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Abstract. All self-replicating lattice tilings of the plane can be constructed using special
iterated function systems (IFS). Certain self-replicating curves can be constructed using the
recurrent set method (RS). A bijection between the IFS parameters and the RS parameters is
such that the curveK produced by the RS parameters is the boundary of the tileT produced
by the IFS parameters. The correspondence is algorithmic in thatK can be drawn from the
IFS data using turtle graphics andT can be drawn from the RS data using an IFS iteration.

1. Introduction

A nonempty compact subsetT of R2 is calledself-affineif there exists a linear transfor-
mation A such thatA(T) is the nonoverlapping union of translates ofT . In this paper
nonoverlappingmeans that the interiors are disjoint. If, in addition,A is a similarity, then
T is calledself-similar. A square is self-similar, but this is not a typical example. Fractal
examples appear in Figs. 1 and 2. The Gosper “flowsnake” in Fig. 1 is self-similar and
is tiled by seven smaller similar copies. Figure 2, which is tiled by nine smaller similar
copies, illustrates that a self-similar set may not be simply connected.

A tiling is a collectionT of nonempty compact subsets ofR2, called tiles, such
that (1) each tile is the closure of its interior, (2) the union of the tiles inT is R2, and
(3) distinct tiles are nonoverlapping. Alattice tiling is a tiling by translates of a single tile
by the points of a lattice. Aself-replicating tiling(rep-tiling) is a tilingT by translates
of a single tile such that there exists a linear mapA with the following property. For
each tileT in the tiling, the imageA(T) is, in turn, tiled by copies of tiles inT . The
tilings in Figs. 1 and 2 extend to lattice rep-tilings. Note that the definition of rep-tiling is
more stringent than just requiring a lattice tiling by self-affine tiles. There exist tilings by
self-affine tiles that are not lattice rep-tilings [14]. Numerous papers on self-replicating
tilings can be found in the literature; see, for example, the work of Bandt [1], Gilbert [9],
Gröchenig and Haas [10], Kenyon [13], Lagarias and Wang [14], and the author [20].
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Fig. 1. The Gosper flowsnake—tiling and boundary.
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Fig. 2. A nonsimply connected self-affine tile.
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In addition to their geometric appeal, there has been an interest in these tilings because
of their application to the construction of wavelet bases; see, for example, the work of
Gröchenig and Madych [11] and Strichartz [19]. For standard results on tilings see the
textbook by Gr¨unbaum and Shephard [12].

The main result of this paper is an explicit bijection between two known methods
for constructing lattice rep-tilings ofR2. The first method produces the tiles themselves;
the second method produces the boundaries of the tiles. An algorithm based on the first
method was used to produce the upper tiling in Fig. 1, while an algorithm based on
the second method was used to produce the lower tiling; similarly for the tile in Fig. 2.
In principle, the method is simple. Start with a parallelogramQ that is a fundamental
domain for the lattice. IterateQ in a certain way (using an iterated function system);
iterate the boundary ofQ in another way (using the recurrent set method). Under some
general conditions the two iterations will converge to a tileT and a curveK , respectively,
such thatK is the boundary ofT .

The use of iterated function systems (IFSs) to produce “fractiles” is well known, with
nice expositions, for example, by Barnsley [2] and Falconer [8]. Many of the illustra-
tions of “fractiles” in the popular literature use IFS-based algorithms. Therecurrent set
method, less well known, but also elegant, is due to Dekking [4], [5]. It uses an algebraic
construction related to string rewriting and L-systems. A referee has also brought to
our attention an earlier connection between the two methods due to Bedford [3]. That
paper has many aspects in common with our treatment, but in the context of constructing
Markov partition boundaries for hyperbolic toral endomorphisms.

The paper is organized as follows. In Section 2 a certain triple(L , A, D), calledtile
data, is defined and used to construct a tileT := T(L , A, D). (HereL denotes a lattice in
the plane.) The IFS method is used in this construction. In Section 3 a certain pair(σ, f ),
calledboundary data, is defined and used to construct a closed curveK := K (σ, f ). The
recurrent set method is used in this construction. The main result in Section 4 (Theorem 2)
is a correspondence(L , A, D) ↔ (σ, f ) between tile data and boundary data with the
following properties. If

T = {T + x | x ∈ L}
is the set of translations of tileT by the latticeL, then under very modest conditions
(Theorem 3 in Section 5), essentially that the curveK is not space filling,

(1) K (σ, f ) is the boundary ofT(L , A, D), and
(2) T is a self-replicating lattice tiling.

Moreover, every self-replicating lattice tiling can be obtained by this construction for
some tile or boundary data.

The figures in this paper are, of course, not actuallyT andK . There are sequences of
approximations{Tn} and{Kn} that converge toT andK , respectively, in the Hausdorff
metric. Our correspondence between tile data and boundary data is algorithmic in the
sense that, given tile data, an algorithm computes the boundary data that drawsKn using
turtle graphics. Conversely, given the boundary data, an algorithm computes the tile data
that drawsTn using finite iteration.

Calculation of the Hausdorff dimension of the boundary of a self-similar tile is ad-
dressed by Duvall et al. in [7], and for the Levy curve, in particular, in [6].
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2. Tile Data

A set{ fi }ki=1 of contractions fromR2 to R2 is called aniterated function system(IFS).
We restrict attention toR2 because the methods of Section 3 hold only for the plane.
The definitions and results of this section, however, generalize in an obvious way toRn.
On the spaceH of compact subsets ofR2, with respect to the Hausdorff metric, define
f : H → H by f (X) = ⋃k

i=1 fi (X), for any compact setX. It is well known that f
is a contraction onH and hence, by the contraction mapping theorem,f has a unique
fixed point orattractor T satisfying

T =
k⋃

i=1

fi (T) (2.1)

and given by

T = lim
n→∞ f (n)(X0), (2.2)

where f (n) denotes thenth iterate of f , X0 is an arbitrary compact subset ofR2, and
the limit is with respect to the Hausdorff metric. The setTn = f (n)(X0) is an nth
approximation toT and is easy to express in algorithmic form. It is usually such an
algorithm that is used to produce the fractal graphics that appear in many books and
papers on the subject.

Consider the following special case of an IFS. LetL be a lattice, i.e., all integer linear
combinations of two linearly independent vectors inR2. Further, letA: R2 → R2 be
an expansive linear transformation that preserves the latticeL. Expansivemeans that all
eigenvalues have modulus greater than one. Preserving the lattice means thatA(L) ⊂ L.
Let D = {d1,d2, . . . ,dk} be a set of representatives of the cosets inL/A(L). Such
a setD will be called adigit set. By standard results in algebrak = |det(A)|. The
triple (L , A, D) will comprise the “data” out of which a tileT := T(L , A, D) will be
constructed.

To defineT := T(L , A, D), let Q be a parallelogram spanned by two vectors that
generate the latticeL. Let T0 = Q and let

Tn := Tn(L , A, D, Q) =
⋃{

A−n(Q)+ x | x ∈
n∑

i=1

A−i (D)

}
, (2.3)

where the sum is in the Minkowski senseX + Y = {x + y | x ∈ X, y ∈ Y}. Note that
the union is nonoverlapping. Now let

T := T(L , A, D) = lim
n→∞ Tn =

{
x | x =

∞∑
i=1

A−i di , di ∈ D

}
. (2.4)

Since A is expansive, eachfi (x) = A−1(x + di ), i = 1,2, . . . , k, is a contraction
and, according to formula (2.2), the setT(L , A, D) is the attractor of the IFS{ fi }k−1

i=0 .
AlthoughTn depends on the parallelogramQ, the limit setT does not.
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The tuple(L , A, D) will be referred to astile dataand(L , A, D, Q) asextended tile
data if

(1) L is a lattice inR2,
(2) A: R2→ R2 is an expansive linear transformation,
(3) D is a digit set, i.e., a complete set of coset representatives ofL/A(L), and
(4) Q is a parallelogram spanned by two generators ofL.

As the attractor of an IFS,T is compact and, according to (2.1), has the self-affine
property

A(T) =
⋃
d∈D

(T + d), (2.5)

where the union is nonoverlapping. Moreover, it is known thatT(L , A, D) is the closure
of its interior and its boundary has Lebesque measure 0; see [10], [18], and [20]. For the
tile in Fig. 1, for example, the latticeL is the hexagonal lattice;

A =


5

2
−
√

3

2√
3

2

5

2

 ;
andD = {0,1, ω, ω2, ω3, ω4, ω5}, whereω is a primitive sixth root of unity.

The following result is known [10], [20].

Theorem 1. Given tile data(L , A, D) there is a self-replicating tiling ofRn by trans-
lates of T(L , A, D) to a subset S of L. Every self-replicating lattice tiling of the plane
is of the form{T(L , A, D)+ x | x ∈ L} for some tile data(L , A, D).

Remark 1. The tiling in the first sentence of Theorem 1 may not be a lattice tiling.
In example (2.6) below, the setS consists of all lattice points for which the sum of the
coordinates is even:

L = Z2, A =
(

3 0
0 3

)
,

D =
{(

0

0

)
,

(
1

1

)
,

(
2

2

)
,

(
2

0

)
,

(
0

2

)
,

(
1

−1

)(−1

1

)
,

(
3

1

)
,

(
1

3

)}
.

(2.6)

In example (2.7), due to Lagarias and Wang [14], the setS is not even a lattice:

L = Z2, A =
(

2 1
0 2

)
, D =

{(
0

0

)
,

(
3

0

)
,

(
0

1

)
,

(
3

1

)}
. (2.7)

Assume that the origin lies in the interior ofT and 0∈ D. Let Dn =
∑n−1

i=0 Ai (D)
be the set of lattice points representable usingn digits andD∞ =

⋃n
i=0 Dn. Then it is

known that{T + x | x ∈ D∞} is a self-replicating tiling, butD∞ may not be the whole
latticeL or even a sublattice ofL.

In their impressive paper [17], Lagarias and Wang address the conjecture of Gr¨ochenig
and Haas that there always exists a lattice tiling by copies ofT(L , A, D) (not necessarily
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Fig. 3. Approximation of a tile with space-filling boundary.

by the latticeL, not necessarily self-replicating). They prove the conjecture for self-affine
tiles in dimension 2 and for self-similar tiles in all dimensions.

Remark 2. The boundary∂T of the tileT may behave badly. Although limn→∞ Tn =
T , it may be the case that limn→∞ ∂Tn 6= ∂T . In fact, in examples (2.6) and (2.7) above
limn→∞ ∂Tn is the whole tileT ; the boundary is space filling. The tileT and its fifth
approximationT5 for example (2.7) are shown in Fig. 3.

The issues brought up in these two remarks are addressed in Theorem 3 of Section 5.

3. Boundary Data

In this section we summarize the recurrent set method for constructing a certain closed
curve. LetG := G 〈a,b〉 be the free group on two generatorsa andb. SoG consists
of all words in the letters{a,b,a−1,b−1}, including the empty worde. The operation
is concatenation, and the only relations areaa−1 = e = a−1a andbb−1 = e = bb−1.
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Consider an endomorphismσ : G → G and a homomorphismf : G → R2 such that
neitherσ(a) nor σ(b) is the empty word and( f (a), f (b)) is positively oriented and
linearly independent. In other words, iff (a) = (a1,a2) and f (b) = (b1,b2), then

det

(
a1 b1

a2 b2

)
> 0.

Note that bothσ and f are determined by their action ona andb. The pair{σ, f } is the
“data” from which a closed curveK (σ, f ) will be constructed.

To defineK (σ, f ), note the existence of a unique linear mapA = A(σ, f ) that yields
a commutative diagram:

G
f−−−−→ R2

σ

y A(σ, f )

y
G

f−−−−→ R2

In fact, the matrix forA(σ, f ), with respect to the basis( f (a), f (b)), is

Mσ =
(

maa mab

mba mbb

)
, (3.1)

wheremαβ is the number of occurrences ofα in σ(β), countingα−1 as occurring−1
time. Hereα andβ are each eithera or b. Letw = α1α2 · · ·αn be a word in which each
αi is an element of{a,b,a−1,b−1}, and consider the sequence of pointsxi ∈ R2, i =
0,1, . . . ,n, given byx0 = (0,0) andxi = f (α1α2 · · ·αi ) = f (α1) + f (α2) + · · · +
f (αi ), i ≥ 1. Join the pointsx0, x1, . . . , xn sequentially by directed line segments to
obtain a directed polygonal pathp(w) and let

Kn := Kn(σ, f ) = A−n p(σ (n)(w0)),

wherew0 = aba−1b−1. ThenKn is a closed, directed, polygonal path inR2. It is known
[5] that if A(σ, f ) is expansive, then the (undirected) sequence{Kn} converges, with
respect to the Hausdorff metric, to a closed curveK := K (σ, f ). The curve that is the
boundary of the tile in Fig. 1, for example, isK (σ, f ) where

f (a) = (1,0), σ (a) = a2b,

f (b) =
(

5

2
,

√
3

2

)
, σ (b) = ba−1b2.

Some line segments may be traversed byKn more than one time. We impose the
convention that each traversal of a line segment in one direction cancels a traversal of
that line segment in the opposite direction. ThusKn can consist of several closed curves,
and henceKn, and alsoK , may be disconnected.

The directed sides of the polygonAn(Kn) are all translates of the vectorsu = f (a),
v = f (b), −u, or −v. Given a pointx in the plane, count the number ofv sides of
An(Kn) that intersect a ray with endpoint atx in the u direction (+v counts+1; −v
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counts−1). It is easy to show that this number is the same as the number ofu sides
that lie abovex in the−v direction. Call this common number thewinding numberof
An(Kn) about the pointx. Thewinding numberof Kn about a pointx is defined as the
winding number ofAn(Kn) about the pointAn(x). Note that the winding number makes
sense even in the case thatKn fails to be connected.

It can happen that the winding number ofKn about a point is more than 1 or negative.
In this case there is no well-defined region enclosed byKn. The following result makes
this situation easy to detect. Its proof is contained as part of the proof of Theorem 2 in
Section 4.

Lemma. If the winding number of K1 about every point ofR2\K1 is either0 or 1, then
the same is true of Kn, n > 1.

The pair {σ, f } used to produce the closed curveK (σ, f ) will be referred to as
boundary dataif

(1) σ : G 〈a,b〉 → G 〈a,b〉 is an endomorphism,
(2) f : G → R2 is a homomorphism such that( f (a), f (b)) is positively oriented

and linearly independent,
(3) A(σ, f ) is expansive, and
(4) the winding number ofK1 about every point ofR2\K1 is either 0 or 1.

Remark. Let Tn := Tn(σ, f ) denote the closure of the region(s) bounded byKn :=
Kn(σ, f ). It will be seen in Section 4 thatTn also converges, with respect to the Hausdorff
metric, to a compact set, sayT . The following issue arises. AlthoughKn is the boundary
of Tn, it may be the case thatK is not the boundary ofT . In fact, it is even possible that
K is space-filling. In the following example, it is actually the case thatK = T :

f (a) = (1,0), σ (a) = a2,

f (b) = (0,1), σ (b) = a2b2a−1b−2a−1bba.

In fact, for this example,Kn is the boundary of the tileTn in example (2.7) of Section 2.
The tileT5 and its boundaryK5 are shown in Fig. 3, as well as the whole tileT . Since
there is little hope of relatingT and its boundary in such pathological situations, this
problem is addressed in Theorem 3 of Section 5.

4. The Correspondence between Tile and Boundary Data

In Section 2 a tile is constructed from tile data(L , A, D), and in Section 3 a closed
curved is constructed from boundary data(σ, f ). In this section the two constructions
are related to each other.

Given boundary data(σ, f ), let L be the lattice generated byf (a) and f (b); let
A = A(σ, f ); and letQ be the parallelogram spanned by the vectorsf (a) and f (b). For
a lattice pointx, let Qx be the translate toQ to x. Let D = D(σ, f ) be the set of lattice
pointsx such thatQx is enclosed byA(K1(σ, f )). Given boundary data(σ, f ), we have
now produced extended tile data(L , A, D, Q).
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Theorem 2. The mapping2: (σ, f ) 7→ (L , A, D, Q) given above induces a bijection
from the collection of all boundary data to the collection of all extended tile data such
that:

(1) ∂Tn(L , A, D) = Kn(σ, f ).
(2) {Tn + x | x ∈ L} is a tiling of the plane.
(3) A(Tn+1) =

⋃
d∈D (Tn + d), where the union is nonoverlapping.

Proof. All unions in this proof are nonoverlapping unions. Concerning statement (2),
note that, sinceD is a set of coset representatives forL/A(L) we haveL = D + A(L).
Iterating this equation yieldsL = ∑n−1

i=0 Ai (D) + An(L). Letting Dn =
∑n−1

i=0 Ai (D),
we haveR2 = ⋃{Q + x | x ∈ An(L) + Dn}. This implies thatR2 = A−n(R2) =⋃{A−n(Q) + x | x ∈ L + A−n(Dn)} =

⋃{Tn + x | x ∈ L}, the last equality by
definition (2.3).

Concerning statement (3), definition (2.3) impliesA(Tn+1) =
⋃{A−n(Q)+ x | x ∈∑n

i=1 A−i (D)+ D} =⋃{Tn + d | d ∈ D}.
Concerning statement (1), we next prove the following for eachn ≥ 1. Recall that

w0 = aba−1b−1.

p(σ (n)(w0)) bounds An(Tn). (4.1)

p(σ (n)(w0)) = p(w1σ
(n−1)(w0)w

−1
1 · · ·wkσ

(n−1)(w0)w
−1
k ), (4.2)

wherep(wi ) is a path from the origin toAn−1(di ). We use the termboundsin (4.1) to
mean that the winding number ofp(σ (n)(w0)) about each point in the interior ofAn(Tn)

is 1 and the winding number about each point in the complement ofAn(Tn) is 0. Note
that the lemma in Section 3, as well as statement (1) in Theorem 3, is a consequence of
statement (4.1).

Statements (4.1) and (4.2) will be proved by induction. Both are true by definition for
n = 1; assume they are true forn = N. Applying σ to the words on both sides of (4.2)
yields

p(σ (N+1)(w0)) = p(σ (w1)σ
(N)(w0)(σ (w1))

−1 · · · σ(wk)σ
(N)(w0)(σ (wk))

−1).

However, using the commutative diagram in Section 3,p(σ (wi )) is a path from the
origin to AN(di ); therefore (4.2) is true forn = N + 1.

By statement (3) of Theorem 2,AN+1(TN+1) =
⋃

d∈D(A
N(TN) + AN(d)).

By the induction hypothesisAN(TN) is bounded byp(σ (N)(w0)). Since the union⋃
d∈D(A

N(TN) + AN(d)) is nonoverlapping, it is bounded byp(w1σ
(N)(w0)w

−1
1 · · ·

wkσ
(N)(w0)w

−1
k ), where p(wi ) is a path from the origin toAN(di ). By (4.2), the set

AN+1(TN+1) is bounded byp(σ N+1(w0)), which proves (4.1) forn = N + 1.
To show that the mapping2 is onto, consider extended tile data(L , A, D, Q). Let

homomorphismf : G → R2 be defined by lettingf (a) and f (b) be the lattice points
(positively oriented) that generate parallelogramQ. We claim that there exists an endo-
morphismσ : G→ G such thatA(σ, f ) = A andD(σ, f ) = D. To see this, let

M =
(

maa mab

mba mbb

)
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be the matrix ofA with respect to the basis( f (a), f (b)). Thenτ(a) = amaabmba, τ (b) =
amabbmbb defines an endomorphism with the property thatD(τ, f ) is a set of coset repre-
sentatives forL/A(L). However, this digit set may not beD. Proceed in steps to find
an endomorphismσ such thatD(σ, f ) = D. At each step replace some digitd in the
current digit set by eitherd± A( f (a)) or d± A( f (b)). Any digit set forL andA can be
obtained by a chain of such replacements. Each such replacement can be accomplished
by changing the currentτ(a) = α, τ(b) = β to the altered endomorphism of the form
τ ′(a) = α, τ ′(b) = waba−1b−1w−1β or τ ′(a) = wbab−1a−1w−1α, τ ′(b) = β, where
p(w) is a path from the origin tod. The validity of this procedure follows from the
commutative diagram in Section 3. (It is possible that the winding number of the curve
K1(τ, f ) about points ofR2\K1(τ, f ) is other than 0 or 1. It is nevertheless the case
that the lattice points enclosed byA(K1(τ, f )), counted with multiplicity given by the
winding number, give a digit set in the following sense. Letϕ: L → Z be the function
that counts this multiplicity. Then

∑
x∈C ϕ(x) = 1 for each cosetC of L/A(L). This

extended notion of digit set allows the arguments above to go through without change.)
To show that2 is one-to-one, assume that boundary data(σ, f ) and(τ, g) map to

the same extended tile data under2. Since( f (a), f (b)) and(g(a), g(b)) span the same
parallelogramQ and are both positively oriented, we havef = g. Next assume that
σ(a) = α, σ (b) = β, τ(a) = γ, τ (b) = δ. BecauseA(σ, f ) = A(τ, f ) we have from (3.1)
that f (α) = f (γ ) and f (β) = f (δ). However, thenD(σ, f ) = D(τ, f ) implies thatα = γ
andβ = δ becausep(αβα−1β−1) andp(γ δγ−1δ−1) enclose the same set of digits. Now
we haveσ = τ sinceσ andτ are determined by their values ona andb.

5. The Limit Tile and Its Boundary

In light of Theorem 2, fix particular extended tile data(L , A, D, Q) and corresponding
boundary data(σ, f ). We use the notationTn for the tile andKn for its boundary. The
sequences{Tn} and{Kn} converge in the Hausdorff metric. Let

K = lim
n→∞ Kn,

T = lim
n→∞ Tn.

According to statements (1) and (2) of Theorem 2, we know that∂Tn = Kn for each
n and that translates ofTn by the latticeL yield a tiling ofR2. As pointed out in the
remarks at the end of Sections 2 and 3, these results may not extend to the limit tile and
limit boundary. It may not, in general, be true that∂T = K or that{T + x | x ∈ L}
is a tiling of R2. The main result of this section provides conditions under which the
pathological situations do not occur. In what followsTo denotes the interior ofT ; m
denotes Lebesque measure onR2; and|L| denotes the area of the fundamental domain
of the latticeL.

Theorem 3. Let T be a tile constructed from tile data(L , A, D) and let K be the
curve constructed from corresponding boundary data. Let T = {T + x | x ∈ L}. The
following statements are equivalent:

(1) m(T) = |L|.
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(2) K = ∂T .
(3) K is not space filling.
(4) T is a lattice rep-tiling of the plane.

Remark 1. By a result of Lagarias and Wang [14],m(T) is an integral multiple of|L|,
whether or not the other conditions in Theorem 3 are satisfied.

Remark 2. Theorem 3 is mainly concerned with conditions that involve the tile and its
boundary. Additional equivalent conditions are given by Gr¨ochenig and Haas [10] and
by the author [20]. These conditions are algorithmic, and together with Theorem 3, they
provide an effective method to check that the curve generated is actually the boundary
of the self-affine tile.

The condition in [20] is in terms of addresses of lattice points and is most easily stated
when 0∈ D and 0∈ To. A lattice pointx is said to have afinite addressif it can be
expressed in the formx =∑n

i=1 Ai di wheredi ∈ D.

Theorem [20]. There is a disk B centered at the origin, with radius depending only
on A and D, such thatT is a lattice rep-tiling if and only if each lattice point in B has
a finite address.

In [20] there is an effective calculation of the radius ofB and an easy algorithm to
determine whether a lattice point has a finite address.

The condition in [10] is in terms of a contact matrix. Fix a basise1,e2 of the lattice
L and setS0 = {±e1,±e2}. Recursively define the sets

Sn = {x ∈ L | (Ax+ D) ∩ (y+ D) 6= ∅ for somey ∈ Sn−1}

and setS=⋃∞n=1 Sn. It turns out thatS is finite becauseSn eventually stabilizes. Define
the entries of an(|S| × |S|)-matrixC, called thecontact matrix, by

cx,y = |(Ax+ D) ∩ (y+ D)| for x, y ∈ S.

Theorem [10]. T is a lattice rep-tiling if and only if the contact matrix has spectral
radius less than|detA|.

Remark 3. The proof of the equivalence of statements (1) and (4) in Theorem 3 is due
to Gröchenig and Madych [11], but is so short we include it here for completeness.

Proof of Theorem3. The following easy result about convergence in the Hausdorff
metric is used several times in the proof. Assume limn→∞ Xn = X in the Hausdorff
metric.

(a) If x /∈ X, then there exists a diskB centered atx such thatXn ∩ B = ∅ for n
sufficiently large.

(b) If x ∈ X, then for any diskB centered atx we haveXn∩ B 6= ∅ for n sufficiently
large.
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(2)⇒ (4) It is always the case thatR2 is covered by the tiles inT for the following
reason. SinceD is a set of coset representatives forL/A(L) we haveL = D + A(L).
Iterating this equation yieldsL = ∑n−1

i=0 Ai (D) + An(L) which implies A−n(L) =∑n
i=1 A−i (D)+L. Since

⋃∞
n=1 A−n(L) is dense inR2 and limn→∞(

∑n
i=1 A−1(D)) = T ,

this implies thatR2 =⋃{T + x | x ∈ L}.
The self-replicating property follows directly from property (2.5).
To show that the tiles are nonoverlapping, assume by way of contradiction, the exis-

tence of pointsx, y ∈ L , x 6= y, such that(T + x)o ∩ (T + y)o 6= ∅. By statement (2)
we have limn→∞ ∂Tn = ∂T . By statement (a) above, there exists a diskB centered at
some point in(T + x)o ∩ (T + y)o such thatB ∩ ∂(Tn + x) = ∅ = B ∩ ∂(Tn + y) for
n sufficiently large. However, because limn→∞ Tn = T we also know, by statement (b),
thatB∩ (Tn+ x) 6= ∅ andB∩ (Tn+ y) 6= ∅ for n sufficiently large. We now claim that
B ⊆ (Tn + x) ∩ (Tn + y), which contradicts statement (2) of Theorem 2. To prove the
claim, assume thatB is not contained inTn + x. ThenB would contain points in both
Tn+ x and its complement; henceB would contain a point of∂(Tn+ x), a contradiction;
similarly for B being contained inTn + y.

(4) ⇒ (2) We first show that∂T ⊆ K . Assume thatx ∈ ∂T ⊂ T . Because
limn→∞ Tn = T , statement (b) implies that any diskB centered atx must contain a
point in Tn for n sufficiently large. Sincex ∈ ∂T the interior of the diskB contains a
point not inT . So by statement (a) diskB contains a point in the complement ofTn for
n sufficiently large. SinceB contains points in bothTn and its complement, we have
B∩ Kn = B∩ ∂Tn 6= ∅ for n sufficiently large. By statement (a) this implies thatx ∈ K
because limn→∞ Kn = K .

To prove thatK ⊆ ∂T , assume, by way of contradiction, that there exists a point
x ∈ K\∂T . Thenx ∈ To; otherwisex /∈ T and limn→∞ Tn = T would imply, by
statement (a), the existence of a diskB centered atx such thatTn ∩ B = ∅ for n
sufficiently large. However, this is impossible becausex ∈ K = limn→∞ ∂Tn implies,
by statement (b), that∂Tn ∩ B 6= ∅ for n sufficiently large.

Now consider any diskB centered atx contained inT . As mentioned in the paragraph
above,B must contain a point of∂Tn for n sufficiently large. Since{Tn + x | x ∈ L}
is a polygonal tiling by Theorem 2, there is another tileTn + yn, yn ∈ L , such that
(Tn + yn) ∩ B 6= ∅. By taking a subsequence of{yn}, there exists a single lattice point
y such that(Tn+ y)∩ B 6= ∅ for arbitrarily large values ofn. Since limn→∞(Tn+ y) =
T + y, it follows from statement (a) thatx ∈ T + y. Now x ∈ To ∩ (T + y) implies
To∩ (T + y)o 6= ∅ becauseT is the closure of its interior. However, this contradicts the
assumption that{T + x | x ∈ L} is a tiling.

(2)⇒ (3) By statement (2) we have∂T = K . If K is space filling, then there is a disk
B ⊆ K = ∂T ⊆ T . For the center ofB to be in∂T , disk B must contain points that are
not in T , a contradiction.

(3)⇒ (4) Assume thatT is not a tiling. As shown at the very beginning of this proof,R2

is covered by the tiles inT and the self-replicating property holds. So it must be the case
that two tilesT+x andT+ y overlap. If it can be shown that(T+x)∩(T+ y) ⊆ K +x,
then we are done. Assume not. Then because limn→∞ Kn = K , statement (a) implies
that there is a diskB centered at some point of [(T + x) ∩ (T + y)]\(K + x) such that
B ∩ (Kn + x) = ∅ for n sufficiently large. Because limn→∞ Tn = T , by statement (b)
disk B must contain points of bothTn + x andTn + y for n sufficiently large. Since
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{Tn+ x | x ∈ L} is a tiling by Theorem 2,B must contain a point of∂(Tn+ x) = Kn+ x
for eachn sufficiently large, a contradiction.

(1)⇒ (4) As already shown,T coversR2 andT has the self-replicating property.
It is sufficient to show that tiles do not overlap. Define a function onR2 by f (x) =∑

y∈L χT (x− y), whereχT is the characteristic function ofT . BecauseT is a covering,
f (x) ≥ 1 for all x. If Q denotes a fundamental parallelogram for the latticeL, then∫
Q f (x)dx = ∑

y∈L

∫
Q χT (x − y)dx = ∫

R2 χT (x)dx = m(T) = |L|. This implies
that f (x) = 1 almost everywhere, which implies the desired result.

(4)⇒ (1) Using the same notation as above, ifT is a tiling, then f (x) = 1 almost
everywhere andm(T) = ∫R2 χT (x)dx = ∫Q f (x)dx = m(Q) = |L|.
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