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Abstract

This paper considers representations of graphseesmngle-visibility graphsand asdoubly linear graphs
These are, respectively, graphs whose vertices are isothetic rectangles in the plane with adjacency determine
by horizontal and vertical visibility, and graphs that can be drawn as the union of two straight-edged planar graphs.
We prove that these graphs have, witlertices, at most/6— 20 (respectively, & — 18) edges, and we provide
examples of these graphs with 6 20 edges for each > 8. 0 1999 Elsevier Science B.V. All rights reserved.
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1. Introduction

A thickness-two graplt; is one whose edge set can be partitioned into two planar graphs, each on
one copy of the vertex set a@f. These graphs are of theoretical interest and arise in a multitude of
applications. For example, it is an NP-complete problem to determine whether a graph has thickness two
[11], and the upper bound on their chromatic number is known only to lie between 9 and 12 [6,8,14].
Thickness-two graphs arise in models for printed circuit boards [7,8] and in VLSI design and layout [21]
in which all connections are either horizontal or vertical and so divide naturally into two planar layers.

We study thickness-two graphs and their representationsctangle-visibility graphsand asdoubly
linear graphs in [15] it is shown that recognizing the former graphs is an NP-complete problem. We
show that the most (edge) dense thickness-two graphs have neither rectangle-visibility nor doubly linear
representations, though these graph representations are ubiquitous among thickness-two graphs of lowse
density.

A bar-visibility graph[10,22] is one whose vertices can each be represented by a closed horizontal line
segment in the plane, having pairwise disjoint relative interiors, with two vertices adjacent in the graph
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if and only if the corresponding segments &egtically visible Two segments are consideregltically
visiblewhen there is a nondegenerate rectaiyiich thatR intersects only these two segments, and the
horizontal sides oR are subsets of these two segments. (For variations on this definition, see [13,18].)
Clearly, a bar-visibility graph is planar. Not all planar graphs are bar-visibility graphs since the latter
are characterized as those planar graphs for which there is a planar embedding with all cut vertices on ¢
common face [18,22].

A natural two-directional analog is that ofectangle-visibility grapha graph whose vertices can each
be represented by a closed rectangle in the plane with sides parallel to the axes, having pairwise disjoint
interiors, with two vertices andy adjacent in the graph if and only if the corresponding rectangles are
vertically or horizontally visible (with horizontal visibility defined analogously to vertical). Note that the
bands of visibility may cross. Every planar graph is a rectangle-visibility graph [10], and it is clear that
every rectangle-visibility graph has thickness at most two. Even more, a rectangle-visibility graph is the
union of two bar-visibility graphs. Our main result on these graphs is that a rectangle-visibility graph
with n vertices has at most6- 20 edges, as distinguished from thickness-two graphs which can have
as many asib— 12 edges. (The latter fact follows from Euler’s formula for planar graphs, which implies
that a planar graph with vertices has at most3- 6 edges.) In addition, we show that for every 7
there is a rectangle-visibility graph witm6- 20 or fewer edges.

It is a consequence of a classical theorem of Steinitz on polyhedra (see [17]) that every planar graph
G has dinear or straight-line embedding the plane. This means that
(1) every edge is a straight line segment,

(2) no vertex lies in the interior of an edge, and

(3) edges do not cross.

If, instead of property (3), we require that

(3) the edges of; can be partitioned into two subsets, each without crossings,

then G is calleddoubly linear Again it is clear that doubly linear graphs have thickness at most two.
We prove that a doubly linear graph withvertices has at most:6- 18 edges, and for each> 7 we

give an example of a doubly linear graph with 6 20 or fewer edges. We give examples of doubly
linear graphs that are not rectangle-visibility graphs but conjecture that every rectangle-visibility graph
is doubly linear.

Section 2 of this paper contains basic examples of rectangle-visibility and doubly linear graphs, as well
as examples that are essential to the main results of the paper. Sections 3 and 4 deal with the existenc
question for rectangle-visibility and doubly linear graphs, respectively, with a given number of vertices
and edges, and Section 5 concludes with open questions. The concepts considered in this paper com
from [7,10], and from the Workshop on Visibility Representations, McGill University Bellairs Research
Institute, held in February 1993. The results of this paper (without proofs) have been announced in [9],
and subsequent results on rectangle-visibility graphs appear in [2-5,15,16].

2. Examples
2.1. Complete graphs

Figs. 1 and 2 show a rectangle-visibility and a doubly linear representation, respectively, of the
complete graphKg. This is the largest complete graph so representable diigceas thickness three
[1,19].
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Fig. 1. A rectangle-visibility rep-
resentation oK.

Fig. 2. A doubly linear representation ff.

2.2. Dense graphs

It is not hard to add another rectangle, visible to six others, to Fig. 1 (respectively, a vertex with six
straight-line edges to Fig. 2) to obtain a rectangle-visibility representation (respectively, a doubly linear
representation) oKy minus two edges; it can be arranged for these missing edges to be either mutually
incident or nonincident. These graphs aiglhave @ — 20 edgesy = 9, 8, respectivelyKy minus one
edge Kg — ¢) has thickness two with/6— 19 edges [20]. Theorem 1 will show th&p — e is therefore
not a rectangle-visibility graph, though it is the union of two bar-visibility graphs. We conjecture that
Kg — e is not doubly linear.

Figs. 3 and 4 are rectangle-visibility representations that attain the upper beunaof Theorem 1
on the number of edges for a given numbeof vertices. They are representative of infinite families of
such graphs and are used in the proof of Theorem 3 in the next section.
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Fig. 3. A rectangular representa- Fig. 4. A rectangular representa-
tion with n = 16. tion ofn = 17.
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Fig. 5. A rectangle-visibility repre- E
sentation ofKs 5 plus four edges. Fig. 6. A doubly linear representation & s.

2.3. Complete bipartite graphs

Fig. 5 shows a rectangular representatiorkgk plus four edges, and Fig. 6 shows a closely related
doubly linear representation & 5. Fig. 5 can be extended to a rectangular representatidfs giplus
edges by adding a long rectangle along the left side, and Fig. 6 can be similarly extended to a doubly
linear representation ofs¢. In [3,4] it is shown thatk, , with p andg at least 5 is not a rectangle-
visibility graph (and thaks 5 minus an edge anfls s plus an edge are rectangle-visibility graphs). Thus
Kss and Ks g are doubly linear graphs, but not rectangle-visibility graphs. These examples point up an
essential difference between the two classes of graphs: namely, that although a subgraph of a doubly
linear graph is also doubly linear, the same is not true for rectangle-visibility graphs.

2.4. The join of graphs

Some infinite families of graphs having rectangle-visibility and doubly linear representations can be
obtained in terms of thpin. Thejoin of two disjoint graphsG and H is the union of these two graphs
together with an edge joining verticesandh, for each vertex of G and vertexa of H, and is denoted
G + H. ltis not difficult to obtain, for every:, a rectangle-visibility and a doubly linear representation
of the join of K4 and P, and the join ofK, andC,,, where P, andC, are, respectively, the path and the
cycle onn vertices. In these examplég, cannot be replaced b¥s for n > 12, since these graphs would
containKs 13 which, by Euler’s formula, has thickness at least 3.

It is also not hard to show that @& is a 2-connected planar graph or, more generally, a bar-visibility
graph, thenP, + G is a rectangle-visibility graph. Moreover, G is a planar graph, theR, + G is doubly
linear. Note that, as long & contains a cycleP, + G is not planar since it contains a homeomorph
of K.
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3. Rectangle-visibility graphs

In this section we examine the number of edges possible in a rectangle-visibility graph and in a graph
that does not have a rectangle-visibility representation.

Theorem 1. A rectangle-visibility graph om > 5 vertices has at mo$in — 20 edges.

Proof. For5< n < 8, the value 6 — 20 is at least as large as the number of edges in the complete graph
K, , and so this bound holds immediately for these values of

Let G be a rectangle-visibility graph with > 8 vertices and rectangular representatitn Let R be
a rectangle inRR*, and defineV (R) (respectively,E(R), S(R) and W (R)) to be the set of rectangles in
R* that intersect with positive area the one-way infinite band of all points “north” (respectively, “east”,
“south” and “west”) ofR.

SelectR; to be the rectangl® with N(R) empty and with the greatestcoordinate for its bottom.
Note that if R’ is visible to R, horizontally, thenN (R’) is empty; otherwise there is another rectangle
with N (R) empty andy-coordinate larger thaR’s for its bottom. MoveR; northward until its bottom
is at least two units above the top of any other rectangle; then make the heghooé unit and expand
it horizontally until it is as wide as the whole representation with two additional units of width to the left
and to the right. The newR; has retained all its previous visibilities and may have gained some. Note
thatS(R;) is not empty in the new configuration sinee- 1.

Next selectrR, with S(R,) empty and with the least-coordinate of its topR, # R;. Again if R’ is
visible to R, horizontally, thenS(R’) is also empty. MoveR, southwards until its top is at least two
units below the bottom of every other rectangle; then m@kene unit high and as wide as and directly
below R;. The newR, has retained all its previous visibilities. Note that in the new representatid) |
and|N(R,)| are each at least two since they are visible to each othet ang.

SelectR3 with W(R3) empty and with the:-coordinate of its rightmost side as small as possible. Note
that R3 # Ry andR3 # R». If R3 seesR’ vertically, thenW (R’) is empty as argued previously. Mo
westward until its left side is even with the left sideskyfand R,. Make Rz one unit wide and increase
its height until it is one unit below the bottom &f and one unit above the top &. The newR; retains
all previous visibilities. Note thak (R3) is hot empty since: > 3. Finally, repeat this same procedure
with R4 selected to have (R4) empty and the-coordinate of its left side as large as possible. (See Fig. 1
for an example of the positioning &, R,, Rz andR,.)

Let G’ be the resulting rectangle-visibility graph of these rectangles sdtlga subgraph of’. The
graphG’ decomposes into two planar grapldg, and G/, which represent, respectively, the horizontal
and vertical visibilities ofG’. Now count the edges @', G, andG/,. In G), the vertices corresponding
to R; and R, have degree 0 and so, by Euler’s formula,

|E(G},)|<3(n—2)—6=3n—12

In G/, the vertices corresponding Rs and R, have degree 2 and so
|E(G,)|<3n—2)—6+4=3n—8.

Thus,

EG)|<|E(G")|<6r—20. O

The following is an immediate corollary of Theorem 1.
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Corollary 2. LetG’ withn > 5 vertices be a subgraph of a rectangle-visibility graphThenG’ has at
mostén — 20 edges.

See [3,4] for similar proofs that a bipartite rectangle-visibility graph and a bipartite subgraph of
a rectangle-visibility graph withw vertices has at mostnd— 12 edges. Bipartite rectangle-visibility
examples with at mostd— 16 edges are given also for each 7, and for eacl > 16 bipartite graphs
with n vertices and A4 — 12 edges are known that are subgraphs of rectangle-visibility graphs [12].

Next we show that the bound of Theorem 1 is best possible fon &l8. (Forn < 8, as noted
in Section 2, the complete graphs give the best possible bound.) Figs. 3 and 4 show rectangular
representations withi6— 20 edges and = 16 and 17 vertices, respectively, and the next result shows
that this pattern holds for all > 8.

Theorem 3. There is aconnected rectangle-visibility graph with vertices andn — 20 edges for each
n>=8.

Proof. First, for eachn: of the formn = ks 4+ 4 with k, s > 1, we describe a representation with (mainly)
squares, 3 units by 3 units. Then we show how to vary thia ferp + 4 wherep is a prime.
We usei andj as coordinates of the squares. Let

LL = {iu+ jv|0<i<k—1 0<j<s—1},

whereu andv are the vectorg4, —2) and (2, 4), respectively. LL is the set of lower-left corners of
squares in the construction. L&be the set of 3 3 squares

{(x,y) = (x+3,y+3)| (x,y)inLL}.

(See Fig. 3 for the case éf=4,5s =3.)

In addition, put a tall rectangle to the left of the squares and to the right of the squares, stretching
slightly above them. Then above all the squares and rectangles place a long, horizontal rectangle,
stretching from the left to the right of the configuration below. Similarly place a long rectangle below the
whole configuration.

The four rectangles just placed around the outside forkiy,ahaving 6 edges. The remaining edges
are between squares or between one rectangle and a square and fall into two sets, horizontal and vertica

First we count the edges in the vertical set by examining the rectangle or square at the bottom of each
such edge.

(&) The long rectangle at the bottom sees all squareswitld, j =1, ori =k — 1. There are R+s — 2
such squares.

(b) No other rectangle sees a square from below.

(c) Squares witlj =s — 1 see only the top rectangle from below. Thereiaseich squares.

(d) Squares withi =0 andj # s — 1 see the top rectangle and one other square. There-atkesuch
squares.

(e) All other squares see three objects from below. Therékarel)(s — 1) such squares.

Totaling (a)—(e) we get

e=2%k+s5s—2+0+k-1+(5—1) -2+ (k—1)(s —1)-3=3ks — 1 edges.
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A similar count shows the number of horizontal edges also equals-3.. Thus the total number of
edges is Bks — 1) + 6 = 6ks + 4 = 6n — 20 sincen = ks + 4, demonstrating the theorem when- 4
is composite.

Suppose now that = p + 4 for some primep. Perform the previous construction with— 1 =
p — 1+ 4 rectangles and(6 — 1) — 20= 6n — 26 edges. Then add a unit square with lower-left hand
corner at(4.5, 1.5). This added square sees 6 other objects, four vertically and two horizontally, and
blocks no previous visibility. (See Fig. 4 for the casenoft 13+ 4.) Thus we have rectangles with
6n — 20 visibility edges. O

Rectangle-visibility graphs with fewer edges are also possible, as given in the next result. Simple
graphs with 6 vertices and 16 edges or with 7 vertices and 22 edges do not exist, thus the exceptions. Th
result follows by taking essentially the same rectangular arrangements as in the proof of Theorem 3 and
adding additional rectangles in fairly obvious ways.

Corollary 4. With the exception of the casés, m) = (6, 16) and (7, 22), the following holds for all

n>4:

(a) for eachm with 0 < m < 6n — 20, there is a rectangle-visibility graph with vertices andn edges,

(b) for eachm withn — 1< m < 6n — 20, there is a connected rectangle-visibility graph witkertices
andm edges.

Families of graphs witlh’ > 9 vertices andr’ > 35 edges that are not representable by rectangles can
also be found. For any § m < 6n — 20 take a rectangle-visibility grapfi with »n vertices andn edges,
as guaranteed by Corollary 4, and form the disjoint unio6 efith K9 — e to obtain a graph witln 4 35
edges ana + 9 vertices. By Corollary 2, the new graph is not a rectangle-visibility graph diiace e
has more than/®— 20,n = 9, edges. Connected grapistogether withKg — e plus an adjoining edge
similarly give connected examples.

4. Doubly linear graphs

The results in this section parallel those of Section 3. Our upper bound on the number of edges
for a graph with a doubly linear representation is-6 18. We give, for eaclx > 8, an example of a
doubly linear graph with & — 20 edges, two short of the upper bound. An embedding is callexhe
triangulation of the plane if all faces, except possibly for the infinite face, are bounded by three edges.

Lemma 5. Let G be a maximal linear near-triangulation of the plane with vertexégtaind letL be a
line through a vertex of V. LetV; and V, be the subsets df on either side of. and V3 all vertices on
L so thatV =V, U V, U Va. If Vy is nonempty, then there is an edgetbfrom v to some member df;.

Proof. Without loss of generality, not all vertices lie dn otherwiseV; andV, are both empty. LeP
the boundary of the external, infinite face@f by maximality, P is a convex polygon. Successive pairs
of neighbors ofv form triangles arouna and so form angles less thanat v, except for one pair when
v lies on P. Thus if v does not lie onP, v has a neighbor irv; and inV,. If v liesonP and if L is a
support line ofP (i.e., all vertices of5 lie on or on one side af), then all neighbors of lie in V, U V3 by
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maximality, and at least one neighbor lies bffind inVy. If L is not a support line, themhas neighbors
in both V; and V5, for example, its two neighbors ah. O

We shall use Lemma 5 wheV, is a singleton{u}. We then call the edgev a forced edgeof the
triangulation.

Theorem 6. If G is a doubly linear graph witl > 4 vertices, therG has at mosén — 18 edges.

Proof. The bound is best possible fer= 4, but forn =5, 6, 7 and 8, the complete graphs show thiat
has at most® — 20 edges. Thus we may assume 8.

Let G be drawn as a doubly linear graph in the plane and two-color the edgesmthat the two sets,
R and B, each form a straight-line planar embedding. Ass@ris maximal, i.e., no edge can be added
without destroying double-linearity.

Add as many edges tR as possible, retaining straight-line planarity, giviRg Similarly, add edges
to B giving B’. Each edge added t® must be inB, and each edge added Bomust be inR by the
maximality assumption. Thus, the numhenf duplicate edges (edges in boii and B’) equals the
number of edges that have been added. Furthermokeisithe number of edges on the convex hull of
the embedded;, then the number of edges Ri or B’ is 3n — 6 — (h — 3), so the total number of edges
iNGis2Bn—6—h+3)—d=6n—12—2h +6—d. Sets = 2h + d — 6 so thatG is s edges short of
being the union of two complete planar triangulations.

To showG has at most % — 18 edges, it suffices to show that 6. We examine cases based on the
number of edges on the convex hull. Note that botR’ and B” contain all edges of the convex hull so
thatd > h.

Caselh >4.Sinced > h,s >3h —6>6.

But we can do better fot > 8. Fork > 5, we haves > 3h — 6 > 9. Forh = 4, there must be some
vertexv inside the convex hultbcd. (Assume that:bed is the clockwise order of the exterior vertices.)
Let e be the intersection point of the two diagonalsandbd of abed, and define four closed triangles
abe, bee, cde anddae that include all points within and on the boundary of each triangle. Sineé,
there is an additional vertex in some triangle, say#a, distinct froma andb.

Start with the line collinear witleb, and rotate it counter-clockwise about the paintintil it hits
another vertexx # a. Using Lemma 5 withv = x and V; = {b}, we have thabx is a forced edge.
Similarly, starting withda and rotating clockwise about, we find a pointy # b so thatay is a forced
edge. Note that andy may be the same vertex, but this is not important. Note also this argument is valid
when two edges of the convex hull, seyyandcd, are collinear.

Each forced edge must be in bofti and in B’, as must the convex hull. Thus> i + 2 and
s>2h+h+2-6=8.

Case 21 = 3. We will find three forced edges as in Case 1. &kt be the convex hull, with vertices
specified in clockwise order. Triangléc contains interior vertices. Starting with the line collinear with
ba, rotate it counterclockwise aboutuntil it hits some pointx # ¢. By Lemma 5,ax is a forced edge.
Starting withac, rotate the line counterclockwise abauuntil it hits some pointy = b; by Lemma 5,
cy is aforced edge. Finally, do the same line rotatiorbaboutc so that a forced edde; is established.
Note thatx, y andz need not be distinct. Each forced edge lies in bBttand B’, as must the convex
hull edges. Thugd > h + 3 ands > 2h + h + 3— 6= 6. Thus in both cases> 6 and so the number of
edgesofGisatmosta —12—s <6rn—18. O
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Note that forn > 4, the edge-bound ofi6— 20 is established in the proof above except in the case
when the convex hull consists of 3 vertices. Exceptlar we have no example of a doubly linear graph
with more than 6 — 20 edges.

The examples of the next result are closely related to those of Theorem 3.

Theorem 7. There is a(connected doubly linear graph withn vertices andén — 20 edges for each
n>8.

Proof. Forn =8, Kgis doubly linear as seen in Fig. 2. Foe 9, Kg minus two edges can be seen to be

doubly linear by suitably adding a vertex in the center of Fig. 2, and so we asst®e As in the proof

of Theorem 3, first we consider= ks + 4 with k, s > 1, and them = p + 4 wherep is a prime.
Suppose that = ks + 4 with k, s > 1, s <k, and letg > 2 be an integer such that< gs. Let T be

the set of grid points in the rectangle

Q:{(X,Y)|O<x<k_l, Ogygs_l}s
and let
a=(—4k, —s), b = (4k, 3s), ¢ = (8k,3s — 10gs), d=(—k,3s +13;s).

The verticesa, b, ¢ andd can be joined by straight edges to formka with no edge intersecting the
rectangleQ; note that the edgeb passes abov@, the edgeic passes belov) sinceq > 1, andb lies
inside the trianglecd.

We form two setsR and B of edges, each a linear triangulationRifand B sharee edges, then we can
remove these edges fromto getR’ such thatrR’ and B share no edge and have a total af 612 — e
edges.

Let R have the edges

{t,t+ @10}, {r.t+ @, D}, {t,t+ (2,1} forall z in T (and when the second vertex is an element
of T),

{a, (x,y)}forx=00rx=1o0ry=0,

{b,(x,y)}forx=k—1lorx=k—20ry=s—1,

the edges of th& 4 formed byaq, b, ¢ andd, and

{c,(k—1,0)}.

Thus, a is connected to the left two columns of vertices and to the bottom verticg?, @nd b is
connected to those on the top and in the two rightmost columns. (It is a routine slope calculation that
andb can be joined to these vertices by nonintersecting straight edges.)

Let B have the edges

{t,t + O, D}, {t,t + (-1, D}, {tr,t + (—1,2)} for all  in T (and when the second vertex isi),
{c,(x,y)}forx=k—1ory=00ry=1,

{d,(x,y)}forx=00ry=s—1ory=s— 2,

the edges of th& 4 except for the edgeb,

{a,(0,0)} and{b, (k — 1,s — 1)}.

Thus,c is connected to the bottom and to the right of the rectangle by straight edgesysiizg andd

is connected to the left and to the top vertices.

Both R and B are triangulationsk and B share 5 edges of th€, abcd and the three edgéds, (0, 0)},
{b, (k —1,s — 1)} and{c, (k — 1, 0)}, for a total ofe = 8 shared edges. Thu& and B share no edge for
atotal of G — 12— ¢ = 6n — 20 edges.
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For the case of = p + 4 with p a prime, the same trick as in Theorem 3 works here: construct the
doubly linear representation of a graph with- 1 = p — 1 + 4 vertices as described above. Then add a
vertex with coordinateg0.5, 0.375 and in each of the triangulatiof& and B join it to the three vertices
of the triangle within which it lies. Thus one vertex and six edges are added to the graph as required to
achieve the 6 — 20 edge bound for this case alsaz

Since a subgraph of a doubly linear graph is doubly linear, we can construct a doubly linear graph with
n vertices and with any desired number of edges less than 20. To construct families of non-doubly
linear graphs one can begin with a specific graph that is not doubly linear and form the union with a
doubly linear graph witl vertices and any desired number of edges, at most B0. For example, one
can begin withKgy, which is not doubly linear since it has thickness three. Or one can begirKwith F,
the complete graph on 12 vertices minus a one-factordsebe the graph of the icosahedron, and let
G, be the graph on the same set of vertices with vertices adjacent if they are at distanceGyadnn
fact, G1 and G, are isomorphic, and their union 1§;, — F, showing the latter to have thickness two.
However,K1, — F has 12 vertices and 60 6n — 12 edges, and so by Theorem 6 is not doubly linear.

5. Open questions

Our upper bound on the number of edges in a doubly linear graphwamtices is @ — 18, and we
gave examples of doubly linear graphs with -6 20 edges. Whether the upper bound is tight remains
open.

Question 1. Forn > 4, does there exist a doubly linear graph on vertices with either 8 or 6: — 19
edges?

The second question concerns the relationship between rectangle-visibility and doubly linear
representations. An example was given in Section 2 of a doubly linear graph that is not a rectangle-
visibility graph.

Question 2. Is there a rectangle-visibility graph that is not doubly linear?

Acknowledgements

The authors would like to thank the participants in the Workshop on Visibility Representations, held in
February 1993, at the McGill University Bellairs Research Institute, Barbados, and especially the other
workshop organizer, S.H. Whitesides, for stimulating questions and answers.

References

[1] J. Battle, F. Harary, Y. Kodama, Every planar graph with nine points has a nonplanar complement, Bull. Amer.
Math. Soc. 68 (1962) 569-571.

[2] P. Bose, A. Dean, J.P. Hutchinson, T. Shermer, On rectangle visibility graphs, in: S. North (Ed.), Graph
Drawing, Lecture Notes in Computer Science, Vol. 1190, Proc. of Symp. on Graph Drawing GD '96,
September 1996, Berkeley, CA, Springer, Berlin, 1997, pp. 25-44.



J.P. Hutchinson et al. / Computational Geometry 13 (1999) 161-171 171

[3] A. Dean, J.P. Hutchinson, Rectangle-visibility representations of bipartite graphs, Extended Abstract, in:
R. Tamassia, I.G. Tollis (Eds.), Lecture Notes in Computer Science, Vol. 894, Proc. DIMACS Workshop
Graph Drawing, 1994, Springer, Berlin, 1995, pp. 159-166.

[4] A. Dean, J.P. Hutchinson, Rectangle-visibility representations of bipartite graphs, Discrete Appl. Math. 75 (1)
(1997) 9-25.

[5] A. Dean, J.P. Hutchinson, Rectangle-visibility layouts of unions and products of trees, J. Graph Algorithms
Appl. 2 (1998) 1-21.

[6] M. Gardner, Mathematical games, Scientific American 242 (1980) 14-19.

[7] M.R. Garey, D.S. Johnson, H.C. So, An application of graph coloring to printed circuit testing, IEEE Trans.
Circuits Syst. 23 (1976) 591-599.

[8] J.P. Hutchinson, Coloring ordinary maps, maps of empires, and maps of the Moon, Math. Magazine 66 (1993)
211-226.

[9] J.P. Hutchinson, T. Shermer, A. Vince, On representations of some thickness-two graphs, Extended Abstract,
in: F. Brandenburg (Ed.), Lecture Notes in Computer Science, Vol. 1027, Symposium on Graph Drawing
DG '95, Passau, Germany, September 1995, Springer, Berlin, 1996, pp. 324—-332.

[10] D.G. Kirkpatrick, S.K. Wismath, Weighted visibility graphs of bars and related flow problems, in: Proc. 1st
Workshop on Algorithms and Data Structures, Lecture Notes in Computer Science, Vol. 382, Springer, Berlin,
1989, pp. 325-334.

[11] A. Mansfield, Determining the thickness of graphs is NP-hard, Math. Proc. Cambridge Philos. Soc. 93 (1983)
9-23.

[12] H. Meijer, Personal communication.

[13] J. O’Rourke, Art Gallery Theorems and Algorithms, Oxford University Press, New York, 1987.

[14] G. Ringel, Farbungsproblems auf Flachen und Graphen, Deutscher Verlag, Berlin, 1959.

[15] T. Shermer, On rectangle visibility graphs Ill, external visibility and complexity, in: Proc. 8th Canad. Conf.
Comput. Geom. 1996, Carleton University Press, Ottawa, 1996, pp. 234—-239.

[16] T. Shermer, On rectangle visibility graphsathilly and maximum-degree 4, in preparation.

[17] E. Steinitz, H. Rademacher, Vorlesungen tber die Theorie der Polyeder, Springer, Berlin, 1934.

[18] R. Tamassia, I.G. Tollis, A unified approach to visibility representations of planar graphs, Discrete Comput.
Geom. 1 (1986) 321-341.

[19] W.T. Tutte, On the non-biplanar character of the complete 9-graph, Canad. Math. Bull. 6 (1963) 319-330.

[20] W.T. Tutte, The thickness of a graph, Indag. Math. 25 (1963) 567-577.

[21] J.D. Ullman, Computational Aspects of VLSI Design, Computer Science Press, Rockville, MD, 1984.

[22] S.K. Wismath, Characterizing bar line-of-sight graphs, in: Proc. 1st Symp. Comput. Geom., ACM, 1985,
pp. 147-152.



