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Abstract.  All self-replicating lattice tilings of the plane can be constructed using special
iterated function systems (IFS). Certain self-replicating curves can be constructed using the
recurrent set method (RS). A bijection between the IFS parameters and the RS parameters is
such that the curvK produced by the RS parameters is the boundary of th€ fieoduced

by the IFS parameters. The correspondence is algorithmic irktleaih be drawn from the

IFS data using turtle graphics aiidcan be drawn from the RS data using an IFS iteration.

1. Introduction

A nonempty compact subsg&tof R? is calledself-affingf there exists a linear transfor-
mation A such thatA(T) is the nonoverlapping union of translatesTafin this paper
nonoverlappingneans that the interiors are disjoint. If, in additidnis a similarity, then
T is calledself-similar A square is self-similar, but this is not a typical example. Fractal
examples appear in Figs. 1 and 2. The Gosper “flowsnake” in Fig. 1 is self-similar and
is tiled by seven smaller similar copies. Figure 2, which is tiled by nine smaller similar
copies, illustrates that a self-similar set may not be simply connected.

A tiling is a collection7 of nonempty compact subsets &f, calledtiles, such
that (1) each tile is the closure of its interior, (2) the union of the tile% iis R?, and
(3) distinct tiles are nonoverlapping.lattice tiling is a tiling by translates of a single tile
by the points of a lattice. Aelf-replicating tiling(rep-tiling) is a tiling7 by translates
of a single tile such that there exists a linear mfavith the following property. For
each tileT in the tiling, the imageA(T) is, in turn, tiled by copies of tiles il. The
tilings in Figs. 1 and 2 extend to lattice rep-tilings. Note that the definition of rep-tiling is
more stringent than just requiring a lattice tiling by self-affine tiles. There exist tilings by
self-affine tiles that are not lattice rep-tilings [14]. Numerous papers on self-replicating
tilings can be found in the literature; see, for example, the work of Bandt [1], Gilbert [9],
Grochenig and Haas [10], Kenyon [13], Lagarias and Wang [14], and the author [20].
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Fig. 1. The Gosper flowsnake—tiling and boundary.
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Fig. 2. A nonsimply connected self-affine tile.
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In addition to their geometric appeal, there has been an interest in these tilings because
of their application to the construction of wavelet bases; see, for example, the work of
Gréchenig and Madych [11] and Strichartz [19]. For standard results on tilings see the
textbook by Guhbaum and Shephard [12].

The main result of this paper is an explicit bijection between two known methods
for constructing lattice rep-tilings @?2. The first method produces the tiles themselves;
the second method produces the boundaries of the tiles. An algorithm based on the first
method was used to produce the upper tiling in Fig. 1, while an algorithm based on
the second method was used to produce the lower tiling; similarly for the tile in Fig. 2.
In principle, the method is simple. Start with a parallelogr@nthat is a fundamental
domain for the lattice. Iterat® in a certain way (using an iterated function system);
iterate the boundary d® in another way (using the recurrent set method). Under some
general conditions the two iterations will converge to aTilend a curveK , respectively,
such tha is the boundary oT .

The use of iterated function systems (IFSs) to produce “fractiles” is well known, with
nice expositions, for example, by Barnsley [2] and Falconer [8]. Many of the illustra-
tions of “fractiles” in the popular literature use IFS-based algorithms.réberrent set
method, less well known, but also elegant, is due to Dekking [4], [5]. It uses an algebraic
construction related to string rewriting and L-systems. A referee has also brought to
our attention an earlier connection between the two methods due to Bedford [3]. That
paper has many aspects in common with our treatment, but in the context of constructing
Markov partition boundaries for hyperbolic toral endomorphisms.

The paper is organized as follows. In Sentba certain triplgL, A, D), calledtile
data is defined and used to constructafile= T (L, A, D). (HereL denotes alattice in
the plane.) The IFS method is used in this construction. In Se8tacertain paifo, f),
calledboundary datais defined and used to construct a closed c#rve- K (o, f). The
recurrent set method is used in this construction. The main resultin Section 4 (Theorem 2)
is a correspondenaé_, A, D) < (o, f) between tile data and boundary data with the
following properties. If

T={T+x|xel}

is the set of translations of til& by the latticeL, then under very modest conditions
(Theorem 3 in Section 5), essentially that the cuves not space filling,

(1) K(o, f)isthe boundary of (L, A, D), and
(2) 7T is a self-replicating lattice tiling.

Moreover, every self-replicating lattice tiling can be obtained by this construction for
some tile or boundary data.

The figures in this paper are, of course, not actulpndK . There are sequences of
approximationgT,} and{K} that converge td andK, respectively, in the Hausdorff
metric. Our correspondence between tile data and boundary data is algorithmic in the
sense that, given tile data, an algorithm computes the boundary data thatdrasisg
turtle graphics. Conversely, given the boundary data, an algorithm computes the tile data
that drawsT,, using finite iteration.

Calculation of the Hausdorff dimension of the boundary of a self-similar tile is ad-
dressed by Duvall et al. in [7], and for the Levy curve, in particular, in [6].
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2. Tile Data

A set{ fi }ik:1 of contractions fronR? to R? is called ariterated function systerfiFS).

We restrict attention t@®? because the methods of Section 3 hold only for the plane.
The definitions and results of this section, however, generalize in an obvious W8y to
On the spacéd of compact subsets @?2, with respect to the Hausdorff metric, define
f: H—> Hby f(X) = U:‘zl fi (X), for any compact seX. It is well known that f

is a contraction orH and hence, by the contraction mapping theorérhas a unique
fixed point orattractor T satisfying

k
T=JHm (2.1)
i=1

and given by

T = lim M (Xo), (2.2)

where f ™ denotes theth iterate of f, Xo is an arbitrary compact subset &f, and
the limit is with respect to the Hausdorff metric. The gt = f™(Xg) is annth
approximation toT and is easy to express in algorithmic form. It is usually such an
algorithm that is used to produce the fractal graphics that appear in many books and
papers on the subject.

Consider the following special case of an IFS. Ldie a lattice, i.e., all integer linear
combinations of two linearly independent vectorsRifi Further, letA: R? — R? be
an expansive linear transformation that preserves the ladttiExpansiveneans that all
eigenvalues have modulus greater than one. Preserving the lattice meakid.that L.
Let D = {d;,dy, ..., d} be a set of representatives of the cosets jiA(L). Such
a setD will be called adigit set By standard results in algebka= |det(A)|. The
triple (L, A, D) will comprise the “data” out of which a til& := T (L, A, D) will be
constructed.

To defineT := T(L, A, D), let Q be a parallelogram spanned by two vectors that
generate the lattice. Let To = Q and let

To:=Ta(L.A.D.Q = [A‘”(Q) +x[xey. A—i(D)} , 2.3)
i=1

where the sum is in the Minkowski sen¥e+ Y = {x + y | X € X, y € Y}. Note that
the union is nonoverlapping. Now let

oo
T:=T(L,A D)= lim Tnz{x|x=ZAidi,dieD}. (2.4)
n—o0 i=1
Since A is expansive, eachij(x) = AY(x +d), i = 1,2, ...,k, is a contraction
and, according to formula (2.2), the SetL, A, D) is the attractor of the IF$f; }:‘:‘3.
Although T, depends on the parallelogra@ the limit setT does not.
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The tuple(L, A, D) will be referred to asile dataand(L, A, D, Q) asextended tile
dataif

(1) L is a lattice inR?,

(2) A: R? — R?is an expansive linear transformation,

(3) D is adigit set, i.e., a complete set of coset representativeg AfL ), and
(4) Qs a parallelogram spanned by two generatork .of

As the attractor of an IFST is compact and, according to (2.1), has the self-affine
property
AT =T +d), (2.5)
deD
where the union is nonoverlapping. Moreover, itis known Thdt, A, D) is the closure
of its interior and its boundary has Lebesque measure 0; see [10], [18], and [20]. For the
tile in Fig. 1, for example, the latticke is the hexagonal lattice;

5 V3
2 2
A= :
V3 5
2 2

andD = {0, 1, w, 0?, »°, *, ®®}, wherew is a primitive sixth root of unity.
The following result is known [10], [20].

Theorem 1. Giventile data(L, A, D) there is a self-replicating tiling aR" by trans-
lates of T(L, A, D) to a subset S of LEvery self-replicating lattice tiling of the plane
is of the form{T (L, A, D) + x | x € L} for some tile dataL, A, D).

Remark 1. The tiling in the first sentence of Theorem 1 may not be a lattice tiling.
In example (2.6) below, the s&tconsists of all lattice points for which the sum of the

coordinates is even:
30
_ 72 _
L =27°, A= <0 3> ,

o= {(o) () () (o) () () () () ()}

In example (2.7), due to Lagarias and Wang [14], theSdstnot even a lattice:

oGy o (OO0 =

Assume that the origin lies in the interior 8fand Oe D. Let D, = Y[; A'(D)
be the set of lattice points representable usirdigits andD, = |, Dn. Then it is
known that{T + x | x € Dy} is a self-replicating tiling, buD,, may not be the whole
lattice L or even a sublattice df.

Intheirimpressive paper [17], Lagarias and Wang address the conjectureobieBig
and Haas that there always exists a lattice tiling by copi@g bf A, D) (not necessarily

(2.6)
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Fig. 3. Approximation of a tile with space-filling boundary.

by the latticel, not necessarily self-replicating). They prove the conjecture for self-affine

tiles in dimension 2 and for self-similar tiles in all dimensions.

T, it may be the case that liim ., 8Ty # dT. In fact, in examples (2.6) and (2.7) above
limn_ o 0T, is the whole tileT; the boundary is space filling. The tile and its fifth

Remark 2. The boundaryT of the tileT may behave badly. Although lim, o T,
approximationTs for example (2.7) are shown in Fig. 3.

The issues brought up in these two remarks are addressed in Theorem 3 of Section 5.

Boundary Data

3.

In this section we summarize the recurrent set method for constructing a certain closed

curve. LetG := G (a, b) be the free group on two generata@sandb. SoG consists
of all words in the letterga, b, a-*, b=}, including the empty wore. The operation

is concatenation, and the only relations aes! = e = a~'a andbb™ = e = bb™%.
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Consider an endomorphiss1 G — G and a homomorphisni: G — R? such that
neithero (a) nor o (b) is the empty word andf (a), f (b)) is positively oriented and
linearly independent. In other words, fifl@) = (a1, a;) and f (b) = (b, by), then

det(a11 bl) > 0.
a b
Note that botlv and f are determined by their action arandb. The pair{o, f} is the
“data” from which a closed curvK (o, f) will be constructed.
To defineK (o, ), note the existence of a unique linear map= A, t, that yields

a commutative diagram:

f
G —— R?

al A(gyf)l

f
G —— R?

In fact, the matrix forA, 1, with respect to the basid (a), f (b)), is

MU = (maa mab ’ (3.1)
Mpa  Mpp

wherem, is the number of occurrences @fin o (8), countinga ! as occurring-1
time. Herex andg are each eithe orb. Letw = o107 - - - ap be a word in which each
«; is an element ofa, b, a~1, b—1}, and consider the sequence of poixts R?, i =
0,1,...,n,given byxg = (0,0) andx; = f(aiaz - ) = f(agp) + flag) +--- +
f(aj), i > 1. Join the pointxg, X1, ..., Xn sequentially by directed line segments to
obtain a directed polygonal pafi{w) and let

Kn := Kn(o, ) = A"p(e™ (wo)),

wherewo = aba b, ThenK, is a closed, directed, polygonal pathRA. It is known
[5] that if Ay 1y is expansive, then the (undirected) sequefi€g} converges, with
respect to the Hausdorff metric, to a closed culve= K (o, ). The curve that is the
boundary of the tile in Fig. 1, for example, ks(o, f) where

fa) = (1,0), o@) = a?b,
_ (5 V8 o1y

Some line segments may be traversedkgymore than one time. We impose the
convention that each traversal of a line segment in one direction cancels a traversal of
that line segment in the opposite direction. Tlscan consist of several closed curves,
and hence&,,, and alsdK, may be disconnected.

The directed sides of the polygdi'(K,,) are all translates of the vectars= f (a),

v = f(b), —u, or —v. Given a pointx in the plane, count the number wfsides of
A"(K,) that intersect a ray with endpoint atin the u direction (v counts+1; —v
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counts—1). It is easy to show that this number is the same as the numhesioles
that lie abovex in the —v direction. Call this common number tkénding humberof
A"(Kp) about the poink. Thewinding numbeof K, about a poink is defined as the
winding number ofA"(K,) about the poinA"(x). Note that the winding number makes
sense even in the case that fails to be connected.

It can happen that the winding numbentof about a point is more than 1 or negative.
In this case there is no well-defined region enclose&pyThe following result makes
this situation easy to detect. Its proof is contained as part of the proof of Theorem 2 in
Section 4.

Lemma. If the winding number of Kabout every point dk?\ K is eitherO or 1, then
the same is true of K n > 1.

The pair{o, f} used to produce the closed curiigo, f) will be referred to as
boundary dataf

(1) o: G{(a,b) - G (a, b) is an endomorphism,

(2) f: G — R?is a homomorphism such thaf (a), f (b)) is positively oriented
and linearly independent,

(3) Ae. 1) is expansive, and

(4) the winding number oK about every point oR?\Kj is either 0 or 1.

Remark. LetT, := T,(o, f) denote the closure of the region(s) boundedby:=
Kn(o, ). ltwillbe seenin Section 4 thdt, also converges, with respect to the Hausdorff
metric, to a compact set, sdy The following issue arises. Althouddy, is the boundary

of T,, it may be the case th#t is not the boundary of . In fact, it is even possible that
K is space-filling. In the following example, it is actually the case that T:

fa = (1,0, o(@) = a,
f(b)y = (0,1, o(b) = a*b?a~'b~2a'bba

In fact, for this exampleK,, is the boundary of the til&, in example (2.7) of Section 2.
The tile Ts and its boundarKs are shown in Fig. 3, as well as the whole file Since
there is little hope of relating and its boundary in such pathological situations, this
problem is addressed in Theorem 3 of Section 5.

4. The Correspondence between Tile and Boundary Data

In Section 2 a tile is constructed from tile data, A, D), and in Section 3 a closed
curved is constructed from boundary dé&ta f). In this section the two constructions
are related to each other.

Given boundary datéo, f), let L be the lattice generated bfy(a) and f (b); let
A = A, 1), and letQ be the parallelogram spanned by the vectb@) and f (b). For
a lattice pointx, let Qy be the translate t® to x. Let D = Dy, ) be the set of lattice
pointsx such thatQy is enclosed byA(K1 (o, f)). Given boundary dat&, f), we have
now produced extended tile datia, A, D, Q).
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Theorem 2. The mappin@®: (o, f) — (L, A, D, Q) given above induces a bijection
from the collection of all boundary data to the collection of all extended tile data such
that

(1) aTa(L, A, D) = Kq(o, ).
(2) {T, +x | x € L} is atiling of the plane
(3) A(Ths1) = Ugep (Tn + d), where the union is nonoverlapping

Proof.  All unions in this proof are nonoverlapping unions. Concerning statement (2),
note that, sinc® is a set of coset representatives fgrA(L) we havelL = D + A(L).
lterating this equation yields = Y/} A'(D) + A"(L). Letting D, = Y15 A'(D),
we haveR? = J{Q + x | x € A"(L) + Dy}. This implies thalR? = A""(R?) =
UAT™(Q) +x | x e L+ A"(Dp)} = U{Tn + X | X € L}, the last equality by
definition (2.3).

Concerning statement (3), definition (2.3) impli&€T,.1) = [ JIAT™(Q) + X | X €
ST,AT(D)+D}=U{Ta+d|de D}

Concerning statement (1), we next prove the following for each 1. Recall that
wo = aba b 1.

p(c™(wp)) bounds A"(T,). (4.2)

p(e ™ (wo)) = p(wio ™ (wo)wit - - - wo Y (woyw b, (4.2)

where p(w;) is a path from the origin té\"~(d;). We use the terrboundsin (4.1) to
mean that the winding number pfo ™ (wg)) about each point in the interior & (T,)
is 1 and the winding number about each point in the complemeAf 6F,,) is 0. Note
that the lemma in Section 3, as well as statement (1) in Theorem 3, is a consequence of
statement (4.1).
Statements (4.1) and (4.2) will be proved by induction. Both are true by definition for
n = 1; assume they are true for= N. Applying ¢ to the words on both sides of (4.2)
yields

p(e N (we)) = plo(w1)a™ (wo) (o (w1)™* - - - o (wi)o ™ (wo) (o (wi) ™).

However, using the commutative diagram in Sectiorp@r (w)) is a path from the
origin to AN(d;); therefore (4.2) is true fan = N + 1.

By statement (3) of Theorem 2AN*1(Tyi1) = Ugep(AN(Th) + AN()).
By the induction hypothesié\N(Ty) is bounded byp(c ™ (wg)). Since the union
Ugen (AN(Th) + AN(d)) is nonoverlapping, it is bounded by(wio ™ (wo)w ™t - -
wko N (wo)w, 1), where p(w;) is a path from the origin tAN(d;). By (4.2), the set
AN+L(Ty 1) is bounded byp(o N1 (wg)), which proves (4.1) fon = N + 1.

To show that the mappin@ is onto, consider extended tile datia, A, D, Q). Let
homomorphismf: G — R? be defined by lettingf (a) and f (b) be the lattice points
(positively oriented) that generate parallelogr@mWe claim that there exists an endo-
morphismo: G — G such thatA, 1y = AandD, 1y = D. To see this, let

m m,
M = aa lab
Mba  Mpp
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be the matrix ofA with respect to the basid (a), f (b)). Thent(a) = a™ab™a, ¢(b) =
ameehMo defines an endomorphism with the property tbat ¢ is a set of coset repre-
sentatives folL /A(L). However, this digit set may not b@. Proceed in steps to find
an endomorphisma such thatD, ) = D. At each step replace some digitin the
current digit set by eithed += A(f (a)) ord £+ A(f (b)). Any digit set forL andA can be
obtained by a chain of such replacements. Each such replacement can be accomplished
by changing the current(a) = «, 7(b) = 8 to the altered endomorphism of the form
(@) = «, T'(b) = waba b twg orr’(a) = wbab talwla, t/(b) = B, where
p(w) is a path from the origin tal. The validity of this procedure follows from the
commutative diagram in Section 3. (It is possible that the winding number of the curve
Ki(z, f) about points ofR?\K1(z, f) is other than 0 or 1. It is nevertheless the case
that the lattice points enclosed BYK;(z, f)), counted with multiplicity given by the
winding number, give a digit set in the following sense. ketL — Z be the function
that counts this multiplicity. Thef} ", _- ¢(x) = 1 for each cose€ of L/A(L). This
extended notion of digit set allows the arguments above to go through without change.)
To show that® is one-to-one, assume that boundary dataf ) and(z, g) map to
the same extended tile data unéerSince( f (a), f (b)) and(g(a), g(b)) span the same
parallelogramQ and are both positively oriented, we hate= g. Next assume that
o@ =a,0(b) =p,t(@) =y, v(b) =6. BecauseA, 1) = Aq, 1) we have from (3.1)
that f (o) = f(y)andf(8) = f(8). However, therD, 1) = D, 1) implies thatx = y
andp = § because(apfa1p1) andp(ysy —16~1) enclose the same set of digits. Now
we haves = 7 sinces andt are determined by their values arandb. O

5. The Limit Tile and Its Boundary
In light of Theorem 2, fix particular extended tile data, A, D, Q) and corresponding

boundary datdo, f). We use the notatiof, for the tile andK,, for its boundary. The
sequencesT,} and{K,} converge in the Hausdorff metric. Let

K - ||m Kn,
n—o00

T = lim T,.
n— oo

According to statements (1) and (2) of Theorem 2, we knowdfigt= K, for each
n and that translates df, by the latticeL yield a tiling of R?. As pointed out in the
remarks at the end of Sections 2 and 3, these results may not extend to the limit tile and
limit boundary. It may not, in general, be true tldt = K or that{T + x | x € L}
is a tiling of R2. The main result of this section provides conditions under which the
pathological situations do not occur. In what follow$8 denotes the interior of ; m
denotes Lebesque measureRi and|L | denotes the area of the fundamental domain
of the latticeL .

Theorem 3. Let T be a tile constructed from tile datd, A, D) and let K be the
curve constructed from corresponding boundary daet7 = {T + x | X € L}. The
following statements are equivalent

(1) m(T) = IL|.
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(2) K =9T.
(3) K is not space filling
(4) T is a lattice rep-tiling of the plane

Remark 1. By aresult of Lagarias and Wang [14)(T) is an integral multiple ofL |,
whether or not the other conditions in Theorem 3 are satisfied.

Remark 2. Theorem 3 is mainly concerned with conditions that involve the tile and its
boundary. Additional equivalent conditions are given by¢henig and Haas [10] and
by the author [20]. These conditions are algorithmic, and together with Theorem 3, they
provide an effective method to check that the curve generated is actually the boundary
of the self-affine tile.

The condition in [20] is in terms of addresses of lattice points and is most easily stated
when Oe D and O T°. A lattice pointx is said to have dinite addressf it can be
expressed in the form = Y ' , A'd; whered; € D.

Theorem[20]. There is a disk B centered at the originith radius depending only
on A and D such that7 is a lattice rep-tiling if and only if each lattice point in B has
a finite address

In [20] there is an effective calculation of the radiusB®fand an easy algorithm to
determine whether a lattice point has a finite address.

The condition in [10] is in terms of a contact matrix. Fix a basise, of the lattice
L and sets; = {+e;, £&}. Recursively define the sets

S ={xel|(Ax+ D)n(y+ D) # ¢ forsomey € S,_1}

and seS= |2 ; S. Itturns out thaSis finite becaus&, eventually stabilizes. Define
the entries of ari| S| x |S|)-matrix C, called thecontact matrix by

Cxy = [(AX+ D) N (y + D)| for x,yeS

Theorem[10]. 7 is a lattice rep-tiling if and only if the contact matrix has spectral
radius less thandetA|.

Remark 3. The proof of the equivalence of statements (1) and (4) in Theorem 3 is due
to Gréchenig and Madych [11], but is so short we include it here for completeness.

Proof of Theoren8. The following easy result about convergence in the Hausdorff
metric is used several times in the proof. Assume,li; X, = X in the Hausdorff
metric.

(a) If x ¢ X, then there exists a didR centered ak such thatX, N B = @ for n
sufficiently large.

(b) If x € X, then for any diskB centered ax we haveX,, N B # ¢ for n sufficiently
large.



Self-Replicating Tiles and Their Boundary 475

(2) = (4) Itis always the case th&? is covered by the tiles il for the following
reason. Sincd® is a set of coset representatives EgfA(L) we haveL = D + A(L).
Iterating this equation yields = i“;ol A(D) + A"(L) which implies A™"(L) =
>, AT(D)+L. Since 2, A"(L)isdenseiRZand limy_ o (> L, AX(D)) =T,
this implies thaR? = | J{T +x | x € L}.

The self-replicating property follows directly from property (2.5).

To show that the tiles are nonoverlapping, assume by way of contradiction, the exis-
tence of pointx, y € L, X # y, such thatT + x)° N (T + y)° # @. By statement (2)
we have lim_ ., T, = daT. By statement (a) above, there exists a diskentered at
some point in(T + x)° N (T + y)° suchthaB N a(T, +X) =@ = BN a(T, + y) for
n sufficiently large. However, because [im,, T, = T we also know, by statement (b),
thatB N (T, +x) £ @dandB N (T, +y) # @ for n sufficiently large. We now claim that
B C (Th + x) N (T, + y), which contradicts statement (2) of Theorem 2. To prove the
claim, assume thaB is not contained i, + x. ThenB would contain points in both
T, + X and its complement; hend&would contain a point of (T, + X), a contradiction;
similarly for B being contained i, + y.

(4) = (2) We first show thabT < K. Assume thatx € 9T C T. Because
lim_ Tn = T, statement (b) implies that any digk centered ak must contain a
point in T, for n sufficiently large. Sincex € 9T the interior of the diskB contains a
point not inT. So by statement (a) didk contains a point in the complementf for
n sufficiently large. SinceB contains points in botf, and its complement, we have
BN Ky = BNaT, # ¥ for n sufficiently large. By statement (a) this implies that K
because lim, o Kn = K.

To prove thatk C 8T, assume, by way of contradiction, that there exists a point
x € K\3T. Thenx € T°; otherwisex ¢ T and lim_. T, = T would imply, by
statement (a), the existence of a diBkcentered a such thatT, " B = @ for n
sufficiently large. However, this is impossible becanse K = limp_ o, 8T, implies,
by statement (b), thakT, N B # ¢ for n sufficiently large.

Now consider any disB centered ax contained il . As mentioned in the paragraph
above,B must contain a point o T, for n sufficiently large. SincgT, + x | X € L}
is a polygonal tiling by Theorem 2, there is another file+ y,, yn € L, such that
(Th + ¥n) N B # @. By taking a subsequence pfy,}, there exists a single lattice point
y such tha{T, 4+ y) N B # @ for arbitrarily large values afi. Since lim . (Th +Y) =
T + vy, it follows from statement () that € T + y. Nowx € T° N (T + y) implies
T°N (T +y)° # ¥ becausd is the closure of its interior. However, this contradicts the
assumption thafT + x | X € L} is atiling.

(2) = (3) By statement (2) we hawdT = K. If K is space filling, then there is a disk
B C K =0T C T. Forthe center oB to be ind T, disk B must contain points that are
not in T, a contradiction.

(3)= (4) Assume thaf is not atiling. As shown at the very beginning of this prad,
is covered by the tiles ifi and the self-replicating property holds. So it must be the case
that two tilesT +x andT + y overlap. If it can be shown th&al +x)N (T +y) € K+ X,
then we are done. Assume not. Then becausg JimK,, = K, statement (a) implies
that there is a disB centered at some point of T 4+ x) N (T + Y]\ (K + x) such that
B N (K, + x) = ¥ for n sufficiently large. Because lim, o, T, = T, by statement (b)
disk B must contain points of botfi, + x and T, + y for n sufficiently large. Since
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{Th+x | x € L}isatiling by Theorem 2B must contain a point df(T, +Xx) = K, +X
for eachn sufficiently large, a contradiction.

(1) = (4) As already shown7 coversR? and7 has the self-replicating property.
It is sufficient to show that tiles do not overlap. Define a functionRsnby f (x) =
ZyeL x1 (X —Y), whereyr is the characteristic function df. Becaus€ is a covering,
f(x) > 1 for all x. If Q denotes a fundamental parallelogram for the latticghen
fQ foodx = >0, fQ x1(X —y)dx = [ xt(x)dx = m(T) = |L|. This implies
that f (x) = 1 almost everywhere, which implies the desired result.

(4) = (1) Using the same notation as aboveTifs a tiling, thenf (x) = 1 almost
everywhere anth(T) = [p, xT(X)dx = fQ f(X)dx =m(Q) = |L|. O
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