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During the past few years papers have appeared that take a graph theoretic approach to the 
investigation of PL-manifolds. These graphs have variously been called crystallizations, gems 
(graph encoded manifolds) and n-graphs. The basic ideas and major results of this 
combinatorial method are surveyed in this paper. 

1. Introduction 

The use of combinatorial methods in topology is certainly not new; simplicial 
homology is an obvious example. However the graph theoretic approach to be 
surveyed here is fairly recent, due to Pezzana, Ferri, Gagliardi, Lins, Mandel, 
Vince and others. This paper is not intended as a complete review of the subject; 
for this we refer to [7] where an extended list of references can also be found. 
Instead we present only major results with motivation. Proofs are either sketched 
or omitted. A reference is given for each result but the proof sketched may not be 

the original. 
Graphs can have multiple edges and V(G) and E(G) denote the point and 

edge sets of G respectively. Let [n] denote the set (0, 1, , . . , n - l}. An n-graph 
is a graph G, regular of degree n, together with an edge coloring E(G)+ [n] such 
that incident edges are different colors. The motivation for this definition is that 
an (n + 1)-graph G encodes an n-dimensional simplicial complex AC as follows. 
For each point u of G let a, be an n-simplex whose set of n + 1 vertices is in 
bijection with [n + 11. Let k be the disjoint union of the a,,, u E V(G). For each 
i E [n + l] identify the (n - 1)-face of a, colored [n + l] - {i} with the (n - l)- 

face of a,, colored [n + 1]- {i} if and only if u and 21 are joined in G by an edge 
colored i. If - is this indentification then Kl- is denoted AC and the underlying 
topological space of AC is denoted (GJ. Fig. 1 is an example of a 3-graph G and 
the corresponding 2-dimensional complex AG. The underlying space JGI is the 
2-sphere. 

Throughout this paper manifolds will be PL, compact, and without boundary. 
The simple, but basic, fact in the theory is that any PL n-manifold M is 
homeomorphic to ICI for some (n + l)-graph G [2, 19, 211. Such a G is obtained 
as the appropriately colored dual l-skeleton of the barycentric subdivision of any 
triangulation of M. Recall that the dual l-skeleton of a triangulation is the graph 
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Fig. 1. A 3-graph and the associated simplicial complex AC. 

whose points are the facets and two points are joined by an edge if and only if the 
corresponding n-simplices share a codimension 1 simplex. Hereafter = denotes 
homeomorphism. 

Theorem 1. For any PL n-manifold M there exists an (n + 1)-graph G such that 
IGj=M. 

It is known that every 1, 2, or 3-manifold can be triangulated and hence can be 
encoded as a 2, 3, or 4-graph. Therefore in these low dimensions the scheme is 
completely general. In Fig. 2, for example, are graphs representing the sphere 
product S1 X S2 and the non-orientable sphere bundle S1 Y S2, which will be 
useful later. Our point of view from here on is to regard an n-manifold as an 
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Fig. 2. Encodings of the orientable and non-orientable 2-sphere bundles over S’. 
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(n + 1)-graph. The goal is to gain topological insight into the space ]G] from the 
combinatorics of the graph G. 

The basic notions about n-graphs addressed in this paper are (1) fusion, (2) 
canonical forms, (3) fundamental group and (4) regular embedding. Basic results 
connecting graphs and manifolds are contained in Section 2. In Section 3 
equivalence of n-graphs is defined. Equivalence of graphs G1 and G2 corresponds 
to homeomorphism between the topological spaces JG,] and JGz(. An equivalence 
step is one of several types of fusion, a basic operation on n-graphs that is also 
discussed in Section 3. The ideal situation would be to have, for each PL 
manifold, a unique canonical n-graph. Unfortunately this is known only for n c 3 
and is covered in Section 4. Two simple algorithms on an n-graph G are given in 
Section 5 for determining the fundamental group of 1 G]. Regular embedding of 
an n-graph on a closed surface provides a new topological invariant for 
manifolds-the graph theoretic genus. For 2-manifolds this invariant is the 
ordinary genus of the surface, and for 3-manifolds it is essentially the Heegaard 
genus. This and other properties of embedding are discussed in Section 6. 

2. Graph encoded manifolds 

Although proofs concerning n-graphs are often combinatorial, the next result 
provides the link between the combinatorics of the graph G and the topology of 
the complex AG. For an n-graph G and for J c [n] let GJ denote the subgraph of 
G obtained by deleting all edges with colors not in J. Each connected component 
of GJ is a [J/-graph and is called a residue of type J or ]J]-residue. In particular, G 
itself is the only n-residue; each point of G is a O-residue; each edge is a 
l-residue; 2-colored cycles in G are 2-residues, etc. 

Theorem 2. There is a l-l, inclusion reversing correspondence between the 
residues of an (n + l)-graph G and the simplices of AG. For i E [n], i-residues in 
G correspond to (n - i)-simplices in AG. 

By the above theorem, facets (highest dimensional simplices) of AG 
correspond to points of G; codimension l-faces of AC corresponds to edges of 
G;...; vertices of AG correspond to n-residues of G. Hence links of vertices in 
AG are encoded by n-residues; in general, links of i-faces in AG are encoded by 
(n - i)-residues of G. 

A 2-graph encodes the circle S’; a 3-graph encodes a surface. For an n-graph, 
n 3 3, the underlying space ]Gl is not necessarily a manifold because the link of a 
vertex in AG is not necessarily a sphere. As a consequence of Theorem 2 a 
4-graph encodes a 3-manifold exactly if each 3-residue encodes a 2-sphere. 
Moreover, application of the Euler characteristic to 3-residues results in the 
following necessary and sufficient condition for a 4-graph to encode a manifold 

t2, 191. 
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Theorem 3. Let v denote the number of vertices in a 4graph G and r,, r, the 
number of 2 and 3-residues, resp. Then v 2 r, - r3 with equality if and only if 1 G ( is 
a manifold. 

A space (GI is orientable if there is a coherent orientation of the facets in AG. 
In terms of the graph G this is expressed as follows [21]. 

Theorem 4. The topological space ]G] is orientable if and only if the graph G is 
bipartite. 

3. Equivalent n-graphs 

A basic construction in the theory of n-graphs is fusion. Consider two points u 
and v in an n-graph G(or in two n-graphs G1 and GJ and let G* be the n-graph 
obtained by 

(1) removing u, v and all edges connecting them; 
(2) reconnecting the ‘free’ edges (previously incident to one of u or V) of 

like color. 
Then G* is said to be obtained from G by fusion on u and v. If there are m 2 1 
edges connecting u and v then the graph removed in step (1) is called an m-dipole 
and the fusion is called removing a dipole. The inverse operation is called adding 
a dipole. If J denotes the set of colors of a dipole D of an n-graph G and if u and 
v lie in the same residue of type [n] -.J, then D is called degenerate. Otherwise D 
is non-degenerate. 

Call two n-graphs equivalent if one can be obtained from the other by a 
sequence of adding or removing non-degenerate dipoles. Fig. 3 shows three 
equivalent 3-graphs. First dipole dl is added and then dipole d2 is removed. 
Removing a non-degenerate dipole in G corresponds in (G( to removing a ball 
and identifying two hemispheres on the boundary in the natural way. This makes 
the ‘if’ part of the following theorem reasonable. What is surprising is that the 
converse is also true [4]. 

Theorem 5. IGIl ̂ I jG,( if and only if G1 and G2 are equivalent. 

The graph of Fig. 3c encodes the Klein bottle (see Section 4). Hence, by 
Theorem 5, Fig. 3a also encodes the Klein bottle. 

The topological consequences of other types of fusion are summarized in the 
following theorem. If points u and v lie in distinct n-graphs G, and G2 then fusion 

is denoted by G1 Iii” G,. Recall that the connected sum M1 # M2 of two manifolds 
is obtained by removing an open ball from each and identifying the two spherical 
boundaries via a homeomorphism. Also @ will stand for the orientable (ordinary 
product) or non-orientable bundle. Parts (a, b, c, d) of the theorem are found in 
[4, 17, 12, 81, respectively. 
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Fig. 3. Equivalent 3-graphs. 

Theorem 6. For &graphs that encode 3-manifolds 

(a) lG1 g GA = IGJ # IGI. 
(b) If u and v are not contained in the same 3-residue of G and G’ is obtained 

from G by fusion on u and v, then IG’I = (GI # (S’ @IS’). 

(c) If G’ is obtained from G by removing a degenerate 2-dipole then 
(GI = IG’l # (S’ @ S2). 

(d) If G’ is obtained from G by removing a degenerate l-dipole then one of 
following cases holds : 

(9 El = IG’I 
(ii) IG( = (G’I # (S’ 8 S’). 

(iii) ICI = IG’l # (S’ @J S’) # (S’ 8s’) 

(iv) IG( = IGIl # lGJ/ # (S’ CO,!?) 

depending on whether the endpoints u and v of the dipole are both contained 
on exactly (i) one 2-residue with colors other than that of edge {u, v}; (ii) 

two such 2-residues; (iii) three such 2-residues and G’ is connected; or (iv) 

three such 2-residues and G’ has two connected components Gi and Gi. 

Examples of parts (a) and (c) are shown in Figs 4 and 5 respectively. In Fig. 4, 

G1 and G2 both encode S’ X S2 and G, z G2 encodes the connected sum. 

Some comments on Theorem 6 are in order. First, the graph G’ always encodes 

a 3-manifold. In part (a) (G, g G21 is independent of u and v unless both G1 and 
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Fig. 4. Connected sum 

G2 are bipartite. In this case both IG,) and IG,( are orientable (by Theorem 4) and 
there are two possible topological connected sums (orientable and non- 
orientable); which one depends on the partite sets in which ZJ and v belong. In 
part (b) @ is the orientable or non-orientable sphere bundle depending on 
whether or not there is a path from u to ZJ with an odd number of edges. Likewise 
in (c) and (d) the graph G determines the type of bundle in a straightforward 
way, but we omit the details here and refer the reader to the original sources for 
these results. The only case of fusion not listed in Theorem 6 is that of a 

lGl==S'xS2 

Fig. 5. Removing a handle. 

IG’I = S3 
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degenerate l-dipole where u and u are contained in no 2-residue (of type not 
containing the color of {u, u}). Unlike the cases covered in Theorem 6, there is 
no known characterization of the topological space corresponding to the 4-graph 
after the removal of such a dipole. Unfortunately, in a large class of 4-graphs, all 
dipoles are of this type [8]. 

Proof sketch of Theorem 6. In part (a) the operation g corresponds, via 
Theorem 2, to removing a facet from AG, and AG, and identifying boundaries, 
i.e. a connected sum. Likewise in part (b) the fusion corresponds to removing two 
disjoint facets from AG and identifying boundaries. This is usually referred to as 
‘adding a handle’, which is equivalent to a connected sum as in part (b). For part 
(c) a 4-graph G* exists (see [12] for the construction) such that (1) G* is 
equivalent to G’ (by removing two nondegenerate dipoles of G*) and (2) G is 
obtained from G* by fusion of two points of G* not in the same 3-residue. The 
result then follows from part (b) and Theorem 5. Part (d) is proved in a similar 
fashion using part (c). 0 

4. Canonical n-graphs 

One of the major goals in the theory of n-graphs is to obtain canonical forms 
from PL-manifolds. Various notions of ‘canonical’ appear in the literature. If M is 
a PL-manifold, then G is called minimum for M if G is an n-graph with minimum 
number of points that encodes M [19]. For example, the minimum 4-graph for the 
3-sphere is given in Fig. 6a (two 3-balls with their boundaries identified). The 
minimum number of (n - 1)-residues in an n-graph is n. An n-graph that achieves 
this minimum is called simple [19]. A simple n-graph that encodes a manifold is 
also referred to in the literature as a crystallization [2]. We call an n-graph with 
no non-degenerate dipoles reduced. It is easy to check that if G is reduced, then 
G is simple. The converse is not true, as in Fig. 6b. Also it is obvious that if G is 
minimum, then G is reduced. Again the converse is not true, as in Fig. 6c [15]. 
By removing nondegenerate dipoles until no longer possible, Theorems 1 and 5 
imply: 

Corollary 7. For any manifold M there is a reduced n-graph G such that ICI = M. 

A strong form of Theorem 5 for simple n-graphs is proved in [4]. 

Theorem 8. Let G, and G2 be n-crystallizations. Then jG,j = IG,] if and only if G2 
can be obtained from G, by a finite sequence of the following moues: 

(a) adding or removing a non-degenerate m-dipole, n - 1> m > 1. 
(b) addition of a non-degenerate l-dipole followed by the removal of another 

non-degenerate l-dipole. 
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Fig. 6. Some 4-graphs encoding S3. 

Note that in each step in the process of Theorem 8, the intermediate n-graph 
is also a crystallization. Also for any i E [n], the moves (a) and (b) can be taken 
so that either all the dipoles contain color i or none contain color i [3]. 

The ideal situation would be to have a unique reduced graph to represent each 
equivalence class of n-graph. Unfortunately the only non-trivial case for which 
this is known is it = 3. To classify the 3-graphs up to equivalence let CZm be the 
cycle with 2m points (0, 1, . . . , 2m - l} where edge (2i - 1, 2i) is colored 0 and 

{2i, 2i + l} is colored 1 for all i (mod 2m). Let H,,, be the 3-graph obtained from 
C 2m, m odd, m 3 1, by adding edges {i, i + m} colored 2 for all i (mod 2m). 
Likewise let L, be obtained from Czm, m s 2, by adding edges {i, 2m - i} and 

(0, m} colored 2 for all i (mod 2m). The graphs I& and L5 are shown in Fig. 7. 

f$2& fq$& 
1 1 

H5 L5 

Fig. 7. Graphs encoding surfaces. 



n-graphs 375 

Theorem 9. Each 3-graph is equivalent to a unique graph H,, mal, m odd or 

L,, m 22, 

Corollary 10. Two reduced 3-graphs are equivalent if and only if they have the 
same number of points and are both bipartite (or not bipartite). 

Theorem 9 is just a graph theoretic version of the well known classification of 
closed surfaces. Using Theorem 2 (to compute the Euler characteristic) and 

Theorem 4, it is easy to check that lH3J and (&._.J are the orientable and 
nonorientable surfaces, resp., with Euler characteristic x. So IHII is homeomor- 
phic to the 2-sphere, lH31 the torus, ILz( the projective plane, lLsl the Klein 
bottle, etc. Concerning Corollary 10, the number of points and the property of 
being bipartite are invariants of reduced 3-graphs because all steps in Theorem 8 
must be of type (a). Each step of type (a) leaves the number of points of G and 
the properties of being reduced and bipartite invariant. In the other direction the 
corollary follows from Theorem 9. If G and G’ are reduced, have an equal 
number of points and are both bipartite (or not bipartite), then this is also true of 
B and B’, the graphs to which, by Theorem 9, they are equivalent. Then 
necessarily B = B’. 

Any 3-manifold can be encoded by a 4-graph, so naturally the classification 
problem for 4-graphs becomes drastically more complex than for 3-graphs. For 
example, by Theorem 5 the 4-graphs in Fig. 6c and 6a must be equivalent, but 
there is no known algorithm, in general, for obtaining the correct sequence of 
dipole additions and removals. Certain n-graphs with additional structure, called 
normal crystallizations, have been shown to encode any 3-manifold [l, 141, but 
these also have not led to a classification. (So the somewhat technical definition is 
omitted here.) The determination of a set of moves to get, algorithmically, from 

any n-graph to any equivalent one would, of course, be a remarkable discovery. 
For more on this problem see [24]. 

5. The fundamental group 

The encoding of a manifold M by an n-graph provides easy algorithms for 
finding a presentation of the fundamental group of M. We give two such 
algorithms. Here (X 1 R) denotes a presentation of a group with generators X 
and relations R. Let H be a subgraph of an n-graph G and e an edge in 
E(G) - E(H). Call e dependent on H if there is a k-colored cycle, k <n, 
containing e, all of whose other edges lie in H. Let H = H,,, H,, . . . , H, = H* be 
a sequence of subgraphs of G such that 

(1) H,+1 = Hi + e where e is dependent on Hi and 
(2) there is no edge in G dependent on H*. 

Then H* is called the closure of H in G. 
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In both algorithms the input is a manifold encoded by an n-graph and the 
output is a presentation for n,(lGl). 

Algorithm 1 [24]. 

(0) Remove non-degenerate dipoles until G is reduced. 
(1) Construct a spanning tree T in G. 
(2) Determine the closure T* of Tin G. 
(3) Arbitrarily assign an orientation to each edge in X = E(G) - E(T*). 
(4) For each 2-residue r let r, be the sequence of edges in X around the cycle 

r, each with exponent +l or -1 depending on the orientation. Let 
R = {I, 1 z is a 2-residue}. 

(5) Then (X 1 R ) is a presentation for JC,(~G~). 

Algorithm 2 [18]. 

<O> 
(1) 
(2) 

(3) 

(4) 

(5) 

.Remove non-degenerate dipoles until G is reduced. 
Let X= V(G), the point set of G. 
Choose two colors j, k E [n] and let C denote the set of all 2-residues 
(cycles) of type {j, k}. 
For any cycle o E C of length 2m let r, denote the word x1x;’ . - . .x~~_~x;, 

where xi E X is the i-point of o. The initial point x1 and the direction 
around o is arbitrary, except that the edge connecting x1 and x2 should be 

colored j. Let RI = {rO 1 (7 E C}. 
Let R2 = {xy-’ ) x, y E X and x, y belong to the same residue of type 

[nl - {.i> k)). 
If x,, is an arbitrary point of G then (X 1 R, U Rz U {x0} ) is a presentation 

of *7d1(lGI). 

As an example, consider the 3-graph in Fig. 8, which encodes the Klein bottle 
I?. (Those edges not colored 0 or 1 are understood to be colored 2.) Using 
Algorithm 1 (Fig. 8a), the spanning tree T consists of all edges except one in the 
unique residue of type (0, l} and T* is the entire (darkened) cycle. Then the 

b 

Fig. 8. Computing the fundamental group of (G( 
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presentation of nn,(K2) is (x, y, z 1 xyz-’ = xzy = 1) which, by removing gener- 

ator z, is equivalent to (x, y ( x’y” = 1). 
Choosing the pair of colors (0, l} for Algorithm 2 (Fig. 8b) the presentation is 

(x, y, z, X’, y’, 2’ ( x =x’, y =y’, z = z’, xy-lzy’-lx’z’-l = 1, 2 = 1) 

which simplifies after removing generators x’, y’, z’, z to 

(x,yIxy-‘y-‘x=1)=(x,y)x2y2=1). 

Proof sketch of Algorithms 1 and 2. The first algorithm is based on the fact that G 
is the dual l-skeleton of AG. Then up to homotopy, each based loop of JC~((GI) is 
represented by a based closed edge path in G. Each edge e E E(G) - E(T) 
represents the path in G that is the unique cycle in T + e. An edge in T* 
represents a null homotopic loop in ICI ; hence X is the generating set for nl(]G]). 
Each two colored cycle in G also corresponds to a null homotopic loop in [Cl, 
hence the relations R. 

The idea of Algorithm 2 is dual to that of Algorithm 1, in that loops in 1 G) are 
represented by based edge paths in AG rather than in G. The fundamental group 
ni(]G]) is isomorphic to the standard edge path group E(AG) whose elements 
are closed edge paths in the l-skeleton of AC, and edge paths around 2-simplices 
are null homotopic. It is the main theorem of [13] that a presentation (X ) R) for 
E(AG) can be obtained by taking X as the set of all edges of type {i, k} except 
one (recall that the vertices of AG are colored), and the relations are read around 
the links of simplices of type [n] - {i, k}. Translating this presentation, via 
Theorem 2, from AG to the graph G results in Algorithm 2. 0 

6. Regular embedding 

Let F be a closed surface. An embedding of an n-graph G on F is called regular 
(strongly regular in [lo]) if 

(a) The components of F - G are 2-cells. 
(b) For any adjacent pair of points u and v of G, the cyclic permutation r, of 

the color set [n] induced by the edges about u is the inverse of the cyclic 
permutation r,, induced by the edges about 21. 

Up to inverse the cyclic permutation of the edge colors on F is the same at each 
point. So by counting the number of such cyclic permutations, it is easy to see 
that there is at most one regular embedding of a 3-graph and at most three 
regular embeddings of a 4-graph. Note that each 2-cell of F must be bounded by a 
2-residue. Conversely, by spanning each of these (disjoint) 2-residues by a 2-cell 
and identifying pairs of edges that are the same in G, each of the regular 
embeddings above can be constructed. In general this argument shows that there 
are exactly i(n - l)! regular embeddings of an n-graph. 

In this section a graph theoretic invariant of a PL manifold is defined that 
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simultaneously generalizes the ordinary genus of a surface and the Heegaard 
genus of a 3-manifold. For an n-graph G let the genus p(G) be the smallest 
integer g such that G regularly embeds in a surface of genus g. (For an orientable 
surface M the genus g(M) is the number of torus factors in a connected sum 
(handles), while for a non-orientable surface it is the number of projective plane 
factors (cross caps). Then for a PL manifold M let 

04) = minMG) 1 IGI = M) 

be the minimum genus of any encoding of M. Using Theorem 4 it is not difficult 
to show that the surface F on which G is embedded is orientable if and only if IG] 
is orientable. Hence p(M) is the orientable or non-orientable genus depending on 
whether or not M is orientable. 

The definition above and the results that follow appear in [ll]. Recall that a 
handlebody of genus g is a 3-manifold (with boundary) obtained by identifying in 
pairs 2g disjoint 2-cells on the boundary of a 3-ball [16]. A Heegaard splitting of 
genus g of a 3-manifold M is a pair H, H’ of handlebodies such that 
H n H’ = dH = dH’ and HUH’ = M. The common boundary dH = dH’ is called 
the Heegaard surface, which is a surface of genus g if orientable or 2g if not. The 
Heegaurd genus h(M) is the smallest integer g such that M admits a Heegaard 
splitting of genus g. 

Theorem 11. (a) Zf M is a 2-manifold then p(M) = g(M). 

(b) Zf M is a 3-manifold then 

h(M) 

p(M) = {2h(M) 

if M is orientable 

if M is non-orientable. 

Proof sketch of Theorem 11. Part (a) of Theorem 11 is easy to prove because G, 
as the dual graph of the triangulation AG, is regularly embedded on JGI. Part (b) 
is proved in two parts. Given a 4-graph G regularly embedded on a surface F, 

assume, without loss of generality, that for each cyclic permutation t, we have 
t:(O) = 1. Then consider the surface S that is the union of the 4-sided cells 
embedded in the facets of AG (see Fig. 9) such that there is a vertex of a 4-sided 

0 

Fig. 9. Portion of the Heegaard surface. 



n-graphs 379 

cells at the midpoint of each edge of a facet except the edges 01 and 23. Now S 
splits (GI into two handlebodies that are regular neighborhoods of the subgraphs 
of G induced by the edges colored 01 and 23, resp. Hence S is a Heegaard 
surface. The graph G is embedded in S as the dual graph of this cell division into 
squares such that the cyclic permutations about the vertices of this embedding are 
the same as for the embedding of G in F. Therefore S is homeomorphic to F. 

Conversely the Heegaard splitting of genus g determines two sets of pair-wise 
disjoint curves on the Heegaard surface F. Each such set consists of the 
boundaries of a set of pairwise disjoint 2-cells that cut the handlebody H or H’ 
into a 3-ball. These systems of curves, called a Heegaard diagram, can be altered 
slightly to obtain the desired 4-graph embedding on the surface F. q 

In [6] estimates are made on the genus of some 4-manifolds; here T,, U, denote 
the orientable surface of genus g and the non-orientable surface of genus h, 

respectively: 

p(S’ x T,) = 2g + 1 

p(S’x U,)=2h+2 

2(g + g’) s p(T, x T,,) =s 2(6gg’ + 3(g + g’) + 2) 

2(2g + h) s p(T, x U,) s 2(6gh + 3(2g + h) + 4) 

2(h+h’)sp(U,x&)=s2(3(hh’+h+h’)+4) 

A corollary of Theorem 11 is that a 4-graph of genus 0 encodes a manifold IG( 
that has Heegaard genus 0, and hence is a sphere. This is generalized in [5]. 

Theorem 12. For an (n + 1)-graph G, p(G) = 0 if and only if ICI = S”. 

The proof of Theorem 12 is mainly topological. A stronger statement than this 
theorem is the following. If true, it should have a completely combinatorial proof. 
Here Gz is the n-graph with exactly two points and IZ edges joining them. It is the 
minimum n-graph for Y-r, (Gi is shown in Fig. 6a). 

Conjecture. If G is a reduced n-graph and p(G) = 0 then G = Gz. 

7. Conclusion 

The subject of n-graphs is new. Three-manifold theory is well developed, 
whereas the theory of 4-graphs is not. The hope is that the graph theoretic 
method holds some potential for combinatorial insight into topological ques- 
tions. As the subject of n-graphs has developed the proofs have become less 

topological and more combinatorial. When it is not necessary to refer to the 
complex AG, via Theorem 2, the proofs (in the biased estimation of the author) 
take on a clear graph theoretic character. 
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