagonalsac andbd of abcd, and define four closed triangles
abe, bce, cde anddae that include all points within and on the boundary of each triangle. Sincen > 5,
there is an additional vertex in some triangle, say inabe, distinct froma andb.

Start with the line collinear withcb, and rotate it counter-clockwise about the pointc until it hits
another vertexx 6= a. Using Lemma 5 withv = x andV1 = {b}, we have thatbx is a forced edge.
Similarly, starting withda and rotating clockwise aboutd, we find a pointy 6= b so thatay is a forced
edge. Note thatx andy may be the same vertex, but this is not important. Note also this argument is valid
when two edges of the convex hull, saybc andcd, are collinear.

Each forced edge must be in bothR′ and in B ′, as must the convex hull. Thusd > h + 2 and
s > 2h+ h+ 2− 6= 8.

Case 2. h= 3. We will find three forced edges as in Case 1. Letabc be the convex hull, with vertices
specified in clockwise order. Triangleabc contains interior vertices. Starting with the line collinear with
ba, rotate it counterclockwise aboutb until it hits some pointx 6= c. By Lemma 5,ax is a forced edge.
Starting withac, rotate the line counterclockwise abouta until it hits some pointy 6= b; by Lemma 5,
cy is a forced edge. Finally, do the same line rotation oncb aboutc so that a forced edgebz is established.
Note thatx, y andz need not be distinct. Each forced edge lies in bothR′ andB ′, as must the convex
hull edges. Thusd > h+ 3 ands > 2h+ h+ 3− 6= 6. Thus in both casess > 6 and so the number of
edges ofG is at most 6n− 12− s 6 6n− 18. 2
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Note that forn > 4, the edge-bound of 6n − 20 is established in the proof above except in the case
when the convex hull consists of 3 vertices. Except forK4, we have no example of a doubly linear graph
with more than 6n− 20 edges.

The examples of the next result are closely related to those of Theorem 3.

Theorem 7. There is a(connected) doubly linear graph withn vertices and6n − 20 edges for each
n> 8.

Proof. Forn= 8,K8 is doubly linear as seen in Fig. 2. Forn= 9,K9 minus two edges can be seen to be
doubly linear by suitably adding a vertex in the center of Fig. 2, and so we assumen > 9. As in the proof
of Theorem 3, first we considern= ks + 4 with k, s > 1, and thenn= p+ 4 wherep is a prime.

Suppose thatn= ks + 4 with k, s > 1, s 6 k, and letq > 2 be an integer such thatk 6 qs. Let T be
the set of grid points in the rectangle

Q= {(x, y) | 06 x 6 k − 1, 06 y 6 s − 1
}
,

and let

a = (−4k,−s), b= (4k,3s), c= (8k,3s − 10qs), d = (−k,3s + 13qs).

The verticesa, b, c andd can be joined by straight edges to form aK4 with no edge intersecting the
rectangleQ; note that the edgeab passes aboveQ, the edgeac passes belowQ sinceq > 1, andb lies
inside the triangleacd.

We form two setsR andB of edges, each a linear triangulation. IfR andB sharee edges, then we can
remove these edges fromR to getR′ such thatR′ andB share no edge and have a total of 6n− 12− e
edges.

LetR have the edges
• {t, t + (1,0)},

{
t, t + (1,1)},

{
t, t + (2,1)} for all t in T (and when the second vertex is an element

of T ),
• {a, (x, y)} for x = 0 orx = 1 ory = 0,
• {b, (x, y)} for x = k− 1 orx = k− 2 ory = s − 1,
• the edges of theK4 formed bya, b, c andd, and
• {c, (k− 1,0)}.
Thus, a is connected to the left two columns of vertices and to the bottom vertices ofQ, and b is
connected to those on the top and in the two rightmost columns. (It is a routine slope calculation thata

andb can be joined to these vertices by nonintersecting straight edges.)
LetB have the edges
• {t, t + (0,1)}, {t, t + (−1,1)}, {t, t + (−1,2)} for all t in T (and when the second vertex is inT ),
• {c, (x, y)} for x = k− 1 ory = 0 ory = 1,
• {d, (x, y)} for x = 0 ory = s − 1 ory = s − 2,
• the edges of theK4 except for the edgeab,
• {a, (0,0)} and{b, (k− 1, s − 1)}.
Thus,c is connected to the bottom and to the right of the rectangle by straight edges (sinceq > 2), andd
is connected to the left and to the top vertices.

BothR andB are triangulations.R andB share 5 edges of theK4 abcd and the three edges{a, (0,0)},
{b, (k− 1, s − 1)} and{c, (k− 1,0)}, for a total ofe= 8 shared edges. ThusR′ andB share no edge for
a total of 6n− 12− e= 6n− 20 edges.
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For the case ofn = p + 4 with p a prime, the same trick as in Theorem 3 works here: construct the
doubly linear representation of a graph withn− 1= p− 1+ 4 vertices as described above. Then add a
vertex with coordinates(0.5,0.375) and in each of the triangulationsR andB join it to the three vertices
of the triangle within which it lies. Thus one vertex and six edges are added to the graph as required to
achieve the 6n− 20 edge bound for this case also.2

Since a subgraph of a doubly linear graph is doubly linear, we can construct a doubly linear graph with
n vertices and with any desired number of edges less than 6n− 20. To construct families of non-doubly
linear graphs one can begin with a specific graph that is not doubly linear and form the union with a
doubly linear graph withn vertices and any desired number of edges, at most 6n− 20. For example, one
can begin withK9, which is not doubly linear since it has thickness three. Or one can begin withK12−F ,
the complete graph on 12 vertices minus a one-factor. LetG1 be the graph of the icosahedron, and let
G2 be the graph on the same set of vertices with vertices adjacent if they are at distance two inG1. In
fact,G1 andG2 are isomorphic, and their union isK12− F , showing the latter to have thickness two.
However,K12− F has 12 vertices and 60= 6n− 12 edges, and so by Theorem 6 is not doubly linear.

5. Open questions

Our upper bound on the number of edges in a doubly linear graph onn vertices is 6n − 18, and we
gave examples of doubly linear graphs with 6n − 20 edges. Whether the upper bound is tight remains
open.

Question 1. Forn > 4, does there exist a doubly linear graph on vertices with either 6n− 18 or 6n− 19
edges?

The second question concerns the relationship between rectangle-visibility and doubly linear
representations. An example was given in Section 2 of a doubly linear graph that is not a rectangle-
visibility graph.

Question 2. Is there a rectangle-visibility graph that is not doubly linear?
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