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MÖBIUS ITERATED FUNCTION SYSTEMS

ANDREW VINCE

Abstract. Iterated function systems have been most extensively studied when
the functions are affine transformations of Euclidean space and, more recently,

projective transformations on real projective space. This paper investigates it-
erated function systems consisting of Möbius transformations on the extended
complex plane or, equivalently, on the Riemann sphere. The main result is a
characterization, in terms of topological, geometric, and dynamical properties,
of Möbius iterated function systems that possess an attractor. The paper also
includes results on the duality between the attractor and repeller of a Möbius
iterated function system.

1. Introduction

Iterated function systems (IFSs) are a standard framework for describing and
analyzing self-referential sets such as deterministic fractals [3, 9, 13] and some types
of random fractals [5]. Most of the examples of iterated function systems in the
literature consist of affine functions defined on Euclidean space [1]. Attractors
of affine IFSs have many applications, including image compression [4, 10] and
geometric modeling [7]. They relate to the theory of the joint spectral radius [6]
and to wavelets [11]. Recently, a rich theory has been developed for IFSs consisting
of projective transformations defined on real projective space [2]. The intuition
developed for affine IFSs concerning the behavior of attractors seems not to extend
to the projective setting.

This paper concerns Möbius IFSs. A Möbius IFS consists of Möbius trans-
formations on the extended complex plane, equivalently on the Riemann sphere,
or equivalently consisting of complex projective transformations on the complex
projective line. Iteration by the action of a group of Möbius transformations on
the complex plane has been nicely explored, in a recreational, but mathematically
serious, manner in [16].

The main result of this paper is a characterization of iterated function systems
that possess an attractor. The characterization involves topological, geometric, and
dynamical properties of the IFS as explained briefly in the paragraphs following the
statement of the theorem below. The second theorem describes the duality between
the attractor and repeller of a Möbius IFS. Figure 1 shows the attractor and repeller,
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Thanks go to Michael Barnsley for always stimulating conversations on iterated function sys-

tems, and for graciously hosting my visit to the Australian National University, where much of
this paper was written.

c©2012 American Mathematical Society
Reverts to public domain 28 years from publication

491



This is a free offprint provided to the author by the publisher. Copyright restrictions may apply.

492 ANDREW VINCE

on the Riemann sphere, of a Möbius IFS given in Example 7.4 of section 7. In the
theorem below, X denotes the closure of a subset X of the extended complex plane

Ĉ.

Theorem 1.1. For a Möbius IFS F , the following conditions are equivalent:

(1) F has an attractor A �= Ĉ,

(2) F has a repeller R �= Ĉ,

(3) there is a nonempty open set U �= Ĉ such that F is topolgically contractive
on U ,

(4) F is contractive on an open set U such that U �= Ĉ,

(5) R(F ) �= Ĉ.

Moreover, a Möbius IFS can have at most one attractor.

Theorem 1.2. Assume that F has an attractor A �= Ĉ. If BA is the basin of
attraction and of A and BR the basin of attraction of the corresponding repeller R,

then A ∩R = ∅ and BA = Ĉ \R and BR = Ĉ \A.

Basic definitions associated with the extended complex plane Ĉ and Möbius

transformation on Ĉ are provided in section 2. Three equivalent views of the action

Figure 1. The attractor (red, below) and repeller (black, above)
of a Möbius IFS consisting of two loxodromic transformations. See
the online version for colors.
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of the Möbius group are described—as the action on the extended complex plane,
as the action on the Riemann sphere via stereographic projection, and as the action
of PSL(2,C) on the complex projective line. There is another viewpoint, as the
action of the Lorentz group on the celestial sphere in Minkowski space. Although
this action is not used in this paper, we describe it briefly in section 8 because of
related papers in the literature on “quantum” iterated function systems.

The attractor of a Möbius IFS is a compact subset of Ĉ, the definition and some
properties of which are given in section 3. It is possible that the attractor of an IFS

is all of Ĉ; an example of a Möbius IFS with this property is given in that section.
The definition and some properties of the repeller and the adjoint attractor are
provided in section 5. The proof of the equivalence of statements (1) and (2) of
Theorem 1.1 and the proof of Theorem 1.2 also appear in that section.

Concerning statements (3) and (4) in Theorem 1.1, a key issue is the relationship
between the existence of an attractor and the contractive properties of the functions
in the IFS. Topologically contractive in statement (3) means that each function in
F takes U into U . The proof of (1) ⇒ (3) appears in section 3. It is a classical
result of Hutchinson [13] that, if an IFS F consists of contractions on a complete
metric space, then F has an attractor. Contractive in statement (4) means that
each function in F is a contraction. Hence Hutchinson’s result guarantees that

(4) ⇒ (1). It is also proved in section 3 that an IFS F with an attractor A �= Ĉ

must be loxodromic, in the sense that all compositions of functions in F must be
loxodromic transformations. This is used to prove the uniqueness of the attractor
as stated in Theorem 1.1.

The proof of (3) ⇒ (4) appears in section 4. What is somewhat subtle is that the
metric with respect to which the functions in F are contractions is not a standard
metric. It is not the Euclidean metric on the complex plane C nor the chordal
metric on the Riemann sphere. On the open set U the metric is defined by

dU (x, y) = max
z/∈U

log
|z − x|
|z − y| +max

z/∈U
log

|z − y|
|z − x|

if x, y ∈ C. Examples of this metric for some sets U are given in section 4. Figure 2
illustrates the formula above for the distance between two given points when U is
a disk.

The set R(F ) of chain-recurrent points of an IFS F is introduced in section 6.
The equivalence of statements (1) and (5) is proved in that section, which completes
the proof of Theorem 1.1.

Section 7 contains several examples of attractors of Möbius IFSs. The final
section 9 poses an open problem concerning a property of a Möbius IFS that we
call strong loxodromy. Strong loxodromy is defined in terms of the eigenvalues of
the functions in the IFS. The conjecture is that F is strongly loxodromic if and
only if the five conditions in Theorem 1.1 hold.

2. Extended complex plane, Riemann sphere, projective line

This section contains basic notions related to three essentially equivalent spaces:

the Riemann sphere S, the extended complex plane Ĉ := C∪{∞}, and the complex
projective line CP1. The complex projective line CP1 is the quotient of C2 \ {0}
by the equivalence relation (z0, z1) ∼ (λz0, λz1) for any nonzero λ ∈ C. Let φ :
C2 → CP1 = C2/ ∼ denote the quotient map. The complex projective line CP1 is
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Figure 2. The distance between points x and y in the unit disk
is approximately 3.18. The point z1 on the boundary of the disk
maximizes the ratio |z − y|/|z − x| of distances, and the point z2
maximizes the ratio |z − x|/|z − y| of distances.

topologically a sphere. The mapping

CP1 → Ĉ := C ∪ {∞},

(z0, z1) �→
z0
z1

takes the complex projective line bijectively onto the extended complex plane, and
the extended complex plane is in bijection with the Riemann sphere S via stereo-
graphic projection; explicitly

S → Ĉ,

(x, y, z) �→ x+ iy

1− z
,

where S is considered as the unit sphere centered at the origin in R3. Subsequently

in this paper, we move interchangeably between S, Ĉ, and CP1.
Denote by |z−w| the Euclidean metric for z, w ∈ C and by dc(z, w) the chordal

metric between z, w ∈ S, where the points denoted z and w in C and in S are
related by stereographic projection. If z, w ∈ C are contained in a disk of radius R
centered at the origin, then

dc(z, w) ≤ 2 |z − w| ≤ (1 +R2) dc(z, w),

showing that the Euclidean metric and the chordal metric are Lipschitz equivalent
on the disk and, in particular, induce the same topology there.

A dimension 1 projective transformation is an element of PGL(2,C)=PSL(2,C),
the quotient of the general linear group GL(2,C) by the complex multiples of the
identity matrix. Each element f ∈ PSL(2,C) induces a well-defined map f :
CPn → CPn such that, for any matrix L representing f , the following diagram
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commutes:
L

C
2 → C

2

φ ↓ ↓ φ
CP1 → CP1

f

In particular, for any projective transformation f : CP1 → CP1, a corresponding
linear map can be expressed as a 2 × 2 matrix Lf =

(
a b
c d

)
where ad − bc = 1.

Identifying the complex projective line CP1 with the extended complex plane Ĉ,
the group of projective transformations is the group of Möbius transformations of
the form

f(z) =
az + b

cz + d
,

such that the complex numbers a, b, c, d satisfy ad − bc = 1 and with the under-
standing that f(∞) = a/c and f(−d/c) = ∞.

Definition 2.1. Letting tr(L) denote the trace of matrix L, a Möbius transforma-
tion f is

(1) parabolic if tr2(Lf ) = 4,
(2) elliptic if tr(Lf ) is real and 0 ≤ tr2(Lf ) < 4,
(3) loxodromic if tr2(Lf ) /∈ [0, 4].

A loxodromic transformation f has two fixed points: an attractive fixed point
denoted zf at which |f ′(zf )| < 1 and a repelling fixed point denoted z′f at which
|f ′(z′f )| > 1 .

3. The attractor of a Möbius IFS

In this section, after giving the definition of an attractor of an IFS, the implica-
tion (1) ⇒ (3) in Theorem 1.1 is proved. The notion of a loxodromic IFS is defined,

and we prove that an IFS with an attractor A �= Ĉ must be loxodromic.

Definition 3.1. Let X be a complete metric space. If fm : X → X, m = 1, 2, . . . ,M,
are continuous mappings, then F = (X; f1, f2, . . . , fM ) is called an iterated func-

tion system (IFS). If X is Ĉ or S (CP1 ) and each f ∈ F is a Möbius transformation
(projective transformation), then F will be called a Möbius IFS.

To define the attractor of an IFS, first define

F (B) =
⋃
f∈F

f(B)

for any B ⊂ X. By slight abuse of terminology, we use the same symbol F for the
IFS, the set of functions in the IFS, and for the above mapping. For B ⊂ X, let
F k(B) denote the k-fold composition of F , the union of fi1 ◦ fi2 ◦ · · · ◦ fik(B) over
all finite words i1i2 · · · ik of length k. Define F 0(B) = B. Given a metric d(·, ·) on
X, there is a corresponding metric dH, called the Hausdorff metric, on the collection
H(X) of all nonempty compact subsets of X:

dH(B,C) = max

{
sup
b∈B

inf
c∈C

d(b, c), sup
c∈C

inf
b∈B

d(b, c)

}
.
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Definition 3.2. A nonempty compact set A ⊂ X is said to be an attractor of the
IFS F if

(1) F (A) = A and
(2) there is an open set U ⊂ X such that A ⊂ U and limk→∞ F k(B) = A, for

all compact sets B ⊂ U , where the limit is with respect to the Hausdorff
metric.

The largest open set U such that (2) is true is called the basin of attraction for
the attractor A of the IFS F.

Example 3.3. It is possible that the attractor of a projective IFS on Ĉ is Ĉ itself.

This is the case for F = {Ĉ; f0, f1, f2, f3, f4, f5}, where

f0(z) = z, f1(z) = z + 1, f2 =
1

z
, f3(z) = 2z, f4(z) = z/3, f5(z) = eiθz,

where θ/π is irrational.
The first condition in Definition 3.2 of attractor holds, just by use of transfor-

mation f0. Concerning the second condition in the definition of attractor, let z0 be

an arbitrary point in Ĉ. The transformations f1 and f2 assure that F (z0) contains
a point w0 �= 0,∞. Use the transformations f0, f3 and f4 (and a little elementary
number theory) to see that, for any z on the line {z | arg(z) = arg(w0)} and any
ε > 0, there is a point w ∈ F k(w0) such that |w − z| < ε for k sufficiently large.
Hence there is a point w ∈ F k(z0) such that |w − z| < ε for k sufficiently large.

Finally, use the transformations f0 and f5 to guarantee that, for any z ∈ Ĉ and
any ε > 0, there is a point w ∈ F k(z0) such that |w− z| < ε for k sufficiently large.

The notation int(Y ) is used for the topological interior of a set Y and Y for the
closure of Y .

Definition 3.4. An IFS F = (X; f1, f2, . . . , fM ) is said to be topologically con-
tractive on a compact set K ⊂ X if F (K) ⊂ int(K).

Although a similar result is used in the real projective case [2], we include it here
for completeness.

Theorem 3.5. If a Möbius IFS F on Ĉ has an attractor A �= Ĉ, then there exists
an open set U containing A such that

(1) A ⊂ U ,

(2) U �= Ĉ,
(3) F is topologically contractive on U , and
(4) U has finitely many connected components.

Proof. Assume that the attractor A �= Ĉ; in particular there is a point z0 /∈ A.
Let V be an open set such that A ⊂ V and V contained in the basin of attraction

for A. Let V ′ denote an open set such that V ⊂ V ′ and V ′ ⊂ Ĉ \ {z0}. Since
A = limk→∞ F k(V ), there is an integer m such that F k(V ) ⊂ V for all k ≥ m.
Define

O :=
∞⋃

k=m

F k(V ).
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Since each function in F is an open map, O has the properties:

(1) O is open,
(2) A ⊂ O,
(3) F k(O) ⊂ V for all k ≥ 0.

The next part of the proof makes use of the function F−1(X) = {x ∈ X : f(x) ∈
X for all f ∈ F}. Note that F−1 takes open sets to open sets, X ⊂ (F−1 ◦ F )(X)
and (F ◦ F−1)(X) ⊂ X for all X.

Since A = limk→∞ F k(V ), there is an integer K such that FK(O) ⊂ O. Let
Ok, k = 0, 1, . . . ,K, be defined recursively, going backwards from OK to O0, as
follows. Let OK = O and for k = K− 1, . . . , 2, 1, 0, let Ok be an open set such that

(4) F k(O) ⊂ Ok ⊂ V ′, and
(5) F (Ok) ⊂ Ok+1.

To verify that sets Ok, k = K − 1, . . . , 1, 0, with these properties exist, first
note that property (4) holds for k = K. To verify the properties for all k =
K − 1, . . . , 2, 1, 0, inductively assume that Ok, k ≥ 1, satisfies property (4). Using
property (4) we have Fk−1(O) ⊂ F−1(Fk(O)) ⊂ F−1(Ok), and using property
(3) we have Fk−1(O) ⊂ V ⊂ V ′. Now choose Ok−1 to be an open set such that
F k−1(O) ⊂ Ok−1 and Ok−1 ⊂ V ′∩F−1(Ok). The last inclusion implies F (Ok−1) ⊂
Ok.

We claim that

U =
K−1⋃
k=0

Ok

satisfies the properties in the statement of the theorem. By properties (2) and (4)
we have A = Fk(A) ⊂ Fk(O) ⊂ Ok for each k, which implies A ⊂ U . By property

(4) we have U is an open set such that U ⊂ V ′ ⊂ Ĉ \ {z0}. Lastly, we show that F
is a topological contraction on U :

F(U) :=

K−1⋃
k=0

F(Ok) ⊂
K⋃

k=1

Ok =

K−1⋃
k=1

Ok ∪OK ⊂ U ∪O ⊂ U ∪O0 ⊂ U,

the first inclusion coming from property (5), the second inclusion because OK = O,
the third inclusion from property (4) applied to k = 0, and the last inclusion from
the definition of U .

Without loss of generality it may be assumed that each connected component C
of U has nonempty intersection with A; otherwise, throw out the components that
do not, and note that if C has nonempty intersection with A, then so does F (C).
Since the components of U form an open covering of A and A is compact, U has
finitely many components. �

For an IFS F , let F̂ denote the set of all finite compositions of the functions in

F . If each function in F̂ is loxodromic, then F will be called a loxodromic IFS.

Theorem 3.6. If a Möbius IFS F on Ĉ has an attractor A �= Ĉ and f ∈ F , then

(1) F is loxodromic,

(2) the attractive fixed point of each f ∈ F̂ lies in A, and

(3) the repulsive fixed point of each f ∈ F̂ lies outside the basin of attraction
of A.
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Proof. Let f ∈ F̂ and F ′ = F ∪ {f}. It is routine to check that if A is an attractor
of F with basin of attraction B, then A is also an attractor of F ′ with basin of
attraction B. Therefore, to prove statement (1) it is sufficient, without loss of
generality, to show that each f ∈ F is loxodromic, and to prove statements (2) and
(3), we can, without loss of generality, assume that f ∈ F .

We will prove, by contradiction, that F can contain no parabolic or elliptic

transformation. Assume that F has attractor A′ �= Ĉ and that F contains a

parabolic transformation f : Ĉ → Ĉ. Any parabolic transformation is conjugate
(via a Möbius transformation h) to a translation of the form g(z) = hfh−1(z) =
z+1. Let Fh be the IFS obtained from F by conjugating each of its functions by h.

Then Fh has attractor A = h(A′) �= Ĉ. The point ∞ ∈ A because, if z0 is any point
in the basin of attraction of A, then ∞ = limk→∞ gn(z0) ∈ A. Therefore, according

to Theorem 3.5, there is a compact set K := U �= Ĉ such that ∞ ∈ A ⊂ int(K)
and Fh is a topological contraction on K. Since ∞ ∈ int(K), there is some disk D
centered at the origin in C such that K contains the complement of D. If z is any
point not in K, then z − k ∈ D ⊂ K for k sufficiently large. This implies that, for
k sufficiently large, gk(z − k) = z where z − k ∈ K but z /∈ K, contradicting that
Fh is a topological contraction.

Next assume that F has attractor A′ �= Ĉ and that F contains an elliptic trans-
formation f . Any elliptic transformation is conjugate (via a projective transforma-

tion h) to a projective transformation of the form g(z) = hfh−1(z) =
(

eiθ 0
0 e−iθ

)
,

which, on the Riemann sphere centered at the origin in R3, is a rotation through
the x3-axis. By Theorem 3.5 there is a compact set K that is mapped by f into
int(K). Therefore g maps h(K) into int(h(K)). Since a rotation is an isometry of
the sphere, this is impossible.

By statement (1) of this theorem, the map f is loxodromic. Therefore f has an
attractive fixed point zf and a repulsive fixed point z′f . Moreover limn→∞ fn(z) =

zf for any z �= z′f . If z is any point in the basin of attraction of F that is not a

fixed point of f , then zf = limk→∞ fk(z) ⊂ limk→∞ F k(z) = A. �

Corollary 3.7. A Möbius IFS can have at most one attractor.

Proof. Assume, by way of contradiction, that F has two attractors, A and A′. First
consider the case where A∩A′ �= ∅. If z ∈ A∩A′, then A = limk→∞ F k({z}) = A′.

Therefore A ∩ A′ = ∅. This implies that A �= Ĉ and A′ �= Ĉ. By Theorem 3.6,
the attractive fixed point of each f ∈ F would lie in both A and A′, contradicting
A ∩ A′ = ∅. �

4. A metric on subsets of Ĉ

This section concerns the contractive properties of a Möbius IFS. A metric is

defined on any open set U ⊂ Ĉ with U �= Ĉ. Using this metric, the implication
(3) → (4) in Theorem 1.1 is proved.

Definition 4.1. A function f : X → X on a metric space X is called a contraction
with respect to a metric d if there is an s, 0 ≤ s < 1, such that d(f(x), f(y)) ≤
s d(x, y) for all x, y ∈ X. An IFS F = (X; f1, f2, . . . , fM ) is said to be contractive
on a set X ⊂ X if

(1) F (X) ⊂ X,
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MÖBIUS ITERATED FUNCTION SYSTEMS 499

(2) there is a metric d : X × X → [0,∞), inducing the same topology as on
X,

(3) (X, d) is a complete metric space, and
(4) for each f ∈ F , the restriction f |X of f to X is a contraction on X with

respect to d.

It is a standard result that F contractive on X implies that the function F :
H(X) → H(X) is a contraction with respect to the corresponding Hausdorff metric.

Let U be an open subset of Ĉ such that U �= Ĉ. Define a function dU : U ×U →
[0,∞) by

(4.1) dU (x, y) = max
z/∈U

log
|z − x|
|z − y| +max

z/∈U
log

|z − y|
|z − x|

if x, y ∈ C,

(4.2) dU (x,∞) = max
z/∈U

log |z − x|+max
z/∈U

log
1

|z − x| ,

and dU (∞, y) is defined by an analogous formula. We claim that dU is a metric on
U . Clearly dU (x, y) = dU (y, x), and the triangle inequality is easy to check. Also
dU (x, x) = 0 for all x ∈ U , and if dU (x, y) = 0, then |z − x| = |z − y| for every

z /∈ U . Since U �= Ĉ, this is possible only if x = y.

Lemma 4.2. Let c > 0 be a real number, x, y ∈ C, and f a Möbius transformation.

(1) The locus of points C =
{
z ∈ C : |z−x|

|z−y| = c
}

is a circle with center on the

line joining x and y if c �= 1. If c = 1, then C is the perpendicular bisector
of the line segment xy.

(2) If c > 1, then the set of points inside C is {z ∈ C : |z−x|
|z−y| > c} .

(3) There is a c′ > 0 such that f(C) =
{
z ∈ C : |z−f(x)|

|z−f(y)| = c′
}
.

Proof. A straightforward calculation suffices to vertify statements (1) and (2). To
vertify (3), it is sufficient to show that, if z1 and z2 are any points on C such that
|z1−x|
|z1−y| =

|z2−x|
|z2−y| , then

|f(z1)−f(x)|
|f(z1)−f(y)| =

|f(z2)−f(x)|
|f(z2)−f(y)| . But this follows from the invariance

of the cross ratio under the Möbius transformation f , i.e.,

(4.3)
(z1 − x)(z2 − y)

(z1 − y)(z2 − x)
=

(f(z1)− f(x))(f(z2)− f(y))

(f(z1)− f(y))(f(z2)− f(x))
.

�
In order to generalize distance in the Cayley-Klein disk model of the real pro-

jective plane, Hilbert [12] defined a certain metric on convex cones in Rn, now
referred to as the Hilbert metric. The following examples make it clear that the
metric defined by (4.1) and (4.2) is not this Hilbert metric, not even for a disk or
a rectangle. However, as is the case for the Hilbert metric, the cross ratio plays an
important role for the metric dU , as is made clear in the proof of Lemma 4.2 above
and Theorem 4.5 below.

Example 4.3. Let U be the open unit disk in C. The distance in the metric dU
between the center of the disk and a point at a distance r from the center is log 1+r

1−r .
A general formula for the distance between two arbitrary points in U is problematic
because it involves solving a degree 6 polynomial equation. In general, the points
z that maximize in formula (4.1) do not lie on the line joining the two points. This
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is illustrated in Figure 2. Even for the disk, the metric dU is not the Hilbert metric
associated with a 2-dimensional convex region.

Example 4.4. Let U be the open rectangle in C bounded by the lines
Re(z) = a+b, Re(z) = −(a+b), Im(z) = 1, Im(z) = −1, where a ≥ 1, b ≥

√
2−1.

A staightforward calculation shows that dU (a,−a) = log(a2 + 1 + a
√
a2 + 1) −

log(a2 + 1 − a
√
a2 + 1) and the points that maximize the two quantities in for-

mula (4.1) are z1 =
√
a2 + 1± i and z2 = −

√
a2 + 1± i.

Theorem 4.5. Let U be an open subset of Ĉ such that U �= Ĉ.

(1) The metrics dU , dc and the Euclidean metric induce the same topology on
U .

(2) The metric space (U, dU ) is complete.
(3) If f : U → U is a Möbius transformation such that f(U) ⊂ U , then f is a

contraction with respect to dU .

Proof. Concerning statement (1) in the theorem, the equivalence of the Euclidean
and chordal metrics was already mentioned in section 2. The equivalence to the
metric dU is left as a routine exercise. Concerning statement (2), assume that
{zn}∞n=1 is a Cauchy sequence of points in U with respect to dU . By the definition
of dU , this implies that there is an a > 0 such that |zn− z| ≥ a for all z /∈ U and all
n sufficiently large. This in turn implies that {zn}∞n=1 is a Cauchy sequence with
respect to the Euclidean metric, and hence a convergent sequence with respect
to the Euclidean metric since the Euclidean metric is complete on U . Since the
Euclidean metric and the metric dU induce the same topology on U , the sequence
{zn}∞n=1 is also convergent with respect to dU .

Concerning statement (3), let f be such a transformation. Let x and y be any
two distinct points contained in U , neither equal to ∞. For x = ∞ or y = ∞,
we omit the proof since it is similar but easier. We will show the existence of a
real number s, 0 ≤ s < 1, such that dU (f(x), f(y)) ≤ s dU (x, y). Let z1 and z2 be
arbitrary points not in U . The invariance of the cross ratio (equation (4.3)) implies

(4.4) log

∣∣∣∣z1 − x

z1 − y

∣∣∣∣+ log

∣∣∣∣ z2 − y

z2 − x

∣∣∣∣ = log

∣∣∣∣f(z1)− f(x)

f(z1)− f(y)

∣∣∣∣+ log

∣∣∣∣f(z2)− f(y)

f(z2)− f(x)

∣∣∣∣ .
Let w1 and w2 be such that

∣∣∣w1−x
w1−y

∣∣∣ = maxz/∈U

∣∣∣ z−x
z−y

∣∣∣ and ∣∣∣w2−y
w2−x

∣∣∣ = maxz/∈U

∣∣∣ z−y
z−x

∣∣∣.
From Lemma 4.2 it follows that w1 and w2 lie on the boundary of U , and the

sets D1 :=
{
w :

∣∣∣w−x
w−y

∣∣∣ ≥ maxz/∈U

∣∣∣ z−x
z−y

∣∣∣} and D2 :=
{
w :

∣∣∣w−y
w−x

∣∣∣ ≥ maxz/∈U

∣∣∣ z−y
z−x

∣∣∣}
are closed disks contained in U . A point w ∈ D1 such that w /∈ U would con-

tradict the definition of w1 as the point that maximizes
∣∣∣ z−x
z−y

∣∣∣ over all z /∈ U .

The same is true for point w ∈ D2, w /∈ U . Moreover, by Lemma 4.2, f(D1) ={
z :

∣∣∣ z−f(x)
z−f(y)

∣∣∣ ≥ ∣∣∣ f(w1)−f(x)
f(w1)−f(y)

∣∣∣}. Since f(U) ⊂ U , we have f(D1) ⊂ U . Therefore

there is an s1 < 1 such that, if z /∈ U , then
∣∣∣ z−f(x)
z−f(y)

∣∣∣ ≤
∣∣∣ f(w1)−f(x)
f(w1)−f(y)

∣∣∣s1 . Simi-

larly, there is an s2 < 1 such that, if z /∈ U , then
∣∣∣ z−f(y)
z−f(x)

∣∣∣ ≤
∣∣∣ f(w2)−f(y)
f(w2)−f(x)

∣∣∣s2 . If
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s = max{s1, s2}, then

dU (f(x), f(y)) = max
z/∈U

log

∣∣∣∣z − f(x)

z − f(y)

∣∣∣∣+max
z/∈U

log

∣∣∣∣ z − f(y)

z − f(x)

∣∣∣∣
≤ s

(
log

∣∣∣∣f(w1)− f(x)

f(w1)− f(y)

∣∣∣∣+ log

∣∣∣∣f(w2)− f(y)

f(w2)− f(x)

∣∣∣∣
)

= s

(
log

∣∣∣∣w1 − x

w1 − y

∣∣∣∣+ log

∣∣∣∣w2 − y

w2 − x

∣∣∣∣
)

= s

(
max
z/∈U

log

∣∣∣∣z − x

z − y

∣∣∣∣+ max
z/∈U

log

∣∣∣∣ z − y

z − x

∣∣∣∣
)

= s dU (x, y).

The second equality is from equation (4.4). �
The implication (3) ⇒ (4) in the Theorem 1.1 is a direct consequence of Theo-

rem 4.5.

Corollary 4.6. For a Möbius IFS F , if there is an open set U �= Ĉ such that F is
topologically contractive on U , then F is contractive on U .

5. The adjoint attractor and the repeller

The adjoint and the repeller of a Möbius IFS are introduced in this section, and
the equivalence of statements (1) and (2) in Theorem 1.1 is proved. The following

notation is used. For z ∈ Ĉ, denote the conjugate by z, and for any X ⊂ Ĉ, let

z⊥ := −1/z,

X⊥ := {z⊥ : z ∈ X},
X∗ := Ĉ \X⊥.

We use the notation ⊥ : X �→ X⊥ and ∗ : X �→ X∗ for the corresponding map-

pings. Identifying Ĉ with CP1, we have

z⊥ = {w : 〈w, z〉 = 0}.
If F is a Möbius IFS and f ∈ F , then its inverse f−1 is represented by the matrix
Lf−1 := L−1

f . In a similar fashion, define f∗ and f−∗ as the Möbius transformations
represented by

Lf∗ := L∗
f and Lf−∗ := (L−1

f )∗ = (L∗
f )

−1,

respectively, where ∗ denotes the conjugate transpose matrix. The following iter-
ated function systems related to F will be used in this section.

(1) The adjoint of the IFS F , denoted by F ∗, is the IFS

F ∗ :=
(
Ĉ; f∗

1 , f
∗
2 , . . . , f

∗
M

)
.

(2) The inverse of the IFS F is the IFS

F−1 :=
(
Ĉ; f−1

1 , f−1
2 , . . . , f−1

M

)
.

Definition 5.1. A set R ⊂ Ĉ is said to be a repeller of the IFS F if R is the

attractor of F−1. A set A′ ⊂ Ĉ is said to be an adjoint attractor of the IFS F if
A′ is the attractor of F ∗.
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Proposition 5.2. The following diagrams commute for any Möbius transformation
f and any Möbius IFS F :

⊥
Ĉ → Ĉ

f t ↓ ↓ f−1

Ĉ → Ĉ

⊥

⊥
H(Ĉ) → H(Ĉ)
F ∗ ↓ ↓ F−1

H(Ĉ) → H(Ĉ).
⊥

Proof. To verify that the diagrams commute, it is sufficient to show that, for all
x ∈ CP1 and any Möbius transformation f , we have L−1

f (x⊥) = [Lt
f (x)]

⊥. But

L−1
f (x⊥) = {L−1

f y : 〈x, y〉 = 0} = {z : 〈x, Lfz〉 = 0}
= {z : 〈Lt

fx, z〉 = 0} = [Lt
f (x)]

⊥.

�
Let S(Ĉ) denote the set of all subsets of Ĉ (including the empty set). For an IFS

F define the operator F : S(Ĉ) → S(Ĉ) by

F (X) =
⋂
f∈F

f−∗(X),

for any X ∈ S(Ĉ).

Proposition 5.3. The map ∗ is an inclusion reversing function with these prop-
erties:

(1) The following diagram commutes:

∗
S(Ĉ) → S(Ĉ)
F ↓ ↓ F

S(Ĉ) → S(Ĉ).
∗

(2) If F (X) ⊂ Y , then F ∗(Y ∗) ⊂ X∗.

Proof. The fact that the diagrams commute is easy to verify. Concerning the second
statement, since ∗ is inclusion reversing, F (X) ⊂ Y implies that Y ∗ ⊂ [F (X)]∗ =
F (X∗), the equality coming from the commuting diagram. The definition of F then
yields F ∗(Y ∗) ⊂ X∗. �
Theorem 5.4. For a Möbius IFS F the following statements are equivalent.

(1) F has an attractor A �= Ĉ,

(2) F ∗ has an adjoint attractor A′ �= Ĉ ,

(3) F has a repeller R = (A′)⊥ �= Ĉ.

Moreover, if BA, BA′ , and BR are the basins of attraction for A,A′, and R, of IFSs
F, F ∗ and F−1, respectively, then

(1) BR = Ĉ \A and BA = Ĉ \R, and

(2) BA′ = (Ĉ \A)⊥.

Proof. (1)⇒ (2): At this point we have aleady proved the equivalence of statements
(1) and (3) in Theorem 1.1. Hence if F has an attractor, then there is a nonempty

open set U such that F (U) ⊂ U and U �= Ĉ. By Proposition 5.3, this implies that
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F ∗(U∗) ⊂ (U)∗. Let V = (U)∗. It is easy to check that V = ∅ if and only if U = Ĉ

and V = Ĉ if and only if U = ∅; also routine is that V = U∗, which is an open set.

We now have F ∗(V ) = V , where V is a nonempty open set and V �= Ĉ. By the
already proved implication (3) ⇒ (1) in Theorem 1.1, the IFS F ∗ has an attractor,

say A′ �= Ĉ.
(2) ⇒ (3): To show that A′⊥ is an attractor of F−1, consider the first of the

two conditions in the definition of an attractor. From the commuting diagram in

Proposition 5.2, we have F ∗(A′) = A′ if and only if F−1(A′⊥) = (F ∗(A′))⊥ = A′⊥.
Concerning the second of the two conditions in the definition of an attractor, let
B be an arbitrary subset contained in the basin of attraction for A′ of F ∗. With
respect to the Hausdorff metric, limk→∞ F ∗k(B) = A′ if and only if

lim
k→∞

F−1k(B⊥) = lim
k→∞

(F ∗k(B))⊥ = ( lim
k→∞

F ∗k(B))⊥ = A′⊥.

Note that we have also shown that BA′ is the basin of attraction for A′ of F ∗ if
and only if (BA′)⊥ is the basin of attraction for R of F−1.

The implications (3) ⇒ (1) can be obtained by replacing F by F−1 in the above
arguments.

Concerning the statements about the basins of attraction, we will show that

BA = Ĉ \R; BR = Ĉ \A is proved in exactly the same way with F−1 replacing F .
We first show that BA ∩ R = ∅. Let XF be the set of repelling fixed points of F ,
i.e., the set of attracting fixed points of F−1, and let

R′ =
∞⋃
k=1

F−k(XF ).

By Theorem 3.6, BA ∩XF = ∅. Therefore BA ∩F−k(XF ) = ∅ for k ≥ 1; otherwise
if z ∈ BA ∩ F−k(XF ), then for some g ∈ F k we would have g(z) ∈ g(BA) ∩
XF ⊆ BA ∩XF . We now have BA ∩

⋃∞
k=1 F

−k(XF ) = ∅, and hence BA ∩ R′ = ∅
because BA is an open set. We claim that R′ = R, which would complete the
proof that BA ∩ R = ∅. Concerning the claim, since R is the attractor of F−1,
R = limk→∞ F−k(Xf ) ⊂ R′. Since XF ⊂ R, also R′ ⊂ R.

To finish the proof that BA = Ĉ \R, notice that it has already been shown that

F ∗ has an attractor A′ �= Ĉ. According to Theorem 4.6, A′ is contained in a set U
such that F ∗ is a topological contractive on U . With little change to the proof of
Theorem 4.6, it follows that if N is any open set containing A′, then such a set U
can be chosen so that U ⊂ N . So, for any ε > 0, let A′

ε be a compact set containing
A′, contained in the ε-neighborhood {z : d(z, w) ≤ ε for some w ∈ A′} of A′, and
such that F ∗(A′

ε) ⊂ int(A′
ε). This last inclusion implies, by Proposition 5.3, that

F (A′
ε
∗) ⊂ F ((intA′

ε)
∗
) ⊂ A′

ε
∗
.

But according to Theorem 4.5, F (A′
ε
∗) ⊂ A′

ε
∗
implies that F is contractive on

A′
ε
∗
, and hence, by the classic result of Hutchinson [13], we have A ⊂ A′

ε
∗ ⊂ BA.

Therefore

R ⊂ Ĉ \BA ⊂ Ĉ \A′
ε
∗
= A′

ε
⊥
.

Since limε→0 A
′
ε = A′, also limε→0 A

′
ε
⊥ = A′⊥ = R. Therefore Ĉ \ BA = R or

BA = Ĉ \R.

Having shown that (BA′)⊥ = BR, it follows that BA′ = (BR)
⊥ = (Ĉ \A)⊥. �
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6. Chain-recurrence

In this section, after defining the notion of a chain-recurrent point, we prove the
equivalence of statements (1) and (5) in Theorem 1.1.

Definition 6.1. Let F be an IFS on a metric space with metric d(· , ·). Given

ε > 0, an ε-chain for F is a sequence of points {zi}ni=0 , n > 0, in Ĉ such that, for
each i ∈ {0, 1, 2, . . . , n− 1}, there is an f ∈ F such that d(zi+1, f(zi)) < ε. A point
z ∈ C is chain-recurrent for F if for every ε > 0 there is an ε-chain {zi}ni=0 for
F such that z0 = zn = z. The set of all chain recurrent points for F is denoted by
R (F ).

Theorem 6.2. A Möbius IFS F has an attractor A �= Ĉ if and only if R(F ) �= Ĉ,
in which case R(F ) = A ∪R, where R is the repeller of F .

Proof. Assume R(F ) �= Ĉ. To prove that A �= Ĉ, let z /∈ R(F ). Then there is
an ε > 0 such that no ε-chain starts and ends at z. Let U denote the set of all
points w such that there is an ε-chain from z to w. Notice that (1) z /∈ U , (2) U
is an open set, and (3) F (U) ⊂ U . By the already proved implication (3) ⇒ (1) in
Theorem 1.1, the IFS F has an attractor A contained in U . Since z /∈ U , we have

z /∈ A and A �= Ĉ.
The paragraph above shows that if z /∈ R(F ), then z /∈ A. Hence A ⊂ R(F ).

To show that R ⊂ R(F ), let z ∈ R and let ε > 0. An ε-chain for F start-
ing and ending at z is constructed as follows. By the continuity of the functions
in F , there exists a δ > 0 such that, if dc(x, y) < δ, then dc(f(x), f(y)) < ε

for all x, y ∈ Ĉ and all f ∈ F . Since limk→∞ F−k({z}) = R, there is sequence
fi1 , fi2 , . . . , fiN of functions in F such that dc(f

−1
i1

◦ f−1
i2

◦ · · · ◦ f−1
iN

(z) , z) < δ. Let

wN = z and wN−1 = f−1
iN

(wN ), wN−2 = f−1
iN−1

(wN−1), . . . , w0 = f−1
i1

(w1). Fur-

ther, let z0 = z and zk = wk for k = 1, 2, . . . , N . Since dc(z0, w0) < δ, we have
dc(fi1(z0), z1) = dc(fi1(z0), fi1(w0)) < ε. Also dc(fik(zk−1), zk) = dc(wk, wk) = 0
for k = 2, 3, . . . , N . We have shown that z is chain-recurrent, hence A∪R ⊂ R(F ).

Now assume that F has an attractor A �= Ĉ. By Theorem 5.4, the IFS F has a

unique repeller R and A∩R = ∅. Since A and R are compact, A∩R �= Ĉ. To finish
the proof it suffices to show that R(F ) = A ∪R. We already have A ∪R ⊆ R(F ).
To show that R(F ) ⊆ A ∪ R, let z /∈ A ∪ R. We will show that z is not chain-
recurrent. Since z /∈ R, by Theorem 5.4 the point z lies in the basin of attraction
of A, and hence limk→∞ Fn({z}) ∈ A. Let U ′ ⊂ U be two open sets containing
A such that inf

x∈U
′
,y∈̂C\U

dc(x, y) > 0. Since limk→∞ F k({z}) ∈ A there is a K

such that F k({z}) ⊂ U ′ for all k ≥ K and, by the continuity of the functions in F ,
an ε(k) > 0 such that every ε-chain of length k ≥ K starting at z ends in U . If
there is an ε chain starting and ending at z, then there is, by repeating the chain
if necessary, an ε chain starting and ending at z of length at least K. But we have
shown that it cannot be the case that, for every ε, there is an ε-chain starting and
ending at z of length at least K. Therefore z is not chain-recurrent. �

7. Examples

Example 7.1. If F = (Ĉ; f) consists of a single loxodromic function f , then the
attractor is the attracting fixed point of f and the repeller is the repelling fixed
point of f .
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If a Möbius IFS F has an attractor, not equal to Ĉ, then by Theorem 3.6 each
transformation in F is loxodromic. A general loxodromic transformation f can

be expressed as f = g−1 · f̂ · g, where g is an arbitrary Möbius transformation

and f̂(z) = sz, where s ∈ C, |s| < 1. The contractivity parameter s gives an

indication of how attractive is the fixed point 0 of f̂ , and hence how attractive
is the the attracting fixed point of f . Basically, the smaller the modulus |s|, the
more attractive. Letting g(z) = (Az + B)/(Cz + D), the fixed points of f are
−B/A and −D/C. A straightforward calculation then suffices to expess a general
loxodromic transformation in terms of three parameters, the attracting fixed point
a, the repelling fixed point r, and s. If a �= ∞ and r �= ∞, then f has the form:

(7.1) f(z) =
(a− s r)z + (s− 1)a r

(1− s)z + (s a− r)
,

where 1 > |s| ≥ 0, If r = ∞, the functon takes the form f(z) = s z + a(1 − s). If
s = 0, then f(z) = a, and if s = 1, then f(z) = z. If the parameter s is real, then
the loxodromic transformation f is called hyperbolic.

Example 7.2. Figure 3 shows the attractor and repeller of an IFS {Ĉ; f1, f2, f3},
where the three attractive fixed points x1, x2, x3, respectively, of the three hyper-
bolic functions are mutually orthogonal as vectors on the Riemann sphere. The
repelling fixed points x′

1, x
′
2, x

′
3 are diametrically opposite the points x1, x2, x3, re-

spectively. The contractivity factor s in (7.1) is 0.4. In Figure 4 the IFS is basically
the same IFS except that s = .4e.4i (not hyperbolic).

Example 7.3. Figure 5 shows the attractor of the IFS consisting of four loxodromic
functions whose attracting fixed points are located at the four vertices of a regular
tetrahedron inscribed in the Riemann sphere. The repelling fixed points are located
diametrically opposite the respective fixed points. The factor s = .13e.5i.

Example 7.4. Figure 1 in the introduction shows the attractor and repeller of the

IFS F = (Ĉ; f1, f2) where

Lf1 =

(
0.1566− 0.4101i 0.4453− 0.3560i
0.4305− 0.3896i −0.7477− 1.2362i

)
,

Lf2 =

(
1.0122− 0.0984i 0.3985− 0.4076i
0.4305− 0.3896i 0.2801− 1.0804i

)
.

8. Lorenz transformations

In addition to the three equivalent viewpoints given in section 2 regarding a
Möbius transformation, there is a fourth—as a Lorentz transformation on the ce-
lestial sphere in Minkowski space. This is the perspective taken in [14, 15], where
the corresponding iterated function system is referred to as a “quantum iterated
function system”.

Minkowski space consists of R4 together with the quadratic form

Q(x) = Q(x0, x1, x2, x3) = x2
0 − x2

1 − x2
2 − x2

3.

The future light cone N+ is defined as

N+ = {x = (x0, x1, x2, x3) ∈ R
4 : x0 > 0, Q(x) = 0},
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Figure 3. The attractor (red, right) and repeller (black, left) of
Example 7.2 are depicted in the complex plane (top figure), and
on opposite sides of the Riemann sphere (bottom figure–attractor
on the left, repeller on the right). See the online version for colors.

and the celestial sphere C is the set of rays in N+ whose initial point is the origin
of R4. The celestial sphere can thus be regarded as the projectivized future light
cone: C = PN+. The restricted Lorentz group SO+(1, 3) is the set of linear trans-
formations of R4 with positive determinant that preserves the quadratic form Q
and preserves the time direction, i.e., x is future pointing if x0 > 0. Therefore the
restricted Lorentz group acts on the celestial sphere.

There is a bijection

CP1 → C,
(z, w) �→ (x0, x1, x2, x3),
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Figure 4. The attractor for the second IFS in Example 7.2.

Figure 5. The attractor (red) and repeller (black) in Example 7.3.
See the online version for colors.
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defined by

2

(
z
w

) (
z w

)
= X :=

(
x0 + x1 x2 + ix3

x2 − ix3 x0 − x1

)
.

A projective transformation L : CP1 → CP1 corresponds to the Lorentz transfor-
mation

C → C,
X �→ LXL∗,

where L∗ is the conjugate transpose matrix.
By letting S+ be the intersection of N+ with the hyperplane x0 = 1 in R4, the

celestial sphere C may be identified with the sphere S+ = {(x1, x2, x3) : x1
1 + x2

2 +
x2
3 = 1} in the 3-dimensional subspace of R4 spanned by the x1, x2 and x3 axes.

A transformation in SO+(1, 3) does not necessarily take the hyperplane x0 = 1
to itself, but if we multiply by a suitable scalar so that x0 = 1, then the Lorentz
group can be regarded as acting on S+. This turns out to be precisely the action
described in section 2 of PSL(2,C) on the Riemann sphere.

9. Strongly loxodromic IFSs

In this last section we introduce a property of a Möbius IFS that we conjecture
is equivalent to the other five conditions in Theorem 1.1. Representing a Möbius
transformation f by a 2×2 matrix Lf with eigenvalues λ1(f), λ2(f) with |λ1(f)| ≤
|λ2(f)|, let

λ(f) :=

∣∣∣∣λ1(f)

λ2(f)

∣∣∣∣ ≤ 1.

Let Ωk(F ) denote the set of all k-fold compositions of functions in F and let

Mk(F ) = max
f∈Ωk(F )

λ(f),

λ(F ) = lim sup
k→∞

[Mk(F )]
1/k

.

Call a Möbius IFS F strongly loxodromic if

λ(F ) < 1.

A Möbius transformation f is parabolic or elliptic if and only if λ(f) = 1.
Therefore a strongly loxodromic IFS is loxodromic.

Conjecture 9.1. A Möbius IFS F is strongly loxodromic if and only if R(F ) �= Ĉ.
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[12] D. Hilbert, Über die gerade Linie als kurseste Verbindung zweier Punkte, Math., Ann. 46
(1985) 91-96.

[13] J. Hutchinson, Fractals and self-similarity, Indiana Univ. Math. J. 30 (1981) 713-747.
MR625600 (82h:49026)

[14] A. Jadczyk, On quantum iterated function systems, Central Europ. J. Physics, 2 (2004)
492-503.
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