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INTRODUCTIONThe theory of maps is likely the oldest topi in this volume, going bak, not justto the 4-olor problem posed in 1852 and to the theory of automorphi funtions de-veloped in the late 1800's, but to the Platoni solids dating to antiquity. Among themany ontributors to the subjet are Arhimedes, Kepler, Euler, Poinsot, de Morgan,Hamilton, Dyk, Klein, Heawood, Hurwitz, Steinitz, Whitney, Koebe, Tutte, Coxeterand Gr�unbaum. General referenes on maps inlude [BoLi95℄, [BrS97℄, [CoMo57℄,[GrTu87℄, [MoTh01℄, and [Wh01℄.
7.6.1 Maps and Polyhedra MapsBasi notions are introdued: map and polyhedral map, duality, isomorphism, faeand edge-width. The existene and uniqueness of a map with a given graph is addressed.
DEFINITIONSD1: A map M on a surfae S is a �nite ell-omplex whose underlying topologialspae is S. The surfae of a map M is denoted jM j.D2: The graph of the map M is its 1-skeleton. It is denoted G := G(M).D3: The verties and edges of a map M are the verties and edges, respetively,of its graph G(M).D4: The faes of a map M are the onneted omponents of jM j nG(M).D5: The 0-, 1-, and 2-dimensional faes of a map M are its verties, edges andfaes, respetively.D6: The dual map M� of a map M on a surfae S is a map on the same surfae Swhose vertex set V � onsists of one point interior to eah fae of M and whose edge set
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2 Chapter 7 Topological Graph TheoryE� onsists of, for eah edge e of M , an edge e� rossing e and joining the verties ofV � that orrespond to the faes inident with e. (A more general de�nition of dualityappears in [Vi95℄, for example.)D7: A polyhedral mapM , generalizing the notion of a onvex polyhedron, is a mapwhose fae boundaries are yles, and suh that any two distint fae boundaries areeither disjoint or meet in either a single edge or vertex.D8: Maps M1 and M2 are isomorphi, denoted M1 � M2, if there is a homeomor-phism of the respetive surfaes that indues an isomorphism of the respetive graphs.D9: The fae-width of a mapM , denoted fw(M), is the minimum number of pointsj� \G(M)j over all nonontratible simple losed urves � on the surfae.D10: The edge-width of a mapM , denoted ew(M), is the length of a shortest ylein G(M) that is nonontratible on the surfae.D11: A large-edge-width (LEW) map is a map whose edge-width is greater thanthe number of edges in any fae boundary.
EXAMPLESE1: A map M on the torus and the dual map M� appear in Figure 7.6.1. (The torusis obtained by identifying like labeled edges on the boundary of the polygon.) NeitherM nor M� is polyhedral.

Figure 7.6.1 A torus map and its dual.E2: Figure 7.6.2 shows two nonisomorphi maps on the sphere with the same 2-onneted, but not 3-onneted, graph. The maps are related by a Whitney ip. Thisexample is relevant to Fat F6 below.
Figure 7.6.2 Maps on the sphere with the same 2-onneted graph.E3: Figure 7.6.3 shows two polyhedral maps on the projetive plane with isomorphi3-onneted graphs. (The projetive plane is depited as a dis with antipodal points



Section 7.6 MAPS 3identi�ed.) This example shows that the analogy to the Whitney uniquesness theorem(Fat F6) for projetive planar graphs fails.
Figure 7.6.3 Maps on the projetive plane with the same 3-onneted graph
REMARKSR1: It is equivalent to regard a map as a 2-ell imbedding of a graph G on a surfaeS, i.e., an imbedding suh that the onneted omponents of S nG are 2-ells.R2: Fae-width, introdued in [RoSe88℄, is a measure of loally planarity, or of howdense the graph is on the surfae, or of how well the graph represents the surfae.R3: The onept of map has been extended to ell-omplexes whose underlying topo-logial spae is a manifold of dimension greater than 2. This inludes, in partiular, theboundary omplex of any polytope. The generalization to higher dimensions, thoughnatural and interesting, is omitted here.R4: A map M on the sphere S an be drawn in the plane via, for example, stereo-graphi projetion from any point of S nG(M).R5: A map may have multiple edges, self-loops, and verties of degree 1 or 2. Apolyhedral map, however, an have none of these. Moveover, in a polyhedral map, thelosure of eah fae is topologially a losed dis.
FACTSF1: Euler's formula For any map M with f0 verties, f1 edges, f2 faes and har-ateristi (M), f0 � f1 + f2 = (M)F2: If M is a map, then (M�)� =M .F3: If M is a map, then fw(M�) = fw(M).F4: MapM is polyhedral if and only if its graphG(M) is 3-onneted and fw(M) � 3.Moreover, M is polyhedral if and only if its dual is polyhedral.F5: Every onneted graph G admits a map. The rotation sheme desribed in x6gives a systemati method for obtaining all 2-ell imbeddings of G.F6: [Wh32℄ Whitney Uniqueness Theorem: A 3-onneted, planar graph has aunique imbedding on the sphere.F7: [Th90℄ A uniqueness theorem for general surfaes: if M1 and M2 are LEW mapswith the same graph, then jM1j = jM2j. Moreover, if the graph is 3-onneted, thenM1 �M2.
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REMARKSR6: Aording to Fat F5 above, every onneted graph has a 2-ell imbedding on asurfae. Whether a graph an be imbedding on a surfae suh that the fae boundariesare (simple) yles is problemati (see the onjetures below).R7: [SeTh96℄ gives a uniqueness result similar to Fat F6 for maps with suÆientlylarge fae-width as a funtion of the genus. However, [Ar92℄ provides an example, forevery pair of integers k; b, of two maps M1;M2 with the same k-onneted graph suhthat fw(M1); fw(M2) > b and jM1j 6= jM2j.
CONJECTURESThe Cyle Double Cover Conjeture: Every 2-onneted graph ontains a set C ofyles suh that every edge is ontained in exatly two yles of C.The Strong Imbedding Conjeture: Every 2-onneted graph an be embedded ona surfae so that eah fae is bounded by a yle in the graph. The strong imbeddingonjeture implies the Cyle Double Cover Conjeture.
7.6.2 The f-vector, v- and p-sequences, and RealizationsElementary equalities hold among the basi parameters of a map. The two questionsaddressed in this setion are, �rst, when are these neessary onditions also suÆientfor the existene of a map with these parameters and, seond, when an the map beembedded in Eulidean spae E3 or E4 suh that the faes are plane onvex polygons.The lassi results for maps on the sphere are Eberhard's theorem of 1891 and Steinitz'stheorem of 1922.
DEFINITIONSD12: A map is of type fp; qg if eah fae has p edge inidenes and eah vertex hasq edge inidenes. (No global symmetry is implied; in fat, the automorphism group ofthe map, as de�ned in x5, may be trivial.)D13: The ell-distribution vetor (f-vetor) of a mapM is the 3-tuple (f0; f1; f2),where f0; f1; f2 are the numbers of verties, edges, and faes of M , respetively.D14: The fae-size sequene (p-sequene) of a polyhedral map M is the sequenefpigi�3 where pi is the number of i-gonal faes in M .D15: The vertex-degree sequene (v-sequene) of a polyhedral map M is thesequene fvigi�3 where vi is the number of verties of degree i in M .D16: A polyhedral map M is simpliial (or a triangulation) if the boundary ofeah fae is a 3-yle.D17: A polyhedral map M is simple if its graph is 3-regular.D18: A geometri realization (realization) of a polyhedral map M is an imbed-ding of M into Eulidean spae Ed (no self intersetion) suh that eah fae is a planeonvex polygon and that adjaent faes are not oplanar.
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REMARKR8: Using a less stringent de�nition of realization than above, [M89℄ de�ned the re-alization spaes and studied its topologial properties. Also see [BuSt00℄ and [MoWe00℄for the realization spae of the torus maps.
EXAMPLESE4: The map M in Figure 7.6.1 is of type f3; 6g with fae vetor (4; 12; 8). Its dualM� is of type f6; 3g with fae vetor (8; 12; 4). The maps in Figure 7.6.2 both have v-sequene (6; 3), but the �rst has p-sequene (0; 6; 0; 1) while the seond has p-sequene(1; 3; 3).E5: Five maps on the sphere and their orresponding 3-dimensional realizations appearin Figure 7.6.4.

Figure 7.6.4 The Platoni solids as realizations of maps.
FACTSF8: The f -vetor, the p-sequene and the v-sequene satisfy the following elementaryequalities: X pi = f2; X vi = f0; X ipi = 2f1 =X iviF9: For a map M on an orientable surfae of genus g, �; � � 0 suh that � + � = 1,Euler's formula implies thatX(�i� 2)vi +X(�i� 2)pi = 4(g � 1) (1)For example, taking � = 1=3; q = 0, and M simple yieldsX(6� i)pi = 12 (2)F10: [Eb1891℄ Eberhard's Theorem: Condition (2) above is suÆient for theexistene of a sphere map, in the following sense: if a sequene fpi j i � 3; i 6= 6gsatis�es Pk 6=6(6 � k)pk = 12, then there exist values of p6 suh that fpi j i � 3g isthe p-sequene of a simple polyhedral map on the sphere. For variations on Eberhard'sTheorem, see [Gr70℄ and [Je93℄. There is no known generalization of Eberhard's theoremto arbitrary surfaes.F11: [EdEwKu82℄ If S is a surfae with Euler harateristi (S), if f0; f1; f2; p; q arepositive integers suh that f0�f1+f2 = (S), and if pf2 = 2f1 = qf0, then there existsa map of type fp; qg on S with f -vetor (f0; f1; f2), exept when S is the projetiveplane and fp; qg = f3; 3g; f0 = f2 = 2; f1 = 3.



6 Chapter 7 Topological Graph TheoryF12: [St22℄ Steinitz's Theorem: Every polyhedral map on the sphere is isomorphito the boundary omplex of a 3-dimensional polytope. Thus, any polyhedral map onthe sphere has a realization in E3.F13: [Al71, Gr67℄ A simple polyhedral map M annot be realized in Eulidean spaeof any dimension unless jM j is the sphere.F14: [BrS95℄ Eah simpliial polyhedral map on the torus or projetive plane an berealized in E4.F15: [BrWi93℄ On any nonorientable surfae Ng, there exists a simpliial map thatannot be realized in E3. (When g > 1, it is an open question whether eah simpliialpolyhedral map of orientable genus g an be realized in E3.)F16: [Gr83℄ Equation (2) for the torus (with � = 1=3) beomes2X(i� 3) vi +X(i� 6) pi = 0whih leads to the following analogue of Eberhard's theorem for the torus. Given asequene fpi j i � 3; i 6= 6g and a positive integer s, there is a realization in E3 of somepolyhedral map on the torus with p-sequene fpi j i � 3g andP(i�3)vi = s if and onlyif Pk 6=6(6� k)pk = 2s and s � 6. Related results appear in [BaGrH�o91℄.F17: [St06℄ The vetor (f0; f1; f2) is the f -vetor of a realization in E3 of some poly-hedral map on the sphere if and only if f0 � f1 + f2 = 2, 4 � f0 � 2f2 � 4, and4 � f2 � 2f0 � 4.F18: [Gri83℄ The vetor (f0; f1; f2) is the f -vetor of a realization in E3 of somepolyhedral map on the torus if and only if f0 � f1 + f2 = 0, f2(11� f2)=2 � f0 � 2f2,f0(11� f0)=2 � f2 � 2f0, 2f1 � 3f0 � 6, and f1 6= 19.F19: [Ko36,An79,Th78℄ Koebe-Andreev-Thurston irle paking theorem:Every simpliial map M admits a irle paking representation, i.e., there exists aRiemannian metri of onstant urvature +1, 0, or �1 on the surfae and a olletionof pairwise disjoint open disks on jM j whose boundaries are geodesi irles suh thatthe tangeny graph of this olletion of irles is G(M). For a generalization to a largerlass of maps, see [Mo97℄. A irle paking representation of the otahedral map on thesphere appears in Figure 7.6.5.

Figure 7.6.5 A irle paking representation of the otahedral map.
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7.6.3 Map ColoringThe famous results on map oloring are the Four Color Theorem for the sphereand the Heawood Map Coloring Theorem, whih is the generalization of the Four ColorTheorem to surfaes of higher genus. Also in this setion are a few results on oloringdensely imbedded graphs.
DEFINITIOND19: The hromati number �(S) of a surfae S is the least number of olorssuÆient to properly olor the faes of any map on S. By duality, it is also the leastnumber of olors suÆient to properly olor the verties of any map on S. In thissetion, oloring will mean vertex oloring.
FACTSF20: [ApHa76℄ Four Color Theorem: �(S0) = 4.F21: [Fr34℄ �(N2) = 6.F22: [RiYo68℄Heawood Map Coloring Theorem: For every surfae S exept theKlein bottle N2, �(S) = �7 +p49� 242 �where  is the Euler harateristi of S. The right-hand side of the equation is alledthe Heawood formula.F23: A map M on the torus with ew(M) � 4 is 5-olorable. It is not known whetherthis same statement holds for surfaes of higher genus.F24: [Th93℄ Any map M on Sg with ew(M) � 214g+6 is 5-olorable.F25: [Th97℄ For a �xed surfae S, there is a polynomial time algorithm to deide if amap on S an be 5-olored.F26: Even on the sphere, the problem of deiding whether a map an be 3-olored isNP-omplete.F27: [RSST96℄ On the sphere, a 4-oloring an be found in O(n2) steps.
REMARKSR9: The problem of determining the hromati number of the sphere appeared ina 1852 letter from Augustus de Morgan to Sir William Hamilton, and was likely dueto Franis Guthrie, the brother of a student of de Morgan. The omputer dependentproof of Appel and Haken [ApHa76℄ that four olors suÆe was simpli�ed onsiderably[RSST97℄ (but still omputer dependent).R10: That the formula in the Heawood Map Coloring Theorem gives an upper boundon �(S) was proved by Heawood [He1890℄. That there exist graphs that atually requirethe number olors given by that formula is a onsequene of the formula for the genusof omplete graphs due to Ringel and Youngs [RiYo68℄.R11: Whether there is a polynomial time algorithm for deiding whether a map onan arbitrary surfae an be 4-olored is unknown.



8 Chapter 7 Topological Graph Theory

EXAMPLESE6: Figure 7.6.9a is map on the projetive plane that requires 6 olors for a properoloring, and Figure 7.6.6 is map on the torus that requires 7. This shows that �(N1) � 6and that �(S1) � 7. In fat, �(N1) = 6 and �(S1) = 7, in aordane with Fat F23.(The torus in Figure 7.6.6 is obtained by identifying left and right sides of the retangleand the top and bottom sides with a 2=7 twist.)
Figure 7.6.6 A map on the torus whose graph is K7.E7: An example of Fisk [Fi78℄ shows that no 4-olor analogue of Thomassen's result(Fat F24 above) an hold. See Figure 7.6.7, where the torus is obtained by identifyingopposite sides of the square.

Figure 7.6.7 A map M on the torus with exatly two odd-degree verties is not 4-olorable.
7.6.4 Minimal MapsA map an be quite \degenerate", for example, the map on the sphere with 2verties, 1 edge, and 1 fae. Polyhedral maps (and maps with edge-width or fae-widthbounded from below) annot be this small. This setion onerns maps that are in somesense minimal | either with respet to the number of verties, or with respet to beingpolyhedral, or with respet to having edge-width k. Also overed in this setion areweakly neighborly polyhedral maps.
DEFINITIONSD20: A polyhedral map is neighborly if every pair of distint verties is joined byan edge.D21: A polyhedral map is weakly neighborly (abbr. a wnp-map) if every twoverties are ontained on a fae.D22: The operation of edge ontration for a triangulation, and its inverse oper-ation vertex splitting, are depited in Figure 7.6.8. After ontrating an edge in atriangulation, the map may no longer be a triangulation, i.e., no longer polyhedral; thisours if the edge is ontained in a 3-yle that is not a fae boundary or if the map isthe tetrahedral map.D23: A minimal triangulation of a surfae S is a triangulation suh that the on-tration of any edge results in a map that is no longer polyhedral.D24: A k-minimal triangulation is a triangulation with edge-width k, suh that



Section 7.6 MAPS 9eah edge is ontained in a nonontratible k-yle. (Exept on the sphere, minimaland 3-minimal are equivalent.)
Figure 7.6.8 Edge ontration and vertex-splitting in a triangulation.

EXAMPLESE8: The only wnp-maps on the sphere are the boundary omplexes of the pyramidsand triangular prism.E9: There are 5 wnp-maps on S1 and none on S2.E10: The wnp-maps on nonorientable surfaes up to genus 4 appear in [AlBr87℄.E11: There is 1 minimal triangulation of the sphere (the tetrahedral map), 2 minimaltriangulations of the projetive plane (see Figure 7.6.9), 21 of the torus, and 25 of theKlein bottle.
Figure 7.6.9 The minimal triangulations of the projetive plane.

FACTSF28: If the map M with f0 verties and Euler harateristi  is polyhedral, thenf0 � �7 +p49� 242 � ;and this lower bound is attained for all surfaes exept S2; N2 and N3. By duality thesame bound holds for f2.F29: The neighborly polyhedral maps attain the bound in Fat F28.F30: [AlBr86℄ Eah surfae admits at most �nitely many wnp-maps. (See ExampleE8.)F31: [BaEd89℄ The set of minimal triangulations is �nite for every �xed surfae. (SeeExample E11.) In other words, for eah surfae, there is a �nite set of triangulationsfrom whih any triangulation on that surfae an be generated by vertex splittings.F32: For any k � 3, the set of k-minimal graphs on a �xed surfae is �nite. ([MoTh01℄provides a proof.)
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REMARKR12: [Br90℄ has provided a (non-tight) lower bound for f1, for a polyhedral map ofEuler harateristi .
7.6.5 Automorphisms and CoveringsEvery mapM has a universal over that is a lassial tiling of the sphere, Eulideanplane, or hyperboli plane (unit dis). This fat and its onsequenes are the subjet ofthis setion. Also addressed is the relation between a group ating as automorphismsof a map and a group ating as homeomorphisms of the surfae.In this setion the lassial Eulidean and hyperboli tessellations are regardedas in�nite maps, even though, by our de�nition, a map is a �nite ell omplex. Foran expository artile on onnetions between maps, Galois groups and Grothendiek'sdessins d'enfants, see [JoSi96℄.
DEFINITIONSD25: An automorphism of a map M is an isomorphism of M onto itself. Theautomorphisms form a group Aut(M) under omposition.D26: A map overing f : M1 ! M2 is a topologial overing (see x7.2) of therespetive surfaes that takes the graph of M1 onto the graph of M2, with rami�ationpoints possible only at verties and fae enters.D27: The tessellation fp; qg is the unique tesselation of the sphere or plane intoregular p-gons, q inident at eah vertex. This is a tiling of the sphere if 1p + 1q > 12 , ofthe Eulidean plane if 1p + 1q = 12 , or of the hyperboli plane (unit dis) if 1p + 1q < 12 .D28: The triangle group (p; q; 2) is the symmetry group of the tessellation fp; qg.D29: The Coxeter groupW (p; q) is the group with presentation by three generators�0; �1; �2 and the relations�20 = �21 = �22 = (�0�1)p = (�1�2)q = (�2�0)2 = 1 (3)
EXAMPLESE12: Both torus mapsM andM� in Figure 7.6.1 are overings of the tetrahedral mapin Figure 7.6.4. The overing by M is rami�ed at verties and the overing by M� isrami�ed at fae enters. Both are 2-fold overings, that is, eah unrami�ed point of thesphere is overed by two points of the torus.E13: Figure 7.6.10 shows all the (hyperboli) mirors of reetion symmetries of thetessellation f6; 4g (or f4; 6g). These lines form a subdivision (alled the Coxeter om-plex) of the hyperboli plane into triangles (alled ags).
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Figure 7.6.10 Reetion symmetries of the hyperboli tessellation f6; 4g.
FACTSF33: The symmetry group (p; q; 2) of the tessellation fp; qg is isomorphi to the Cox-eter groupW (p; q). The Coxeter generators �0; �1; �2 (and their onjugates) orrespondto reetions in the three sides of a ag, as desribed in example E12; the produts�1�2; �0�2; �0�1 (and their onjugates) orrespond to rotations about verties, midpointsof edges, and fae enters, respetively.F34: Every map M has a overing by a tessellation fp; qg for some p; q. In otherwords, every map M is the quotient of a tesselation fp; qg by a subgroup HM of theCoxeter group W (p; q).F35: [Vi83a℄ The automorphism group Aut(M) of any map M is isomorphi to thequotient NW (HM )=HM , where NW denotes the normalizer and where HM is the sub-group of Fat 34.F36: Every mapM of type fp; qg has an unrami�ed overing by the tessellation fp; qg.For example, the map on N5 of type f5; 5g in Figure 7.6.11, is overed by the tessellationf5; 5g of the hyperboli plane. (The map is obtained by identifying like labeled edgesin the �gure.)
Figure 7.6.11 The regular self-dual map f5; 5g3 and its universal over f5; 5g.F37: [Bi72℄ The automorphism group of an orientable map of genus g > 1 an befaithfully represented in the group of 2g� 2g sympleti matries with integral entries.From this it an be proved, for example, that if prime p divides jAut(M)j, then thegenus of the map M is either 1; 2 or at least 12 (p� 1).



12 Chapter 7 Topological Graph TheoryF38: [Hu1892℄ Hurwitz formula: If a group � ats on a surfae of Euler harater-isti  < 0, then j�j � �84.F39: A mapM with Euler harateristi  < 0 satis�es jAut(M)j � �84with equalityif and only if M is a regular map of type f3; 7g or f7; 3g (see x7 for the de�nition ofregular). This is a diret onsequene of the Hurwitz formula.F40: [Tu83℄ If a group � ats on an orientable surfae S, then some Cayley graph Gof � embeds in S, and the natural ation of � on G (by left multipliation) extends toan ation of � on S.
REMARKR13: [JoSi78℄ Fat F35 implies that the surfae of any map M an be assumed to bea Riemann surfae suh that Aut(M) ats as a group of onformal homeomorphisms.The edges of G(M) are geodesis of equal length with respet to a Riemannian metriof onstant urvature (de�ned everywhere exept perhaps at �nitely many rami�ationpoints loated at verties and fae enters) and the angles formed by suessive edgesinident with a vertex are equal.
7.6.6 Combinatorial SchemesThe de�nition of map in x1 as a ell omplex is topologial. A stritly ombinatorialdesription, although less intuitive, is often easier to apply. Three suh shemes aredesribed: rotation sheme, permutation sheme, and graph enoded map.
DEFINITIONSD30: A rotation sheme (G; �) onsists of a graph G and a set � = f�vgv2V (G),where �v is a yli permutation of the edges inident to v. This sheme [Ed60℄ enodesany map with graph G embedded on an orientable surfae (and an be extended toinlude nonorientable imbeddings).D31: The map of a rotation sheme is obtained as follows. Given a direted edgee1 = (v0; v1) of G, onsider the yle onsisting of suessive direted edges e1e2 : : : em =e1, where ei = (vi�1; vi) and ei+1 = �vi(ei)Eah (undireted) edge lies on exatly two suh yles. Regarding eah yle as theboundary of a polygonal 2-ell and gluing together 2-ells along paired edges results inan orientable surfae in whih G is embedded. Conversely, the rotation sheme ofa map M on an orientable surfae is (G; �), where G is the graph of M and �v is theyli permutation of the edge inidene on vertex v indued by the orientation of thesurfae, say lokwise.D32: A permutation sheme (�; �) on a �nite set X onsists of permutations �and � ating on X , suh that eah orbit of � has length 2 and suh that the permutationgroup Hh�; �i generated by � and � is transitive on X .D33: The verties, edges and faes of the permutation sheme (�; �) are the ylesof �; � and � Æ �, respetively.



Section 7.6 MAPS 13D34: Two faes (of any dimension) of the permutation sheme (�; �) on a set X areinident if the orresponding yles have an element of X in ommon.D35: The permutation sheme of a map M has as the elements of its objet setX the \half edges" ofM (see example E14). Eah yle of � is the yli (say lokwise)order of the half edges inident to a given vertex on the surfae jM j, and eah yle of� is the two \half edges" at a midpoint of an edge. In a permutation sheme for a map,the graph is not expliitly part of the data.D36: A graph enoded map (abbr. GEM) is a onneted, �nite graph G, regularof degree 3, together with a proper 3-oloring of the edges in the olor set I = f0; 1; 2g,and with subgraphs Gi, eah indued by all edges not olored i, suh that the onnetedomponents of G1 are 4-yles.D37: The verties, edges and faes of a GEM G are the onneted omponents ofG0;G1 and G2, respetively.D38: Two faes (of any dimension) of a GEM are inident faes if the orrespondingsubgraphs have non-empty intersetion.D39: The graph enoding G of a given map M , is obtained from the baryentrisubdivision � of M , by giving eah vertex v of � the label 0; 1, or 2, aording to thedimension of the fae in M that vertex v represents; then G is the dual graph of �,with olor i assigned to edge e if and only if the two endpoints of the edge of � that erosses are not labeled i.
REMARKSR14: Permutation shemes an represent any map on an orientable surfae (and anbe extended to inlude maps on nonorientable surfaes). They have been used by [Ja68℄,[Co75℄, [Tu79℄, [JoSi78℄, [Wa75℄, and [St80℄.R15: GEM's were introdued (in arbitrary dimension) as \ombinatorial maps" by[Vi83℄ and as \rystallizations" by [Fe76℄ and [Ga79℄ in a topologial ontext. Theterminology \graph enoded map" is due to [Li82℄. A graph enoding an represent anyorientable or nonorientable map.R16: Lifting the restrition that eah orbit of � in a permutation sheme must havelength 2 or that eah omponent of G1 in a graph enoded map must be a 4-yle, resultsin the onept of hypermap or hypergraph imbedding.
EXAMPLEE14: On the left in Figure 7.6.12 is a map on the sphere, and on the right is theorresponding graph enoded map. A rotation sheme for this map is given by thethree yli permutations of edges inident to eah of the three verties:�1 = (1 2 3); �2 = (1 4 5); �3 = (5 4 3 2)A permutation sheme for this same map is given by two permutations:� = (1+ 1�)(2+ 2�)(3+ 3�)(4+ 4�)(5+ 5�) � = (1+ 2+ 3+)(1� 4+ 5+)(5� 4� 3� 2�)
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Figure 7.6.12 A map on the sphere and its graph enoding.
FACTSF41: The notion of an automorphism of a mapM an be translated into terms of eahof the above shemes:If a map M is given as as a rotation sheme (G; �), then an automorphismof M orresponds to an isomorphism f : G ! G that preserves the ylipermutations, i.e., f Æ �v = �f(v) Æ f for all v 2 V (G).IfM is given as a permutation sheme (�; �) on a setX , then an automorphismof M orresponds to a bijetion f : X ! X suh that f Æ � = � Æ f for all� 2 Hh�; �i.If M is given as a GEM G, an automorphism of M orresponds to a olorpreserving graph isomorphisms of G.F42: The notion of duality an also be easily translated:If M is given as a permutation sheme (�; �) ating on the set X , the dualmap M� is given by the permutation sheme (�; � Æ �) ating on the same setX .If M is given as a GEM G, the dual map M� is enoded by the same graph Gwith edge olors 0 and 2 interhanged.F43: The surfae of a map is orientable if and only if the orresponding GEM isbipartite.
7.6.7 Symmetry of MapsRegular maps, those enjoying the greatest symmetry, are the surfae analogues ofthe Platoni solids. Also disussed are symmetrial and vertex-transitive maps.
DEFINITIONSD40: A ag of a map M is an ordered triple (F0; F1; F2) of mutually inident faesof dimensions 0; 1 and 2, respetively.D41: A map M is a regular map if Aut(M) ats transitively on the set of ags.D42: A mapM is a symmetrial map if Aut(M) has at most two orbits in its ationon the set of ags.D43: A map is a hiral map if it is symmetrial, but not regular.D44: A Cayley map for a group � with generator set �, is an imbedding of theCayley graph G��, using a rotation sheme as de�ned in x6. The yli permutation



Section 7.6 MAPS 15on the edges �� = � [ ��1 inident at eah vertex must be the same at eah vertex(see Example E21).
REMARKR17: For a symmetrial map M , the automorphism group Aut(M) ats transitivelyon the set of verties, on the set of edges, and on the set of faes.R18: If a map M is given in terms of a GEM G, then the ags of M are in bijetiveorrespondene with the verties of G. Therefore the map M is regular if and only ifthe (graph) automorphism group of G is vertex-transitive.
EXAMPLESE15: The regular maps on the sphere are the boundary omplexes of the �ve Platonisolids (see Figure 7.6.4) whih have types f3; 3g, f3; 4g, f4; 3g, f3; 5g, f5; 3g, respe-tively, plus the in�nite families of (non-polyhedral) maps of types fp; 2g; f2; pg; p > 0.E16: Sine every map on the projetive plane has a 2-fold overing by a map on thesphere (Fat F51), it follows from Example 15 that there are four regular maps on theprojetive plane of types f3; 4g; f4; 3g; f3; 5g; f5; 3g and in�nite families of types fp; 2gand f2; pg, where p � 2 mod 4.E17: There are three in�nite families of regular torus maps of types f3; 6g; f6; 3g andf4; 4g. For example, in the notation of Fat F60, the maps in Figure 7.6.1, are f3; 6g4and f6; 3g4.E18: [CoDo01℄ used the bijetion in Fat F57 and a network of omputers to deter-mine all regular maps on orientable surfaes of genus 2 to 15 and all regular maps onnonorientable surfaes from genus 4 to 30.E19: The Kepler-Poinsot regular star polyhedra, shown in Figure 7.6.13, areself-interseting realizations of regular maps. In the notation of Fat F60 below, thesemaps are f5; 5 j 3g (twelve pentagons on a surfae of genus 4 - great dodeahedron andsmall stellated dodeahedron), f5; 3g10 (twelve pentagons on the torus - great stellateddodeahedron) and f3; 5g10 (20 triangles on the torus - great iosahedron).

Figure 7.6.13 Star polyhedra.E20: [SWi85, SWi86℄ From the history of automorphi funtions ome two regularmaps of genus 3, the 1879 Klein map f7; 3g8 omposed of 24 heptagons with auto-morphism group PGL(2; 7), and the 1880 Dyk map f8; 3g6 omposed of 12 otagons(shown in dual form in Figure 7.6.14). The Coxeter regular skew polyhedra inE4 also provide examples of regular maps; they are f4; 6 j 3g, f6; 4 j 3g, f4; 8 j 3g andf8; 4 j 3g. The Klein, Dyk, and Coxeter maps all have realizations in E3.
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Figure 7.6.14 Dyk's map f3; 7g8.E21: Figure 7.6.15 is a hiral map on the torus. Opposite sides of the square areto be identi�ed. This map is presented as the Cayley map of the yli group Z5 =f0; 1; 2; 3; 4g with generating set � = f1; 2g and yle � = (�1 2 1 � 2) on ��.
Figure 7.6.15 A hiral map on the torus given an a Cayley map of Z5.Denoting an edge by a pair of verties and a fae by its four verties, the ags (1; 12; 1234)and (2; 12; 1234) are in two di�erent orbits under the ation of the automorphism groupating on the set of ags. There is no automorphism that leaves edge 12 and fae 1234�xed and takes vertex 1 to vertex 2.E22: Coxeter and others notied that regular maps frequently our as overings ofsmaller regular maps on other surfaes. For example, the regular torus maps f3; 6g4and f6; 3g4 in Figure 7.6.1 are 2-fold overings of the tetrahedral map f3; 3g on thesphere. Construtions of families of regular maps using overings appear in [JoSu00℄,[Si00℄, [Vi84℄, and [Wi78℄ among others.E23: There are various group theoretial onstrutions of regular maps, for example[M91℄, [MMoWe93℄. MMullen onstruted a family of maps related to the Klein mapf7; 3g8. For eah odd prime p there is a regular map of type fp; 3g with 12 (p2� 1) faesand orientation preserving automorphism group PSL (2; p).E24: The vertex-transitive maps on the sphere, lassi�ed by [FlIm79℄, onsist of theregular spherial maps and the boundary omplexes of the Arhimedean solids (semi-regular polyhedra), of the prisms and antiprisms. [Ba91℄ gave a lassi�ation of thevertex-transitive maps on the Klein bottle.

FACTSF44: A map M with f1 edges has exatly 4f1 ags.F45: In Aut(M), the stabilizer of any ag is trivial.F46: For any map M with f1 edges, the two immediately preeding fats imply that



Section 7.6 MAPS 17jAut(M)j � 4f1, with equality if and only if M is regular. In this sense, the regularmaps have the largest possible automorphism group.F47: On eah orientable surfae there is a regular map.F48: For a regular map on an orientable surfae, half the automoprhisms at as ori-entation preserving homeomorphisms of the surfae and half as orientation reversing.F49: Not every nonorientable surfae has a regular map; for example, there are noregular maps on the surfaes with nonorientable genus 2 and 3.F50: [Vi83b℄, [Wi78a℄ Every nonorientable regular map has a unique 2-fold unrami�edovering by a regular orientable map.F51: No hiral map exists on a nonorientable surfae.F52: For any surfae S with Euler harateristi (S) < 0, there are at most �nitelymany regular maps. This follows from the Hurwitz formula in x5.F53: [Vi83b℄ For any pair (p; q) suh that 1p + 1q � 12 , there are in�nitely many regularmaps of type fp; qg. [Ne�Sk01℄ subsequently showed that these maps may be hosen tohave arbitrarily large fae-width.F54: [Wi89℄ There is a regular map with omplete graphKn if and only if n = 2; 3; 4; 6.F55: [Bi71℄ There is a symmetrial map with omplete graph Kn if and only if n is aprime power and, for eah prime power, the symmetrial map is unique.F56: [Vi83a, 83b℄ The regular maps M of type fp; qg are in bijetion with the onju-gay lasses of normal subgroups N of �nite index in the Coxeter group W (p; q).F57: A regular map M is the quotient of the tessellation fp; qg by the orrespondingnormal subgroup N of symmetries of fp; qg; moreover Aut(M) �W (p; q)=N .F58: Aording to Fat 57, Aut(M), for a regular map M , has a presentation withthree generators, the same relations as given for the Coxeter groupW (p; q) in Equation(3) together with some additional relations (exept no additional relations in the aseof a regular spherial map).F59: Two speial ases have reeived partiular attention, the regular maps fp; qgrwhere the single relation (�0�1�2)r has been added and the regular maps fp; q jmgwhere the single relation (�0�1�2�1)m has been added. Coxeter and Moser [CoMo57℄have provided partial tables of parameters p; q; r and p; q;m for whih a �nite regularmap with those parameters exists. Figure 7.6.11 shows the regular map f5; 5g3.F60: Any Cayley map of a group � is vertex transitive, � ating as a group of auto-morphism of the Cayley map by left multipliation.F61: The double torus S2 has the interesting property that only �nitely many groupsat (as a group of homeomorphisms) on S2, but there are in�nitely many vertex-transitive (Cayley graphs) with genus 2.F62: [Th91℄,[Ba91℄ For eah g � 3, there are only �nitely many vertex-transitivegraphs of orientable genus g while there are in�nitely many of genus 0; 1 and 2.
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7.6.8 EnumerationW. T. Tutte [Tu68℄ pioneered map enumeration in the 1960's. Expliit results formaps on the sphere appear below. Results on generating funtions and asymptotis forthe number of suh maps on general surfaes an be found in the texts [GoJa83℄, [Ya99℄and the referenes therein. A onnetion between map enumeration, matrix integralsand 2-dimensional quantum gravity is explained in [Zv97℄.
DEFINITIONSD45: A rooted map is a map in whih a ag has been distinguished.D46: A rooted map is a near triangulation if every nonroot fae is a 3-gon.
EXAMPLESE25: For the sphere, the 2-onneted rooted maps with 4 edges are shown in the �rstrow of Figure 7.6.16. The �rst four of these omprise all 2-onneted rooted maps with3 verties and 3 faes. The root fae is the outer fae, the root vertex and edge are inboldfae.E26: On the seond row of Figure 7.6.16 are the rooted near triangulations with 4inner faes and a root fae with 2 edges. The root fae is the outer fae; the root edgeis the bottom edge; and the root vertex is in boldfae.

Figure 7.6.16 Counting maps on the sphere.
FACTSF63: [Tut63℄ The number of rooted maps on the sphere with n � 0 edges isg(n) = 2 � 3n(2n)!n!(n+ 2)!F64: [Tut63℄ The number of 2-onneted rooted maps on the sphere with n � 1 edgesis 2(3n� 3)!n!(2n� 1)!F65: [N. Wormald℄ (see [GoJa83℄) The number of 2-edge-onneted rooted maps onthe sphere with n � 0 edges is 2(4n+ 1)!(n+ 1)!(3n+ 2)!



Section 7.6 MAPS 19F66: [BrTu64℄ The number of 2-onneted rooted maps on the sphere with n � 1verties and k � 2 faes is (2n+ k � 5)!(2k + n� 5)!(n� 1)!(k � 1)!(2n� 3)!(2k � 3)!F67: [Br63℄ The number of rooted near triangulations of the sphere with n+2j innerfaes and n � 2 edges on the root fae is2j+2(2n+ 3j � 1)!(2n� 3)!(j + 1)!(2n+ 2j)!((n� 2)!)2 ; j � �1
7.6.9 Paths and Cycles in MapsThis setion overs three topis involving paths and yles: the Lipton-Tarjanseparator theorem, the existene of nonrevisiting paths in polyhedral maps, and thedeomposition of maps along yles in the graph. The third topi is related to a resultof Robertson and Seymour on minors.
DEFINITIONSD47: A path p in the graph of a map M is said to be nonrevisiting if p \ F isonneted for eah fae F of M .D48: A surfae S has the nonrevisiting path property if, for any polyhedral mapM on S, any two verties of M are joined by a nonrevisiting path.D49: A map M is a map minor of a map M 0 if M an be obtained from M 0 bya sequene of edge ontrations and deletions. The operations of edge deletion andedge ontration on a graph an be extended to a surfae imbedding of the graph in anobvious way.
EXAMPLEE27: A polyhedral map on the surfae S2 that fails to have the nonrevisiting pathproperty appears in Figure 7.6.17 below. There is no nonrerevisiting path from x to y.(The map is obtained by gluing along like labeled edges.)
FACTSF68: [LiTa79℄ Planar Separator Theorem: A planar graph with n verties has aset of at most 2p2n verties whose removal leaves no omponent with more than 2n=3verties.F69: [AlSeTh94℄ LetM be a loopless map on the sphere with n verties. Then there isa simple losed urve � on the surfae of the sphere passing through at most k � 3p2n=2verties (and no other points of the graph) suh that eah of the two open disks boundedby � ontain at most 2n=3�k=2 verties. This result slightly improves the Lipton-Tarjanseparator theorem.



20 Chapter 7 Topological Graph Theory

Figure 7.6.17 A map on S2 that does not satisfy the non-revisiting path property.F70: [GiHuTa84℄ A map of genus g ontains a set of at most O(pgn) verties whoseremoval leaves no omponent of the graph with more than 2n=3 verties. This generalizesthe Lipton-Tarjan theorem to maps on orientable surfaes of higher genus.F71: [PuVi98℄ For polyhedral maps, the nonrevisiting path property holds for thesphere, torus, projetive plane and Klein bottle. It fails for all other surfaes exeptpossibly the nonorientable surfae of genus 3 (see [PuVi96℄ and example E27).F72: The nonrevisiting path property holds for every polyhedral map with fae-widthat least 4.F73: [RoSe88℄ Let M0 be a map on a surfae S other than the sphere. There exists aonstant k suh that, for any map M on S with fw(M) � k, M0 is a map minor of M .The following two results provide values for the onstant k when the given M0 onsistsof ertain sets of disjoint yles.F74: [S93℄ A mapM on the torus with fae-width w ontains b3w=4 disjointnonontratible yles.F75: [BrMoRi96℄ For general surfaes there exist bw=2 pairwise disjoint on-tratible yles in the graph of any map M , all ontaining a partiular fae,b(w�1)=2 pairwise disjoint, pairwise homotopi, surfae nonseparating yles,and b(w� 1)=8� 1 pairwise disjoint, pairwise homotopi, surfae separating,nonontratible yles. (It is unknown whether any map of orientable genusg � 2 with fae-width at least 3 must ontain a nonontratible surfae sepa-rating yle.)F76: [Bar88℄ Every polyhedral map on the torus (projetive plane, Klein bottle) isisomorphi to the omplex obtained by identifying the boundaries of two faes of a3-polytope (ross identifying one fae of a 3-polytope, ross identifying two faes of a3-polytope).F77: [Yu97℄ (see also [Th93℄) If d is a positive integer and M is a map on Sg of fae-width at least 8(d + 1)(2g � 1), then the graph of M ontains a olletion of indued



REFERENCES 21yles C1; C2; : : : ; Cg suh that the distane between distint yles is at least d andutting along the yles results in a map on the sphere. This generalizes Fat 76.F78: [S91℄ Shrijver proved neessary and suÆient onditions (onjeteure by Lovaszand Seymour) for the existene of pairwise disjoint yles ~C1; : : : ; ~Ck on the graph of amap M homotopi to given losed urves C1; : : : ; Ck on the surfae.
REMARKR19: The Lipton-Tarjan separator theorem has appliations to divide-and-onqueralgorithms. Nonrevisiting paths arise in omplexity issues for edge following linearprogramming algorithms like the simplex method.
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GLOSSARY2-ell imbedding: an imbedding of a graph G on a surfae S suh that the omponentsof S nG are open 2-ells.Arhimedean solid: semi-regular polyhedron - regular polygons as faes and the sameon�guration of faes at eah vertex.automorphism of a map: an isomorphism of the map onto itself.Cayley map: an imbedding of a Cayley graph on a surfae using a rotation sheme asdesribed in the text.hiral map: a map that is symmetrial, but not regular.hromati number of a surfae S: the least number of olors suÆient to properlyolor the faes (or verties) of any map on S.overing f : M1 ! M2: a topologial overing of the respetive surfaes that takesthe graph of M1 onto the graph of M2, with rami�ation points only at verties andfaes enters.Coxeter group (of rank 3): a group with presentation by three generators �0; �1; �2and the relations �20 = �21 = �22 = (�0�1)p = (�1�2)q = (�2�0)r = 1.



Glossary 27Coxeter omplex: the baryentri subdivision of the tessellation fp; qg, formed by allmirrors of reetion symmetries.dual map: the geometri dual of the graph imbedded on a surfae.edge-width: the length of a shortest yle in the imbedded graph that is nonon-tratible on the surfae.Euler harateristi of a map: f0 � f1 + f2, where fi denotes the number of i-dimensional faes of the map.fae: (also 2-fae) a onneted omponent of S n G where graph G is 2-ell imbeddedon surfae S.fae boundary: the edges inident to the fae (with repetitions possible) orderedylially aording to the rotation sheme of the map.fae-width: the minimum number of points j \ Gj over all nonontratible simplelosed urves  on the surfae on whih the graph G is imbedded.ag: an ordered triple (F0; F1; F2) of pairwise inident faes of a map of dimensions 0; 1and 2, respetively.f-vetor: the triple (f0; f1; f2) where fi is the number of i-dimensional faes of themap.genus of a surfae: the number of handles for an orientable surfae and the numberof ross aps for a nonorientable surfae.graph enoded map: a partiular system for desribing a map using olored graphs.hypermap: a generalization of graph imbedded on a surfae to hypergraph imbeddedon a surfae.isomorphism of maps: a homeomorhism of the respetive surfaes that indues agraph isomorphism of the respetive graphs.Klein bottle: the nonorientable surfae of genus 2.large-edge-width map: a map whose edge-width is greater than the number of edgesin any fae boundary.map: a 2-ell imbedding of a graph on a surfae.map minor of M : a map M obtained from map M by deleting and/or ontratingedges.minimal triangulation: a simpliial polyhedral map for whih the ontration of anyedge results in a map that is no longer polyhedral.near triangulation: a rooted map in whih every nonroot fae is a 3-gon.neighborly polyhedral map: a polyhedral map in whih every pair of distint vertiesis joined by an edge.nonontratible yle: a yle in the imbedded graph that is nonontratible on thesurfae.nonseparating yle: a yle in the imbedded graph whose removal separates thesurfae.nonrevisiting path: a path p in the graph of a map M suh that p \ F is onnetedfor eah fae F of M .permutation sheme: a partiular system for desribing a map using a pair of per-mutations.



28 Chapter 7 Topological Graph Theorypolyhedral map: a map M whose fae boundaries are yles, and suh that any twodistint fae boundaries are either disjoint or meet in either a single edge or vertex.projetive plane: the nonorientable surfae of genus 1.p-sequene: fpig, where pi is the number of i-gonal fae in a polyhedral map.rami�ation point of a overing: a point of the surfae at whih the overing is nota loal homeomorphism.realization: an imbedding of a map into Eulidean spae Ed suh that eah fae is aplane onvex polygon and adjaent faes are not oplanar.regular map: a map whose automorphism group ats transitively on the set of ags.rooted map: a map in whih a ag has been distinguished.rotation sheme: a partiular system for desribing an imbedding of a graph G on asurfae using a yli permutation at eah vertex of G.simple map: A map in whih eah vertex has degree 3.simpliial map: (triangulation) a map where eah fae boundary is a 3-yle.skew polyhedron: a realization of a polyhedral map in Ed; d > 3.star polyhedron: polyhedron allowing faes to interset.surfae: a ompat, onneted, 2-dimensional manifold without boundarysymmetrial map: a map with at most two orbits under the ation of the automor-phism group on the set of ags.tessellation fp; qg: the lassial tiling of the sphere, Eulidean plane, or hyperboliplane into p-gons, q inident at eah vertex.torus: the orientable surfae of genus 1.triangle group: the symmetry group of the tessellation of type fp; qg.triangulation of a surfae: (simpliial map) a map where eah fae boundary is a3-yle.type fp; qg map: a map with p edges inident with eah vertex and q edges inidentwith eah fae.vertex splitting: an operation on a map inverse to edge ontration | a single vertexis replaed by two verties joined by an edge.vertex-transitive map: a map whose automorphism group ats transitively on theset of verties.v-sequene: fvig, where vi is the number of verties of degree i in a polyhedral map.weakly neighborly polyhedral map: a polyhedral map for whih every pair ofverties is ontained on a fae.


