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INTRODUCTIONThe theory of maps is likely the oldest topi
 in this volume, going ba
k, not justto the 4-
olor problem posed in 1852 and to the theory of automorphi
 fun
tions de-veloped in the late 1800's, but to the Platoni
 solids dating to antiquity. Among themany 
ontributors to the subje
t are Ar
himedes, Kepler, Euler, Poinsot, de Morgan,Hamilton, Dy
k, Klein, Heawood, Hurwitz, Steinitz, Whitney, Koebe, Tutte, Coxeterand Gr�unbaum. General referen
es on maps in
lude [BoLi95℄, [BrS
97℄, [CoMo57℄,[GrTu87℄, [MoTh01℄, and [Wh01℄.
7.6.1 Maps and Polyhedra MapsBasi
 notions are introdu
ed: map and polyhedral map, duality, isomorphism, fa
eand edge-width. The existen
e and uniqueness of a map with a given graph is addressed.
DEFINITIONSD1: A map M on a surfa
e S is a �nite 
ell-
omplex whose underlying topologi
alspa
e is S. The surfa
e of a map M is denoted jM j.D2: The graph of the map M is its 1-skeleton. It is denoted G := G(M).D3: The verti
es and edges of a map M are the verti
es and edges, respe
tively,of its graph G(M).D4: The fa
es of a map M are the 
onne
ted 
omponents of jM j nG(M).D5: The 0-, 1-, and 2-dimensional fa
es of a map M are its verti
es, edges andfa
es, respe
tively.D6: The dual map M� of a map M on a surfa
e S is a map on the same surfa
e Swhose vertex set V � 
onsists of one point interior to ea
h fa
e of M and whose edge set
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2 Chapter 7 Topological Graph TheoryE� 
onsists of, for ea
h edge e of M , an edge e� 
rossing e and joining the verti
es ofV � that 
orrespond to the fa
es in
ident with e. (A more general de�nition of dualityappears in [Vi95℄, for example.)D7: A polyhedral mapM , generalizing the notion of a 
onvex polyhedron, is a mapwhose fa
e boundaries are 
y
les, and su
h that any two distin
t fa
e boundaries areeither disjoint or meet in either a single edge or vertex.D8: Maps M1 and M2 are isomorphi
, denoted M1 � M2, if there is a homeomor-phism of the respe
tive surfa
es that indu
es an isomorphism of the respe
tive graphs.D9: The fa
e-width of a mapM , denoted fw(M), is the minimum number of pointsj� \G(M)j over all non
ontra
tible simple 
losed 
urves � on the surfa
e.D10: The edge-width of a mapM , denoted ew(M), is the length of a shortest 
y
lein G(M) that is non
ontra
tible on the surfa
e.D11: A large-edge-width (LEW) map is a map whose edge-width is greater thanthe number of edges in any fa
e boundary.
EXAMPLESE1: A map M on the torus and the dual map M� appear in Figure 7.6.1. (The torusis obtained by identifying like labeled edges on the boundary of the polygon.) NeitherM nor M� is polyhedral.

Figure 7.6.1 A torus map and its dual.E2: Figure 7.6.2 shows two nonisomorphi
 maps on the sphere with the same 2-
onne
ted, but not 3-
onne
ted, graph. The maps are related by a Whitney 
ip. Thisexample is relevant to Fa
t F6 below.
Figure 7.6.2 Maps on the sphere with the same 2-
onne
ted graph.E3: Figure 7.6.3 shows two polyhedral maps on the proje
tive plane with isomorphi
3-
onne
ted graphs. (The proje
tive plane is depi
ted as a dis
 with antipodal points



Section 7.6 MAPS 3identi�ed.) This example shows that the analogy to the Whitney uniquesness theorem(Fa
t F6) for proje
tive planar graphs fails.
Figure 7.6.3 Maps on the proje
tive plane with the same 3-
onne
ted graph
REMARKSR1: It is equivalent to regard a map as a 2-
ell imbedding of a graph G on a surfa
eS, i.e., an imbedding su
h that the 
onne
ted 
omponents of S nG are 2-
ells.R2: Fa
e-width, introdu
ed in [RoSe88℄, is a measure of lo
ally planarity, or of howdense the graph is on the surfa
e, or of how well the graph represents the surfa
e.R3: The 
on
ept of map has been extended to 
ell-
omplexes whose underlying topo-logi
al spa
e is a manifold of dimension greater than 2. This in
ludes, in parti
ular, theboundary 
omplex of any polytope. The generalization to higher dimensions, thoughnatural and interesting, is omitted here.R4: A map M on the sphere S 
an be drawn in the plane via, for example, stereo-graphi
 proje
tion from any point of S nG(M).R5: A map may have multiple edges, self-loops, and verti
es of degree 1 or 2. Apolyhedral map, however, 
an have none of these. Moveover, in a polyhedral map, the
losure of ea
h fa
e is topologi
ally a 
losed dis
.
FACTSF1: Euler's formula For any map M with f0 verti
es, f1 edges, f2 fa
es and 
har-a
teristi
 
(M), f0 � f1 + f2 = 
(M)F2: If M is a map, then (M�)� =M .F3: If M is a map, then fw(M�) = fw(M).F4: MapM is polyhedral if and only if its graphG(M) is 3-
onne
ted and fw(M) � 3.Moreover, M is polyhedral if and only if its dual is polyhedral.F5: Every 
onne
ted graph G admits a map. The rotation s
heme des
ribed in x6gives a systemati
 method for obtaining all 2-
ell imbeddings of G.F6: [Wh32℄ Whitney Uniqueness Theorem: A 3-
onne
ted, planar graph has aunique imbedding on the sphere.F7: [Th90℄ A uniqueness theorem for general surfa
es: if M1 and M2 are LEW mapswith the same graph, then jM1j = jM2j. Moreover, if the graph is 3-
onne
ted, thenM1 �M2.
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REMARKSR6: A

ording to Fa
t F5 above, every 
onne
ted graph has a 2-
ell imbedding on asurfa
e. Whether a graph 
an be imbedding on a surfa
e su
h that the fa
e boundariesare (simple) 
y
les is problemati
 (see the 
onje
tures below).R7: [SeTh96℄ gives a uniqueness result similar to Fa
t F6 for maps with suÆ
ientlylarge fa
e-width as a fun
tion of the genus. However, [Ar92℄ provides an example, forevery pair of integers k; b, of two maps M1;M2 with the same k-
onne
ted graph su
hthat fw(M1); fw(M2) > b and jM1j 6= jM2j.
CONJECTURESThe Cy
le Double Cover Conje
ture: Every 2-
onne
ted graph 
ontains a set C of
y
les su
h that every edge is 
ontained in exa
tly two 
y
les of C.The Strong Imbedding Conje
ture: Every 2-
onne
ted graph 
an be embedded ona surfa
e so that ea
h fa
e is bounded by a 
y
le in the graph. The strong imbedding
onje
ture implies the Cy
le Double Cover Conje
ture.
7.6.2 The f-vector, v- and p-sequences, and RealizationsElementary equalities hold among the basi
 parameters of a map. The two questionsaddressed in this se
tion are, �rst, when are these ne
essary 
onditions also suÆ
ientfor the existen
e of a map with these parameters and, se
ond, when 
an the map beembedded in Eu
lidean spa
e E3 or E4 su
h that the fa
es are plane 
onvex polygons.The 
lassi
 results for maps on the sphere are Eberhard's theorem of 1891 and Steinitz'stheorem of 1922.
DEFINITIONSD12: A map is of type fp; qg if ea
h fa
e has p edge in
iden
es and ea
h vertex hasq edge in
iden
es. (No global symmetry is implied; in fa
t, the automorphism group ofthe map, as de�ned in x5, may be trivial.)D13: The 
ell-distribution ve
tor (f-ve
tor) of a mapM is the 3-tuple (f0; f1; f2),where f0; f1; f2 are the numbers of verti
es, edges, and fa
es of M , respe
tively.D14: The fa
e-size sequen
e (p-sequen
e) of a polyhedral map M is the sequen
efpigi�3 where pi is the number of i-gonal fa
es in M .D15: The vertex-degree sequen
e (v-sequen
e) of a polyhedral map M is thesequen
e fvigi�3 where vi is the number of verti
es of degree i in M .D16: A polyhedral map M is simpli
ial (or a triangulation) if the boundary ofea
h fa
e is a 3-
y
le.D17: A polyhedral map M is simple if its graph is 3-regular.D18: A geometri
 realization (realization) of a polyhedral map M is an imbed-ding of M into Eu
lidean spa
e Ed (no self interse
tion) su
h that ea
h fa
e is a plane
onvex polygon and that adja
ent fa
es are not 
oplanar.
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REMARKR8: Using a less stringent de�nition of realization than above, [M
89℄ de�ned the re-alization spa
es and studied its topologi
al properties. Also see [BuSt00℄ and [MoWe00℄for the realization spa
e of the torus maps.
EXAMPLESE4: The map M in Figure 7.6.1 is of type f3; 6g with fa
e ve
tor (4; 12; 8). Its dualM� is of type f6; 3g with fa
e ve
tor (8; 12; 4). The maps in Figure 7.6.2 both have v-sequen
e (6; 3), but the �rst has p-sequen
e (0; 6; 0; 1) while the se
ond has p-sequen
e(1; 3; 3).E5: Five maps on the sphere and their 
orresponding 3-dimensional realizations appearin Figure 7.6.4.

Figure 7.6.4 The Platoni
 solids as realizations of maps.
FACTSF8: The f -ve
tor, the p-sequen
e and the v-sequen
e satisfy the following elementaryequalities: X pi = f2; X vi = f0; X ipi = 2f1 =X iviF9: For a map M on an orientable surfa
e of genus g, �; � � 0 su
h that � + � = 1,Euler's formula implies thatX(�i� 2)vi +X(�i� 2)pi = 4(g � 1) (1)For example, taking � = 1=3; q = 0, and M simple yieldsX(6� i)pi = 12 (2)F10: [Eb1891℄ Eberhard's Theorem: Condition (2) above is suÆ
ient for theexisten
e of a sphere map, in the following sense: if a sequen
e fpi j i � 3; i 6= 6gsatis�es Pk 6=6(6 � k)pk = 12, then there exist values of p6 su
h that fpi j i � 3g isthe p-sequen
e of a simple polyhedral map on the sphere. For variations on Eberhard'sTheorem, see [Gr70℄ and [Je93℄. There is no known generalization of Eberhard's theoremto arbitrary surfa
es.F11: [EdEwKu82℄ If S is a surfa
e with Euler 
hara
teristi
 
(S), if f0; f1; f2; p; q arepositive integers su
h that f0�f1+f2 = 
(S), and if pf2 = 2f1 = qf0, then there existsa map of type fp; qg on S with f -ve
tor (f0; f1; f2), ex
ept when S is the proje
tiveplane and fp; qg = f3; 3g; f0 = f2 = 2; f1 = 3.



6 Chapter 7 Topological Graph TheoryF12: [St22℄ Steinitz's Theorem: Every polyhedral map on the sphere is isomorphi
to the boundary 
omplex of a 3-dimensional polytope. Thus, any polyhedral map onthe sphere has a realization in E3.F13: [Al71, Gr67℄ A simple polyhedral map M 
annot be realized in Eu
lidean spa
eof any dimension unless jM j is the sphere.F14: [BrS
95℄ Ea
h simpli
ial polyhedral map on the torus or proje
tive plane 
an berealized in E4.F15: [BrWi93℄ On any nonorientable surfa
e Ng, there exists a simpli
ial map that
annot be realized in E3. (When g > 1, it is an open question whether ea
h simpli
ialpolyhedral map of orientable genus g 
an be realized in E3.)F16: [Gr83℄ Equation (2) for the torus (with � = 1=3) be
omes2X(i� 3) vi +X(i� 6) pi = 0whi
h leads to the following analogue of Eberhard's theorem for the torus. Given asequen
e fpi j i � 3; i 6= 6g and a positive integer s, there is a realization in E3 of somepolyhedral map on the torus with p-sequen
e fpi j i � 3g andP(i�3)vi = s if and onlyif Pk 6=6(6� k)pk = 2s and s � 6. Related results appear in [BaGrH�o91℄.F17: [St06℄ The ve
tor (f0; f1; f2) is the f -ve
tor of a realization in E3 of some poly-hedral map on the sphere if and only if f0 � f1 + f2 = 2, 4 � f0 � 2f2 � 4, and4 � f2 � 2f0 � 4.F18: [Gri83℄ The ve
tor (f0; f1; f2) is the f -ve
tor of a realization in E3 of somepolyhedral map on the torus if and only if f0 � f1 + f2 = 0, f2(11� f2)=2 � f0 � 2f2,f0(11� f0)=2 � f2 � 2f0, 2f1 � 3f0 � 6, and f1 6= 19.F19: [Ko36,An79,Th78℄ Koebe-Andreev-Thurston 
ir
le pa
king theorem:Every simpli
ial map M admits a 
ir
le pa
king representation, i.e., there exists aRiemannian metri
 of 
onstant 
urvature +1, 0, or �1 on the surfa
e and a 
olle
tionof pairwise disjoint open disks on jM j whose boundaries are geodesi
 
ir
les su
h thatthe tangen
y graph of this 
olle
tion of 
ir
les is G(M). For a generalization to a larger
lass of maps, see [Mo97℄. A 
ir
le pa
king representation of the o
tahedral map on thesphere appears in Figure 7.6.5.

Figure 7.6.5 A 
ir
le pa
king representation of the o
tahedral map.
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7.6.3 Map ColoringThe famous results on map 
oloring are the Four Color Theorem for the sphereand the Heawood Map Coloring Theorem, whi
h is the generalization of the Four ColorTheorem to surfa
es of higher genus. Also in this se
tion are a few results on 
oloringdensely imbedded graphs.
DEFINITIOND19: The 
hromati
 number �(S) of a surfa
e S is the least number of 
olorssuÆ
ient to properly 
olor the fa
es of any map on S. By duality, it is also the leastnumber of 
olors suÆ
ient to properly 
olor the verti
es of any map on S. In thisse
tion, 
oloring will mean vertex 
oloring.
FACTSF20: [ApHa76℄ Four Color Theorem: �(S0) = 4.F21: [Fr34℄ �(N2) = 6.F22: [RiYo68℄Heawood Map Coloring Theorem: For every surfa
e S ex
ept theKlein bottle N2, �(S) = �7 +p49� 24
2 �where 
 is the Euler 
hara
teristi
 of S. The right-hand side of the equation is 
alledthe Heawood formula.F23: A map M on the torus with ew(M) � 4 is 5-
olorable. It is not known whetherthis same statement holds for surfa
es of higher genus.F24: [Th93℄ Any map M on Sg with ew(M) � 214g+6 is 5-
olorable.F25: [Th97℄ For a �xed surfa
e S, there is a polynomial time algorithm to de
ide if amap on S 
an be 5-
olored.F26: Even on the sphere, the problem of de
iding whether a map 
an be 3-
olored isNP-
omplete.F27: [RSST96℄ On the sphere, a 4-
oloring 
an be found in O(n2) steps.
REMARKSR9: The problem of determining the 
hromati
 number of the sphere appeared ina 1852 letter from Augustus de Morgan to Sir William Hamilton, and was likely dueto Fran
is Guthrie, the brother of a student of de Morgan. The 
omputer dependentproof of Appel and Haken [ApHa76℄ that four 
olors suÆ
e was simpli�ed 
onsiderably[RSST97℄ (but still 
omputer dependent).R10: That the formula in the Heawood Map Coloring Theorem gives an upper boundon �(S) was proved by Heawood [He1890℄. That there exist graphs that a
tually requirethe number 
olors given by that formula is a 
onsequen
e of the formula for the genusof 
omplete graphs due to Ringel and Youngs [RiYo68℄.R11: Whether there is a polynomial time algorithm for de
iding whether a map onan arbitrary surfa
e 
an be 4-
olored is unknown.
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EXAMPLESE6: Figure 7.6.9a is map on the proje
tive plane that requires 6 
olors for a proper
oloring, and Figure 7.6.6 is map on the torus that requires 7. This shows that �(N1) � 6and that �(S1) � 7. In fa
t, �(N1) = 6 and �(S1) = 7, in a

ordan
e with Fa
t F23.(The torus in Figure 7.6.6 is obtained by identifying left and right sides of the re
tangleand the top and bottom sides with a 2=7 twist.)
Figure 7.6.6 A map on the torus whose graph is K7.E7: An example of Fisk [Fi78℄ shows that no 4-
olor analogue of Thomassen's result(Fa
t F24 above) 
an hold. See Figure 7.6.7, where the torus is obtained by identifyingopposite sides of the square.

Figure 7.6.7 A map M on the torus with exa
tly two odd-degree verti
es is not 4-
olorable.
7.6.4 Minimal MapsA map 
an be quite \degenerate", for example, the map on the sphere with 2verti
es, 1 edge, and 1 fa
e. Polyhedral maps (and maps with edge-width or fa
e-widthbounded from below) 
annot be this small. This se
tion 
on
erns maps that are in somesense minimal | either with respe
t to the number of verti
es, or with respe
t to beingpolyhedral, or with respe
t to having edge-width k. Also 
overed in this se
tion areweakly neighborly polyhedral maps.
DEFINITIONSD20: A polyhedral map is neighborly if every pair of distin
t verti
es is joined byan edge.D21: A polyhedral map is weakly neighborly (abbr. a wnp-map) if every twoverti
es are 
ontained on a fa
e.D22: The operation of edge 
ontra
tion for a triangulation, and its inverse oper-ation vertex splitting, are depi
ted in Figure 7.6.8. After 
ontra
ting an edge in atriangulation, the map may no longer be a triangulation, i.e., no longer polyhedral; thiso

urs if the edge is 
ontained in a 3-
y
le that is not a fa
e boundary or if the map isthe tetrahedral map.D23: A minimal triangulation of a surfa
e S is a triangulation su
h that the 
on-tra
tion of any edge results in a map that is no longer polyhedral.D24: A k-minimal triangulation is a triangulation with edge-width k, su
h that
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h edge is 
ontained in a non
ontra
tible k-
y
le. (Ex
ept on the sphere, minimaland 3-minimal are equivalent.)
Figure 7.6.8 Edge 
ontra
tion and vertex-splitting in a triangulation.

EXAMPLESE8: The only wnp-maps on the sphere are the boundary 
omplexes of the pyramidsand triangular prism.E9: There are 5 wnp-maps on S1 and none on S2.E10: The wnp-maps on nonorientable surfa
es up to genus 4 appear in [AlBr87℄.E11: There is 1 minimal triangulation of the sphere (the tetrahedral map), 2 minimaltriangulations of the proje
tive plane (see Figure 7.6.9), 21 of the torus, and 25 of theKlein bottle.
Figure 7.6.9 The minimal triangulations of the proje
tive plane.

FACTSF28: If the map M with f0 verti
es and Euler 
hara
teristi
 
 is polyhedral, thenf0 � �7 +p49� 24
2 � ;and this lower bound is attained for all surfa
es ex
ept S2; N2 and N3. By duality thesame bound holds for f2.F29: The neighborly polyhedral maps attain the bound in Fa
t F28.F30: [AlBr86℄ Ea
h surfa
e admits at most �nitely many wnp-maps. (See ExampleE8.)F31: [BaEd89℄ The set of minimal triangulations is �nite for every �xed surfa
e. (SeeExample E11.) In other words, for ea
h surfa
e, there is a �nite set of triangulationsfrom whi
h any triangulation on that surfa
e 
an be generated by vertex splittings.F32: For any k � 3, the set of k-minimal graphs on a �xed surfa
e is �nite. ([MoTh01℄provides a proof.)
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REMARKR12: [Br90℄ has provided a (non-tight) lower bound for f1, for a polyhedral map ofEuler 
hara
teristi
 
.
7.6.5 Automorphisms and CoveringsEvery mapM has a universal 
over that is a 
lassi
al tiling of the sphere, Eu
lideanplane, or hyperboli
 plane (unit dis
). This fa
t and its 
onsequen
es are the subje
t ofthis se
tion. Also addressed is the relation between a group a
ting as automorphismsof a map and a group a
ting as homeomorphisms of the surfa
e.In this se
tion the 
lassi
al Eu
lidean and hyperboli
 tessellations are regardedas in�nite maps, even though, by our de�nition, a map is a �nite 
ell 
omplex. Foran expository arti
le on 
onne
tions between maps, Galois groups and Grothendie
k'sdessins d'enfants, see [JoSi96℄.
DEFINITIONSD25: An automorphism of a map M is an isomorphism of M onto itself. Theautomorphisms form a group Aut(M) under 
omposition.D26: A map 
overing f : M1 ! M2 is a topologi
al 
overing (see x7.2) of therespe
tive surfa
es that takes the graph of M1 onto the graph of M2, with rami�
ationpoints possible only at verti
es and fa
e 
enters.D27: The tessellation fp; qg is the unique tesselation of the sphere or plane intoregular p-gons, q in
ident at ea
h vertex. This is a tiling of the sphere if 1p + 1q > 12 , ofthe Eu
lidean plane if 1p + 1q = 12 , or of the hyperboli
 plane (unit dis
) if 1p + 1q < 12 .D28: The triangle group (p; q; 2) is the symmetry group of the tessellation fp; qg.D29: The Coxeter groupW (p; q) is the group with presentation by three generators�0; �1; �2 and the relations�20 = �21 = �22 = (�0�1)p = (�1�2)q = (�2�0)2 = 1 (3)
EXAMPLESE12: Both torus mapsM andM� in Figure 7.6.1 are 
overings of the tetrahedral mapin Figure 7.6.4. The 
overing by M is rami�ed at verti
es and the 
overing by M� isrami�ed at fa
e 
enters. Both are 2-fold 
overings, that is, ea
h unrami�ed point of thesphere is 
overed by two points of the torus.E13: Figure 7.6.10 shows all the (hyperboli
) mirors of re
e
tion symmetries of thetessellation f6; 4g (or f4; 6g). These lines form a subdivision (
alled the Coxeter 
om-plex) of the hyperboli
 plane into triangles (
alled 
ags).
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Figure 7.6.10 Re
e
tion symmetries of the hyperboli
 tessellation f6; 4g.
FACTSF33: The symmetry group (p; q; 2) of the tessellation fp; qg is isomorphi
 to the Cox-eter groupW (p; q). The Coxeter generators �0; �1; �2 (and their 
onjugates) 
orrespondto re
e
tions in the three sides of a 
ag, as des
ribed in example E12; the produ
ts�1�2; �0�2; �0�1 (and their 
onjugates) 
orrespond to rotations about verti
es, midpointsof edges, and fa
e 
enters, respe
tively.F34: Every map M has a 
overing by a tessellation fp; qg for some p; q. In otherwords, every map M is the quotient of a tesselation fp; qg by a subgroup HM of theCoxeter group W (p; q).F35: [Vi83a℄ The automorphism group Aut(M) of any map M is isomorphi
 to thequotient NW (HM )=HM , where NW denotes the normalizer and where HM is the sub-group of Fa
t 34.F36: Every mapM of type fp; qg has an unrami�ed 
overing by the tessellation fp; qg.For example, the map on N5 of type f5; 5g in Figure 7.6.11, is 
overed by the tessellationf5; 5g of the hyperboli
 plane. (The map is obtained by identifying like labeled edgesin the �gure.)
Figure 7.6.11 The regular self-dual map f5; 5g3 and its universal 
over f5; 5g.F37: [Bi72℄ The automorphism group of an orientable map of genus g > 1 
an befaithfully represented in the group of 2g� 2g symple
ti
 matri
es with integral entries.From this it 
an be proved, for example, that if prime p divides jAut(M)j, then thegenus of the map M is either 1; 2 or at least 12 (p� 1).



12 Chapter 7 Topological Graph TheoryF38: [Hu1892℄ Hurwitz formula: If a group � a
ts on a surfa
e of Euler 
hara
ter-isti
 
 < 0, then j�j � �84
.F39: A mapM with Euler 
hara
teristi
 
 < 0 satis�es jAut(M)j � �84
with equalityif and only if M is a regular map of type f3; 7g or f7; 3g (see x7 for the de�nition ofregular). This is a dire
t 
onsequen
e of the Hurwitz formula.F40: [Tu83℄ If a group � a
ts on an orientable surfa
e S, then some Cayley graph Gof � embeds in S, and the natural a
tion of � on G (by left multipli
ation) extends toan a
tion of � on S.
REMARKR13: [JoSi78℄ Fa
t F35 implies that the surfa
e of any map M 
an be assumed to bea Riemann surfa
e su
h that Aut(M) a
ts as a group of 
onformal homeomorphisms.The edges of G(M) are geodesi
s of equal length with respe
t to a Riemannian metri
of 
onstant 
urvature (de�ned everywhere ex
ept perhaps at �nitely many rami�
ationpoints lo
ated at verti
es and fa
e 
enters) and the angles formed by su

essive edgesin
ident with a vertex are equal.
7.6.6 Combinatorial SchemesThe de�nition of map in x1 as a 
ell 
omplex is topologi
al. A stri
tly 
ombinatorialdes
ription, although less intuitive, is often easier to apply. Three su
h s
hemes aredes
ribed: rotation s
heme, permutation s
heme, and graph en
oded map.
DEFINITIONSD30: A rotation s
heme (G; �) 
onsists of a graph G and a set � = f�vgv2V (G),where �v is a 
y
li
 permutation of the edges in
ident to v. This s
heme [Ed60℄ en
odesany map with graph G embedded on an orientable surfa
e (and 
an be extended toin
lude nonorientable imbeddings).D31: The map of a rotation s
heme is obtained as follows. Given a dire
ted edgee1 = (v0; v1) of G, 
onsider the 
y
le 
onsisting of su

essive dire
ted edges e1e2 : : : em =e1, where ei = (vi�1; vi) and ei+1 = �vi(ei)Ea
h (undire
ted) edge lies on exa
tly two su
h 
y
les. Regarding ea
h 
y
le as theboundary of a polygonal 2-
ell and gluing together 2-
ells along paired edges results inan orientable surfa
e in whi
h G is embedded. Conversely, the rotation s
heme ofa map M on an orientable surfa
e is (G; �), where G is the graph of M and �v is the
y
li
 permutation of the edge in
iden
e on vertex v indu
ed by the orientation of thesurfa
e, say 
lo
kwise.D32: A permutation s
heme (�; �) on a �nite set X 
onsists of permutations �and � a
ting on X , su
h that ea
h orbit of � has length 2 and su
h that the permutationgroup Hh�; �i generated by � and � is transitive on X .D33: The verti
es, edges and fa
es of the permutation s
heme (�; �) are the 
y
lesof �; � and � Æ �, respe
tively.
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es (of any dimension) of the permutation s
heme (�; �) on a set X arein
ident if the 
orresponding 
y
les have an element of X in 
ommon.D35: The permutation s
heme of a map M has as the elements of its obje
t setX the \half edges" ofM (see example E14). Ea
h 
y
le of � is the 
y
li
 (say 
lo
kwise)order of the half edges in
ident to a given vertex on the surfa
e jM j, and ea
h 
y
le of� is the two \half edges" at a midpoint of an edge. In a permutation s
heme for a map,the graph is not expli
itly part of the data.D36: A graph en
oded map (abbr. GEM) is a 
onne
ted, �nite graph G, regularof degree 3, together with a proper 3-
oloring of the edges in the 
olor set I = f0; 1; 2g,and with subgraphs Gi, ea
h indu
ed by all edges not 
olored i, su
h that the 
onne
ted
omponents of G1 are 4-
y
les.D37: The verti
es, edges and fa
es of a GEM G are the 
onne
ted 
omponents ofG0;G1 and G2, respe
tively.D38: Two fa
es (of any dimension) of a GEM are in
ident fa
es if the 
orrespondingsubgraphs have non-empty interse
tion.D39: The graph en
oding G of a given map M , is obtained from the bary
entri
subdivision � of M , by giving ea
h vertex v of � the label 0; 1, or 2, a

ording to thedimension of the fa
e in M that vertex v represents; then G is the dual graph of �,with 
olor i assigned to edge e if and only if the two endpoints of the edge of � that e
rosses are not labeled i.
REMARKSR14: Permutation s
hemes 
an represent any map on an orientable surfa
e (and 
anbe extended to in
lude maps on nonorientable surfa
es). They have been used by [Ja68℄,[Co75℄, [Tu79℄, [JoSi78℄, [Wa75℄, and [St80℄.R15: GEM's were introdu
ed (in arbitrary dimension) as \
ombinatorial maps" by[Vi83℄ and as \
rystallizations" by [Fe76℄ and [Ga79℄ in a topologi
al 
ontext. Theterminology \graph en
oded map" is due to [Li82℄. A graph en
oding 
an represent anyorientable or nonorientable map.R16: Lifting the restri
tion that ea
h orbit of � in a permutation s
heme must havelength 2 or that ea
h 
omponent of G1 in a graph en
oded map must be a 4-
y
le, resultsin the 
on
ept of hypermap or hypergraph imbedding.
EXAMPLEE14: On the left in Figure 7.6.12 is a map on the sphere, and on the right is the
orresponding graph en
oded map. A rotation s
heme for this map is given by thethree 
y
li
 permutations of edges in
ident to ea
h of the three verti
es:�1 = (1 2 3); �2 = (1 4 5); �3 = (5 4 3 2)A permutation s
heme for this same map is given by two permutations:� = (1+ 1�)(2+ 2�)(3+ 3�)(4+ 4�)(5+ 5�) � = (1+ 2+ 3+)(1� 4+ 5+)(5� 4� 3� 2�)
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Figure 7.6.12 A map on the sphere and its graph en
oding.
FACTSF41: The notion of an automorphism of a mapM 
an be translated into terms of ea
hof the above s
hemes:If a map M is given as as a rotation s
heme (G; �), then an automorphismof M 
orresponds to an isomorphism f : G ! G that preserves the 
y
li
permutations, i.e., f Æ �v = �f(v) Æ f for all v 2 V (G).IfM is given as a permutation s
heme (�; �) on a setX , then an automorphismof M 
orresponds to a bije
tion f : X ! X su
h that f Æ � = � Æ f for all� 2 Hh�; �i.If M is given as a GEM G, an automorphism of M 
orresponds to a 
olorpreserving graph isomorphisms of G.F42: The notion of duality 
an also be easily translated:If M is given as a permutation s
heme (�; �) a
ting on the set X , the dualmap M� is given by the permutation s
heme (�; � Æ �) a
ting on the same setX .If M is given as a GEM G, the dual map M� is en
oded by the same graph Gwith edge 
olors 0 and 2 inter
hanged.F43: The surfa
e of a map is orientable if and only if the 
orresponding GEM isbipartite.
7.6.7 Symmetry of MapsRegular maps, those enjoying the greatest symmetry, are the surfa
e analogues ofthe Platoni
 solids. Also dis
ussed are symmetri
al and vertex-transitive maps.
DEFINITIONSD40: A 
ag of a map M is an ordered triple (F0; F1; F2) of mutually in
ident fa
esof dimensions 0; 1 and 2, respe
tively.D41: A map M is a regular map if Aut(M) a
ts transitively on the set of 
ags.D42: A mapM is a symmetri
al map if Aut(M) has at most two orbits in its a
tionon the set of 
ags.D43: A map is a 
hiral map if it is symmetri
al, but not regular.D44: A Cayley map for a group � with generator set �, is an imbedding of theCayley graph G��, using a rotation s
heme as de�ned in x6. The 
y
li
 permutation



Section 7.6 MAPS 15on the edges �� = � [ ��1 in
ident at ea
h vertex must be the same at ea
h vertex(see Example E21).
REMARKR17: For a symmetri
al map M , the automorphism group Aut(M) a
ts transitivelyon the set of verti
es, on the set of edges, and on the set of fa
es.R18: If a map M is given in terms of a GEM G, then the 
ags of M are in bije
tive
orresponden
e with the verti
es of G. Therefore the map M is regular if and only ifthe (graph) automorphism group of G is vertex-transitive.
EXAMPLESE15: The regular maps on the sphere are the boundary 
omplexes of the �ve Platoni
solids (see Figure 7.6.4) whi
h have types f3; 3g, f3; 4g, f4; 3g, f3; 5g, f5; 3g, respe
-tively, plus the in�nite families of (non-polyhedral) maps of types fp; 2g; f2; pg; p > 0.E16: Sin
e every map on the proje
tive plane has a 2-fold 
overing by a map on thesphere (Fa
t F51), it follows from Example 15 that there are four regular maps on theproje
tive plane of types f3; 4g; f4; 3g; f3; 5g; f5; 3g and in�nite families of types fp; 2gand f2; pg, where p � 2 mod 4.E17: There are three in�nite families of regular torus maps of types f3; 6g; f6; 3g andf4; 4g. For example, in the notation of Fa
t F60, the maps in Figure 7.6.1, are f3; 6g4and f6; 3g4.E18: [CoDo01℄ used the bije
tion in Fa
t F57 and a network of 
omputers to deter-mine all regular maps on orientable surfa
es of genus 2 to 15 and all regular maps onnonorientable surfa
es from genus 4 to 30.E19: The Kepler-Poinsot regular star polyhedra, shown in Figure 7.6.13, areself-interse
ting realizations of regular maps. In the notation of Fa
t F60 below, thesemaps are f5; 5 j 3g (twelve pentagons on a surfa
e of genus 4 - great dode
ahedron andsmall stellated dode
ahedron), f5; 3g10 (twelve pentagons on the torus - great stellateddode
ahedron) and f3; 5g10 (20 triangles on the torus - great i
osahedron).

Figure 7.6.13 Star polyhedra.E20: [S
Wi85, S
Wi86℄ From the history of automorphi
 fun
tions 
ome two regularmaps of genus 3, the 1879 Klein map f7; 3g8 
omposed of 24 heptagons with auto-morphism group PGL(2; 7), and the 1880 Dy
k map f8; 3g6 
omposed of 12 o
tagons(shown in dual form in Figure 7.6.14). The Coxeter regular skew polyhedra inE4 also provide examples of regular maps; they are f4; 6 j 3g, f6; 4 j 3g, f4; 8 j 3g andf8; 4 j 3g. The Klein, Dy
k, and Coxeter maps all have realizations in E3.
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Figure 7.6.14 Dy
k's map f3; 7g8.E21: Figure 7.6.15 is a 
hiral map on the torus. Opposite sides of the square areto be identi�ed. This map is presented as the Cayley map of the 
y
li
 group Z5 =f0; 1; 2; 3; 4g with generating set � = f1; 2g and 
y
le � = (�1 2 1 � 2) on ��.
Figure 7.6.15 A 
hiral map on the torus given an a Cayley map of Z5.Denoting an edge by a pair of verti
es and a fa
e by its four verti
es, the 
ags (1; 12; 1234)and (2; 12; 1234) are in two di�erent orbits under the a
tion of the automorphism groupa
ting on the set of 
ags. There is no automorphism that leaves edge 12 and fa
e 1234�xed and takes vertex 1 to vertex 2.E22: Coxeter and others noti
ed that regular maps frequently o

ur as 
overings ofsmaller regular maps on other surfa
es. For example, the regular torus maps f3; 6g4and f6; 3g4 in Figure 7.6.1 are 2-fold 
overings of the tetrahedral map f3; 3g on thesphere. Constru
tions of families of regular maps using 
overings appear in [JoSu00℄,[Si00℄, [Vi84℄, and [Wi78℄ among others.E23: There are various group theoreti
al 
onstru
tions of regular maps, for example[M
91℄, [M
MoWe93℄. M
Mullen 
onstru
ted a family of maps related to the Klein mapf7; 3g8. For ea
h odd prime p there is a regular map of type fp; 3g with 12 (p2� 1) fa
esand orientation preserving automorphism group PSL (2; p).E24: The vertex-transitive maps on the sphere, 
lassi�ed by [FlIm79℄, 
onsist of theregular spheri
al maps and the boundary 
omplexes of the Ar
himedean solids (semi-regular polyhedra), of the prisms and antiprisms. [Ba91℄ gave a 
lassi�
ation of thevertex-transitive maps on the Klein bottle.

FACTSF44: A map M with f1 edges has exa
tly 4f1 
ags.F45: In Aut(M), the stabilizer of any 
ag is trivial.F46: For any map M with f1 edges, the two immediately pre
eding fa
ts imply that



Section 7.6 MAPS 17jAut(M)j � 4f1, with equality if and only if M is regular. In this sense, the regularmaps have the largest possible automorphism group.F47: On ea
h orientable surfa
e there is a regular map.F48: For a regular map on an orientable surfa
e, half the automoprhisms a
t as ori-entation preserving homeomorphisms of the surfa
e and half as orientation reversing.F49: Not every nonorientable surfa
e has a regular map; for example, there are noregular maps on the surfa
es with nonorientable genus 2 and 3.F50: [Vi83b℄, [Wi78a℄ Every nonorientable regular map has a unique 2-fold unrami�ed
overing by a regular orientable map.F51: No 
hiral map exists on a nonorientable surfa
e.F52: For any surfa
e S with Euler 
hara
teristi
 
(S) < 0, there are at most �nitelymany regular maps. This follows from the Hurwitz formula in x5.F53: [Vi83b℄ For any pair (p; q) su
h that 1p + 1q � 12 , there are in�nitely many regularmaps of type fp; qg. [Ne�Sk01℄ subsequently showed that these maps may be 
hosen tohave arbitrarily large fa
e-width.F54: [Wi89℄ There is a regular map with 
omplete graphKn if and only if n = 2; 3; 4; 6.F55: [Bi71℄ There is a symmetri
al map with 
omplete graph Kn if and only if n is aprime power and, for ea
h prime power, the symmetri
al map is unique.F56: [Vi83a, 83b℄ The regular maps M of type fp; qg are in bije
tion with the 
onju-ga
y 
lasses of normal subgroups N of �nite index in the Coxeter group W (p; q).F57: A regular map M is the quotient of the tessellation fp; qg by the 
orrespondingnormal subgroup N of symmetries of fp; qg; moreover Aut(M) �W (p; q)=N .F58: A

ording to Fa
t 57, Aut(M), for a regular map M , has a presentation withthree generators, the same relations as given for the Coxeter groupW (p; q) in Equation(3) together with some additional relations (ex
ept no additional relations in the 
aseof a regular spheri
al map).F59: Two spe
ial 
ases have re
eived parti
ular attention, the regular maps fp; qgrwhere the single relation (�0�1�2)r has been added and the regular maps fp; q jmgwhere the single relation (�0�1�2�1)m has been added. Coxeter and Moser [CoMo57℄have provided partial tables of parameters p; q; r and p; q;m for whi
h a �nite regularmap with those parameters exists. Figure 7.6.11 shows the regular map f5; 5g3.F60: Any Cayley map of a group � is vertex transitive, � a
ting as a group of auto-morphism of the Cayley map by left multipli
ation.F61: The double torus S2 has the interesting property that only �nitely many groupsa
t (as a group of homeomorphisms) on S2, but there are in�nitely many vertex-transitive (Cayley graphs) with genus 2.F62: [Th91℄,[Ba91℄ For ea
h g � 3, there are only �nitely many vertex-transitivegraphs of orientable genus g while there are in�nitely many of genus 0; 1 and 2.
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7.6.8 EnumerationW. T. Tutte [Tu68℄ pioneered map enumeration in the 1960's. Expli
it results formaps on the sphere appear below. Results on generating fun
tions and asymptoti
s forthe number of su
h maps on general surfa
es 
an be found in the texts [GoJa83℄, [Ya99℄and the referen
es therein. A 
onne
tion between map enumeration, matrix integralsand 2-dimensional quantum gravity is explained in [Zv97℄.
DEFINITIONSD45: A rooted map is a map in whi
h a 
ag has been distinguished.D46: A rooted map is a near triangulation if every nonroot fa
e is a 3-gon.
EXAMPLESE25: For the sphere, the 2-
onne
ted rooted maps with 4 edges are shown in the �rstrow of Figure 7.6.16. The �rst four of these 
omprise all 2-
onne
ted rooted maps with3 verti
es and 3 fa
es. The root fa
e is the outer fa
e, the root vertex and edge are inboldfa
e.E26: On the se
ond row of Figure 7.6.16 are the rooted near triangulations with 4inner fa
es and a root fa
e with 2 edges. The root fa
e is the outer fa
e; the root edgeis the bottom edge; and the root vertex is in boldfa
e.

Figure 7.6.16 Counting maps on the sphere.
FACTSF63: [Tut63℄ The number of rooted maps on the sphere with n � 0 edges isg(n) = 2 � 3n(2n)!n!(n+ 2)!F64: [Tut63℄ The number of 2-
onne
ted rooted maps on the sphere with n � 1 edgesis 2(3n� 3)!n!(2n� 1)!F65: [N. Wormald℄ (see [GoJa83℄) The number of 2-edge-
onne
ted rooted maps onthe sphere with n � 0 edges is 2(4n+ 1)!(n+ 1)!(3n+ 2)!



Section 7.6 MAPS 19F66: [BrTu64℄ The number of 2-
onne
ted rooted maps on the sphere with n � 1verti
es and k � 2 fa
es is (2n+ k � 5)!(2k + n� 5)!(n� 1)!(k � 1)!(2n� 3)!(2k � 3)!F67: [Br63℄ The number of rooted near triangulations of the sphere with n+2j innerfa
es and n � 2 edges on the root fa
e is2j+2(2n+ 3j � 1)!(2n� 3)!(j + 1)!(2n+ 2j)!((n� 2)!)2 ; j � �1
7.6.9 Paths and Cycles in MapsThis se
tion 
overs three topi
s involving paths and 
y
les: the Lipton-Tarjanseparator theorem, the existen
e of nonrevisiting paths in polyhedral maps, and thede
omposition of maps along 
y
les in the graph. The third topi
 is related to a resultof Robertson and Seymour on minors.
DEFINITIONSD47: A path p in the graph of a map M is said to be nonrevisiting if p \ F is
onne
ted for ea
h fa
e F of M .D48: A surfa
e S has the nonrevisiting path property if, for any polyhedral mapM on S, any two verti
es of M are joined by a nonrevisiting path.D49: A map M is a map minor of a map M 0 if M 
an be obtained from M 0 bya sequen
e of edge 
ontra
tions and deletions. The operations of edge deletion andedge 
ontra
tion on a graph 
an be extended to a surfa
e imbedding of the graph in anobvious way.
EXAMPLEE27: A polyhedral map on the surfa
e S2 that fails to have the nonrevisiting pathproperty appears in Figure 7.6.17 below. There is no nonrerevisiting path from x to y.(The map is obtained by gluing along like labeled edges.)
FACTSF68: [LiTa79℄ Planar Separator Theorem: A planar graph with n verti
es has aset of at most 2p2n verti
es whose removal leaves no 
omponent with more than 2n=3verti
es.F69: [AlSeTh94℄ LetM be a loopless map on the sphere with n verti
es. Then there isa simple 
losed 
urve � on the surfa
e of the sphere passing through at most k � 3p2n=2verti
es (and no other points of the graph) su
h that ea
h of the two open disks boundedby � 
ontain at most 2n=3�k=2 verti
es. This result slightly improves the Lipton-Tarjanseparator theorem.
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Figure 7.6.17 A map on S2 that does not satisfy the non-revisiting path property.F70: [GiHuTa84℄ A map of genus g 
ontains a set of at most O(pgn) verti
es whoseremoval leaves no 
omponent of the graph with more than 2n=3 verti
es. This generalizesthe Lipton-Tarjan theorem to maps on orientable surfa
es of higher genus.F71: [PuVi98℄ For polyhedral maps, the nonrevisiting path property holds for thesphere, torus, proje
tive plane and Klein bottle. It fails for all other surfa
es ex
eptpossibly the nonorientable surfa
e of genus 3 (see [PuVi96℄ and example E27).F72: The nonrevisiting path property holds for every polyhedral map with fa
e-widthat least 4.F73: [RoSe88℄ Let M0 be a map on a surfa
e S other than the sphere. There exists a
onstant k su
h that, for any map M on S with fw(M) � k, M0 is a map minor of M .The following two results provide values for the 
onstant k when the given M0 
onsistsof 
ertain sets of disjoint 
y
les.F74: [S
93℄ A mapM on the torus with fa
e-width w 
ontains b3w=4
 disjointnon
ontra
tible 
y
les.F75: [BrMoRi96℄ For general surfa
es there exist bw=2
 pairwise disjoint 
on-tra
tible 
y
les in the graph of any map M , all 
ontaining a parti
ular fa
e,b(w�1)=2
 pairwise disjoint, pairwise homotopi
, surfa
e nonseparating 
y
les,and b(w� 1)=8
� 1 pairwise disjoint, pairwise homotopi
, surfa
e separating,non
ontra
tible 
y
les. (It is unknown whether any map of orientable genusg � 2 with fa
e-width at least 3 must 
ontain a non
ontra
tible surfa
e sepa-rating 
y
le.)F76: [Bar88℄ Every polyhedral map on the torus (proje
tive plane, Klein bottle) isisomorphi
 to the 
omplex obtained by identifying the boundaries of two fa
es of a3-polytope (
ross identifying one fa
e of a 3-polytope, 
ross identifying two fa
es of a3-polytope).F77: [Yu97℄ (see also [Th93℄) If d is a positive integer and M is a map on Sg of fa
e-width at least 8(d + 1)(2g � 1), then the graph of M 
ontains a 
olle
tion of indu
ed
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y
les C1; C2; : : : ; Cg su
h that the distan
e between distin
t 
y
les is at least d and
utting along the 
y
les results in a map on the sphere. This generalizes Fa
t 76.F78: [S
91℄ S
hrijver proved ne
essary and suÆ
ient 
onditions (
onje
teure by Lovaszand Seymour) for the existen
e of pairwise disjoint 
y
les ~C1; : : : ; ~Ck on the graph of amap M homotopi
 to given 
losed 
urves C1; : : : ; Ck on the surfa
e.
REMARKR19: The Lipton-Tarjan separator theorem has appli
ations to divide-and-
onqueralgorithms. Nonrevisiting paths arise in 
omplexity issues for edge following linearprogramming algorithms like the simplex method.
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GLOSSARY2-
ell imbedding: an imbedding of a graph G on a surfa
e S su
h that the 
omponentsof S nG are open 2-
ells.Ar
himedean solid: semi-regular polyhedron - regular polygons as fa
es and the same
on�guration of fa
es at ea
h vertex.automorphism of a map: an isomorphism of the map onto itself.Cayley map: an imbedding of a Cayley graph on a surfa
e using a rotation s
heme asdes
ribed in the text.
hiral map: a map that is symmetri
al, but not regular.
hromati
 number of a surfa
e S: the least number of 
olors suÆ
ient to properly
olor the fa
es (or verti
es) of any map on S.
overing f : M1 ! M2: a topologi
al 
overing of the respe
tive surfa
es that takesthe graph of M1 onto the graph of M2, with rami�
ation points only at verti
es andfa
es 
enters.Coxeter group (of rank 3): a group with presentation by three generators �0; �1; �2and the relations �20 = �21 = �22 = (�0�1)p = (�1�2)q = (�2�0)r = 1.



Glossary 27Coxeter 
omplex: the bary
entri
 subdivision of the tessellation fp; qg, formed by allmirrors of re
e
tion symmetries.dual map: the geometri
 dual of the graph imbedded on a surfa
e.edge-width: the length of a shortest 
y
le in the imbedded graph that is non
on-tra
tible on the surfa
e.Euler 
hara
teristi
 of a map: f0 � f1 + f2, where fi denotes the number of i-dimensional fa
es of the map.fa
e: (also 2-fa
e) a 
onne
ted 
omponent of S n G where graph G is 2-
ell imbeddedon surfa
e S.fa
e boundary: the edges in
ident to the fa
e (with repetitions possible) ordered
y
li
ally a

ording to the rotation s
heme of the map.fa
e-width: the minimum number of points j
 \ Gj over all non
ontra
tible simple
losed 
urves 
 on the surfa
e on whi
h the graph G is imbedded.
ag: an ordered triple (F0; F1; F2) of pairwise in
ident fa
es of a map of dimensions 0; 1and 2, respe
tively.f-ve
tor: the triple (f0; f1; f2) where fi is the number of i-dimensional fa
es of themap.genus of a surfa
e: the number of handles for an orientable surfa
e and the numberof 
ross 
aps for a nonorientable surfa
e.graph en
oded map: a parti
ular system for des
ribing a map using 
olored graphs.hypermap: a generalization of graph imbedded on a surfa
e to hypergraph imbeddedon a surfa
e.isomorphism of maps: a homeomorhism of the respe
tive surfa
es that indu
es agraph isomorphism of the respe
tive graphs.Klein bottle: the nonorientable surfa
e of genus 2.large-edge-width map: a map whose edge-width is greater than the number of edgesin any fa
e boundary.map: a 2-
ell imbedding of a graph on a surfa
e.map minor of M : a map M obtained from map M by deleting and/or 
ontra
tingedges.minimal triangulation: a simpli
ial polyhedral map for whi
h the 
ontra
tion of anyedge results in a map that is no longer polyhedral.near triangulation: a rooted map in whi
h every nonroot fa
e is a 3-gon.neighborly polyhedral map: a polyhedral map in whi
h every pair of distin
t verti
esis joined by an edge.non
ontra
tible 
y
le: a 
y
le in the imbedded graph that is non
ontra
tible on thesurfa
e.nonseparating 
y
le: a 
y
le in the imbedded graph whose removal separates thesurfa
e.nonrevisiting path: a path p in the graph of a map M su
h that p \ F is 
onne
tedfor ea
h fa
e F of M .permutation s
heme: a parti
ular system for des
ribing a map using a pair of per-mutations.



28 Chapter 7 Topological Graph Theorypolyhedral map: a map M whose fa
e boundaries are 
y
les, and su
h that any twodistin
t fa
e boundaries are either disjoint or meet in either a single edge or vertex.proje
tive plane: the nonorientable surfa
e of genus 1.p-sequen
e: fpig, where pi is the number of i-gonal fa
e in a polyhedral map.rami�
ation point of a 
overing: a point of the surfa
e at whi
h the 
overing is nota lo
al homeomorphism.realization: an imbedding of a map into Eu
lidean spa
e Ed su
h that ea
h fa
e is aplane 
onvex polygon and adja
ent fa
es are not 
oplanar.regular map: a map whose automorphism group a
ts transitively on the set of 
ags.rooted map: a map in whi
h a 
ag has been distinguished.rotation s
heme: a parti
ular system for des
ribing an imbedding of a graph G on asurfa
e using a 
y
li
 permutation at ea
h vertex of G.simple map: A map in whi
h ea
h vertex has degree 3.simpli
ial map: (triangulation) a map where ea
h fa
e boundary is a 3-
y
le.skew polyhedron: a realization of a polyhedral map in Ed; d > 3.star polyhedron: polyhedron allowing fa
es to interse
t.surfa
e: a 
ompa
t, 
onne
ted, 2-dimensional manifold without boundarysymmetri
al map: a map with at most two orbits under the a
tion of the automor-phism group on the set of 
ags.tessellation fp; qg: the 
lassi
al tiling of the sphere, Eu
lidean plane, or hyperboli
plane into p-gons, q in
ident at ea
h vertex.torus: the orientable surfa
e of genus 1.triangle group: the symmetry group of the tessellation of type fp; qg.triangulation of a surfa
e: (simpli
ial map) a map where ea
h fa
e boundary is a3-
y
le.type fp; qg map: a map with p edges in
ident with ea
h vertex and q edges in
identwith ea
h fa
e.vertex splitting: an operation on a map inverse to edge 
ontra
tion | a single vertexis repla
ed by two verti
es joined by an edge.vertex-transitive map: a map whose automorphism group a
ts transitively on theset of verti
es.v-sequen
e: fvig, where vi is the number of verti
es of degree i in a polyhedral map.weakly neighborly polyhedral map: a polyhedral map for whi
h every pair ofverti
es is 
ontained on a fa
e.


