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h i g h l i g h t s

� Sorption of 2 monoterpenes to graphite, coal, coke, biochar and peat was quantified.
� Polyethylene (PE) passive samplers were calibrated and used.
� The sorption of a pinene followed the order: biochar � peat � coal � coke < graphite.
� The sorption of limonene followed the order: peat � biochar � coal < graphite � coke.
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a b s t r a c t

The sorption of two monoterpenes, a pinene and limonene to the carbonaceous geosorbents graphite,
bituminous coal, lignite coke, biochar and Pahokee peat was quantified. Polyethylene (PE) passive sam-
plers were calibrated for the first time for these compounds by determining the PE-water partitioning
coefficients and used as a tool to determine sorption to the carbonaceous geosorbents. Log KPE-water values
were 3.49 ± 0.58 for a pinene and 4.08 ± 0.27 for limonene. The sorption of limonene to all materials was
stronger than that for a pinene (differences of 0.2–1.3 log units between distribution coefficients for the
monoterpenes). Placing Kd values in increasing order for a pinene gave biochar� Pahokee peat� bituminous
coal � lignite coke < graphite. For limonene the order was: Pahokee peat � biochar � bituminous
coal < graphite � lignite coke. Micropore (defined as pores <1.5 nm) and nanopore surface area (defined
as pores 1.5 nm to 50 nm) normalised carbonaceous geosorbent-water distribution coefficients were also
calculated. There was no clear correlation of these distribution coefficients with SA. Elemental composi-
tion was used to assess the degree of condensation (or alteration) of the carbonaceous geosorbents. The
degree of carbonisation increased in the order; Pahokee peat < lignite coke < bituminous coal
< biochar < graphite, however this was not correlated with an increase in the experimental distribution
coefficients.

� 2014 Elsevier Ltd. All rights reserved.
1. Introduction

Monoterpenes are biogenic compounds with the molecular for-
mula C10H16 and can be acyclic, monocyclic or bicyclic in structure.
They are formed via a C10 acyclic intermediate geranyl diphosphate
(GPP), which is derived from the C5 compounds isopentenyl
diphosphate and dimethylallyl diphosphate by GPP synthase
(Tholl et al., 2004). Monoterpenes are found in various plant
fractions (Kainulainen and Holopainen, 2002; Turtola et al., 2003;
Maurer et al., 2008) and in soils of forest areas (White, 1991,
1994; Maurer et al., 2008) and are emitted into the troposphere
(Tsigaridis and Kanakidou, 2002). Monoterpenes have been
implicated in diverse environmental processes. They can influence
rates of nitrogen and carbon cycling (White, 1994; Amaral et al.,
1998) by inhibiting nitrification, reducing net N mineralisation,
enhancing immobilisation of NO3AN relative to NH4AN and/or
stimulating overall net immobilisation of N by providing a C rich
source material. In addition, they are an important source of
secondary organic aerosols (Yasmeen et al., 2012). Further, they
can function as a chemical defence against herbivores and diseases,
as well as an allelopathic inhibition of seed germination and plant
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growth (Gershenzon and Croteau, 1991). A demonstrated toxic
effect of carvacrol against ticks, fleas and mosquitoes has been
shown (Panella et al., 2005). Monoterpenes can also stimulate
the biodegradation of 14C-2,4 dichlorophenol by indigenous soil
microorganisms, showing that adding monoterpenes to soil could
be an effective strategy for the biotic removal of organic contami-
nants (Rhodes et al., 2007).

Such wide reaching environmental effects point to the need for
a greater understanding of the physicochemical properties and
behaviour of monoterpenes. One of the most important environ-
mental processes related to organic pollutants is sorption as it con-
trols their environmental mobility and bioavailability, and thus
their risk. The adsorption of various organic compounds to carbo-
naceous geosorbents has been investigated extensively (Bucheli
and Gustafsson, 2003; Khalil et al., 2006). Observations of
enhanced sorption due to the presence of carbonaceous geosor-
bents in natural matrices such as soil and sediment (Bucheli and
Gustafsson, 2000; Cornelissen et al., 2005), multiphase desorption
kinetics (Cornelissen et al., 2000) as well as strong non linear sorp-
tion (Huang et al., 1997; Xia and Ball, 1999) are likely reasons for
this interest. Carbonaceous geosorbents are characterised by con-
densed, rigid and aromatic structures, with high carbon contents
and relatively few polar functional groups (Cornelissen et al.,
2005) and include materials from pyrogenic sources (e.g., charcoal,
soot, coke, often termed as black carbon) and also materials
exposed to diagenetic alterations (e.g., coals).

However, in contrast to this, the adsorption of monoterpenes to
carbonaceous geosorbents is a little explored research areas.
Research in this regard would be useful in order to understand
for example if the way monoterpenes influence rates of nitrogen
and carbon cycling could be altered following sorption to environ-
mental matrices. In addition, sorption of monoterpenes to carbona-
ceous geosorbents could be used as an abiotic method to remove
these compounds from the environment. Such a mechanism could
be especially important if the monoterpenes are being used as a
natural pesticide and have performed their environmental func-
tion. One previous study determined soil fate model input param-
eters for 20 monoterpenes (van Roon et al., 2005a) and used them
in order to investigate the influence of soil temperature, soil water
content and soil organic carbon fraction on the mobility of these
monoterpenes. The study demonstrated that by increasing soil
water saturation, both the cumulative amount of monoterpenes
volatilised and the cumulative amount of monoterpenes leached
decreased (van Roon et al., 2005b). In addition, the study showed
that the organic matter phase served as the phase that sorbed
the greatest fraction of monoterpenes and was thus able to reduce
the cumulative amount of monoterpenes leached and volatilised.

In order to obtain a more detailed knowledge related to the
sorption behaviour of monoterpenes in the environment, the pri-
mary aim of this work was to determine the sorption of two mon-
oterpenes, a pinene and limonene, to several carbonaceous
geosorbents (graphite, bituminous coal, lignite coke, biochar and
Pahokee peat). These monoterpenes were chosen as they dominate
woodland soil emissions (Steinbrecher et al., 1997; Hayward et al.,
2001; Isidorov and Jdanova, 2002; Isidorov et al., 2003; Lin et al.,
2007), and are readily degraded by indigenous microorganisms
(Misra et al., 1996; Misra and Pavlostathis, 1997; Owen et al.,
2007) thus could play an active role in the environmental pro-
cesses mentioned previously. The carbonaceous geosorbents were
chosen as they contain variable H/C, H/O and O/C atomic ratios
which is a key physicochemical property that can influence the
degree of adsorption of non-ionic organic chemicals (Grathwohl,
1990). In addition, biochar, which is the solid product formed via
the pyrolysis of biomass, was chosen as it has recently been pro-
posed as a climate mitigating tool that can improve the quality
of weathered or low fertility soils, particularly in tropical regions
(Lehmann, 2007). In order to achieve this aim, a novel approach
using polyethylene passive samplers, calibrated for the first time
for these compounds, was employed. The hypotheses of the study
were that: (i) the adsorption of the monoterpenes would increase
in accordance with an increasing degree of geosorbent condensa-
tion, inferred by elemental composition, (ii) the adsorption of the
monoterpenes would increase with an increase in the surface area
of the geosorbents and (iii) the difference in chemical structure of
the two compounds affects resulting sorption.
2. Materials and methods

2.1. Reagents and materials

The monoterpenes used, (-)-a-Pinene and (S)-(-)-Limonene,
were obtained as neat solutions in acetone (analytical standards
with purity greater than 99%) from Sigma Aldrich. Their structures
are given in the Supplementary information. Stock solutions were
prepared via dilutions in acetone. The carbonaceous geosorbents
used in the experiments were graphite, bituminous coal, lignite
coke, Pahokee peat, biochar. Bituminous coal was sampled in the
Decazeville basin, France and was predominately hard coal (97%
of organic particles by percent total sorbent, by volume). The lig-
nite coke was obtained from Rheinbraun AG and is a highly porous
material. The standard IHSS Pahokee Peat from the Everglades was
used and contains a much lower TOC (46%) than the coal or coke
(78% and 72%, respectively). Graphite was obtained from Boom
BV (The Netherlands) and had the highest TOC (88%) of the mate-
rials. Biochar was produced from cacao shell in a locally con-
structed pyrolysis unit of 30–40 L at the Indonesian Soil Research
Institute in Bogor, Indonesia. All materials have been used in pre-
vious studies (Jonker and Koelmans, 2002; Endo et al., 2009;
Hale et al., 2013) and their physicochemical properties (including
TOC, contribution from various organic particles and composition)
as determined in these previous studies are found in Tables S1 and
S2 in the Supplementary information. The materials were air dried,
pulverised, sieved through a 2 mm mesh and stored at room
temperature before use.

2.2. Specific surface area

Specific surface area was determined according to previous
methods (Kasozi et al., 2010; Mukherjee et al., 2011) by gas
adsorption on a Quantachrome Autosorb 1 analyzer after degassing
samples for at least 24 h at 180 �C. Micropore surface area (defined
here as pores <1.5 nm) was determined using CO2 as the probe gas
at 273 K and interpreted using canonical Monte Carlo simulations
of the non-local density functional theory (DFT) (Pignatello et al.,
2006). The DFT model used assumed a slit-shaped carbonaceous
surface. Nanopore surface area (defined here as pores 1.5–50 nm)
was determined using N2 as the probe gas at 77 K and calculated
using BET theory (Brunauer et al., 1938) on multi-point adsorption
data from the 0.01 to 0.3 P/Po linear segment of the adsorption
isotherms.

2.3. Determination of polyethylene-water partitioning coefficients

In order to measure aqueous concentrations in the sorption
batch experiments described below, polyethylene (PE) passive
samplers were used. This is the first time that a passive sampling
method has been used in order to measure the aqueous concentra-
tion of such compounds. Therefore several preliminary experi-
ments were carried out to investigate: (i) the most suitable
passive sampler membrane material, (ii) the most effective
extraction solvent, (iii) the necessity of a clean up step and (iv)
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the development of a GCMS method. Complete details of these
experiments and their outcomes are given in the Supplementary
information. Following optimisation of the methods, a polyethyl-
ene passive sampler, an 80:20 mixture of heptane:acetone for an
extraction period of 48 h and without prior clean up was selected
as the method of choice.

In order to determine the polyethylene-water partitioning coef-
ficients, pre-cleaned PE sheets (0.10 ± 0.01 g), Millipore water, a
pinene or limonene (3–5000 lg spike), and sodium azide (1% by
water volume from a 20 g L�1 stock) were added to 50 mL glass
vials with glass lids. All batches were rolled end-over-end at
10 rpm for 35 d before the PE and water concentrations were
quantified and PE-water partitioning coefficients KPE-water (lg kg�1

PE) (lg L�1 water)�1 were determined. PE-water partitioning
coefficients were also estimated using three methods. (1) the
SPARC online calculator (http://ibmlc2.chem.uga.edu/sparc/,
version: October 2011 release w4.6.1691-s4.6.1687, accessed
30th January 2013) which determines solute–solvent interactions
using various empirical molecular descriptors derived only from
the molecular structure of the solute and solvent (Hilal et al.,
2004). (2) the use of a pp-LFER based on the Abraham approach
(Abraham et al., 2004), where the condensed phase used was dry
hexadecane. pp-LFERs estimate the partitioning of any non-ionic
solute between water and another condensed phase. (3) COSMO-
therm (version C3.0 Release 13.01, TZVP level), which performs
solvation calculations using statistical thermodynamic approaches
based on density functional quantum chemical calculations
performed with Turbomole (Eckert and Klamt, 2002). Details of
these methods can be found in the Supplementary information.
2.4. Sorption of a pinene and limonene to carbonaceous geosorbents

A batch sorption method was used to obtain monoterpene
sorption isotherms. Millipore water (40 mL), a precleaned PE
sampler (0.10 ± 0.01 g), sodium azide (1% by water volume from
a 20 g L�1 stock), and 50 mg of all carbonaceous geosorbents were
added to 50 mL glass vials. Vials were spiked at up to seven differ-
ent monoterpenes concentrations ranging from 50 to 5000 lg for a
pinene and 10–10000 lg of limonene, in duplicate. In addition,
batches without sorbent served as blanks and contamination was
not evident. All vials were rolled end-over-end at 10 rpm for 35 d
after which PE sheets were removed, extracted and analysed as
described in the Supplementary information. The 35 d period was
considered sufficient based on a previous study in which 10–30 d
were found to suffice when a stronger sorbent (activated carbon)
and more hydrophobic compounds (PAHs) were tested for estab-
lishment of equilibrium at various temperatures and for different
time periods (Cornelissen et al., 2006). A description of the calcula-
tions used to obtain geosorbent-water distribution coefficients is
given in the Supplementary information, where a three phase mass
balance was solved to obtain the concentration of monoterpene
sorbed to the carbonaceous geosorbent. When comparing resulting
geosorbent-water distribution coefficients, student t-tests
performed in Microsoft excel were used.
3. Results and discussion

3.1. Experimental polyethylene-water partitioning coefficients
(KPE-water)

Log KPE-water values were 3.49 ± 0.58 for a pinene and
4.08 ± 0.27 for limonene (Table 1; Fig. 1) and owing to the error
on these measurements, the sorption of both monoterpenes to PE
was not significantly different (p > 0.05). The Freundlich isotherms
were, as expected for a rubbery polymer like PE (Hale et al., 2011),
close to linear with Freundlich exponents of approximately one for
both compounds (1.37 ± 0.28 for a pinene and 1.11 ± 0.07 for
limonene). This is the first time that passive sampler-water
partitioning coefficients have been established for a pinene and
limonene, and the values were similar to those previously reported
for other organic compounds of similar hydrophobicity (Perron
et al., 2009; Smedes et al., 2009; Hale et al., 2010; Sacks and
Lohmann, 2011). Differences in the degree of non-specific (e.g.
van der Waals forces and cavity formation) and specific (or polar)
interactions (e.g. hydrogen bonding) depending on functional
groups and bonds present in the organic compounds affect the
PE-water partitioning coefficient.

PE-water partitioning coefficients were also estimated in order
to try to verify the experimental values (values in Table 1).
Hexadecane was used as a surrogate for PE (values are reported
as Khexadecane-water) as it is a liquid with the same molecular struc-
ture of repeating CH2 units (Hale et al., 2010). The similarity in par-
titioning coefficients for both monoterpenes was echoed in the
estimated Khexadecane-water values (differences of 0.1 log units SPARC
and COSMOtherm and differences of 0.3 log units for the pp-LFER).
For all estimation methods, a pinene had the larger Khexadecane-water

value, indicating that a pinene has weaker polar interactions in
water and thus higher Khexadecane-water values than limonene. The
estimated Khexadence-water values are higher than the experimental
KPE-water values, in agreement with previous results for organochlo-
rine pesticides (Hale et al., 2010). The discrepancy between the val-
ues reveals the deviation between the actual cavity formation
energy of PE and the predicted cavity formation energy of hexadec-
ane. PE and hexadecane have different proportions of crystalline
phases and as cavity formation in solid, partly crystalline PE is
likely slightly more difficult than in liquid hexadecane, slightly
lower partitioning coefficients result (Hale et al., 2011; van
Noort, 2012). While the use of predictive models can be a tool to
aid in obtaining partitioning coefficients, these results highlight
the importance of developing and validating a passive sampling
method for the compounds of interest.

3.2. Sorption of a pinene and limonene to carbonaceous geosorbents

The carbonaceous geosorbents used here vary both in their
physicochemical properties and degree of environmental alter-
ation. Lignite coke, biochar and graphite are combustion/pyrolysis
products and represent porous and non porous (graphite) counter-
part materials (Endo et al., 2009). Lignite coke is the intermediate
stage in the diagenesis of peat to coal and is a rigid, aromatic
material with a high carbon content. Pahokee peat has a high
organic carbon content and contains only a minor carbonaceous
geosorbent fraction (see Table S2). Bituminous coals are the ther-
mally altered residues of high plants that remain after exposure
to higher temperatures and pressures and consist of a macromo-
lecular 3D network of condensed aromatics (polymers) and sepa-
rate molecular compounds (Allen-King et al., 2002).

Fig. 2 shows the sorption isotherms of a pinene (Fig. 2a) and
limonene (Fig. 2b) on graphite, lignite coke, bituminous coal, bio-
char and Pahokee peat. The corresponding distribution coefficients
(Kd) calculated over the entire concentration range of the isotherm
and calculated at an aqueous concentration of 1 ng L�1 are given in
Table 2. At the highest spiked concentration, the aqueous solubility
of a pinene was exceeded (aqueous solubility of 4.071 mg L�1, EPI
Suite) and thus this point was excluded from the data analysis.
Both monoterpenes were sorbed to the carbonaceous geosorbents
to varying degrees. The sorption of limonene to all materials was
stronger than that for a pinene (differences of 0.2–1.3 log units
between distribution coefficients for the monoterpenes) support-
ing the hypothesis that sorption is affected by molecular structure.
Placing Kd values in increasing order for a pinene gave

http://ibmlc2.chem.uga.edu/sparc/


Table 1
Experimental log KPE-water values, and Freundlich isotherm parameters as well as estimated values and corresponding model input data for
SPARC (CAS number and SMILES string), the pp-LFER given in (Abraham et al., 2004) (compound descriptors E, S, A, B and V).

a Pinene Limonene

CAS number 7785-26-4 5989-54-8
Log KOW

a 4.48 4.45

Experimental data
Measured log KPE-water (L kg�1) 3.49 ± 0.59 4.08 ± 0.27
Measured log KFr (lg g�1)/(lg mL�1)�N 3.63 ± 0.19 4.20 ± 0.07
Measured N (–) 1.27 ± 0.22 1.11 ± 0.07

Estimated data and input parameters
SPARC estimated log Khexadecane-water (–)b 5.23 5.10
pp-LFER estimated log Khexadecane-water (–)b 4.95 4.66
COSMOtherm estimated log Khexadecane-water (–)b 4.53 4.42
SMILES string C1@C(C)C2CC(C1)C2(C)(C) C@C(C)C1CC@C(C)CC1
E 0.438 0.501
S 0.20 0.31
A 0.00 0.00
B 0.14 0.23
V 1.2574 1.3230
L 4.256 4.688

a Estimated with COSMOtherm.
b Surrogate phase for PE, owing to the presence of repeating CH2 unit.
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biochar � Pahokee peat � bituminous coal � lignite coke < graph-
ite. For limonene the order was: Pahokee peat � biochar � bitumi-
nous coal < graphite � lignite coke. When the errors on the Kd

values are taken into consideration, the sorption of a pinene to
all materials except graphite (showing stronger sorption, log Kd

5.31 ± 0.16), was similar (log Kd values range from 3.87 ± 0.18 for
biochar up to 4.32 ± 0.25 for lignite coke) and not significantly dif-
ferent. For limonene biochar, Pahokee peat and bituminous coal
had similar sorption affinities (log Kd values from 4.10 ± 0.36 for
Pahokee peat to 4.62 ± 0.26 for bituminous coal), while sorption
to graphite and lignite coke was stronger (log Kd values of
5.43 ± 0.12 and 5.61 ± 0.66).

Table 2 also presents log KOC values (organic carbon normalised
distribution coefficients). Normalising to this fraction resulted in
increasing distribution coefficients for a pinene as: bituminous
coal < Pahokee peat < biochar < lignite coke < graphite. For limo-
nene the order was: Pahokee peat < bituminous coal < biochar
< graphite < lignite coke. Previously the organic matter-water par-
titioning coefficient was predicted to be 0.80 L kg�1 for limonene,
based on predicted values of the solubility of limonene in organic
matter and water (van Roon et al., 2005a). The organic carbon–
water partitioning coefficient was then assumed to be 1.724 times
this value. These values are around three orders of magnitude
smaller than those determined here, but vast variation in geosor-
bent properties and the use of existing physico-chemical property
data used to obtain model parameters in the previous study,
compared to the determination of experimental data here, is likely
the reason for this.

Although statistically significant variation in the sorption of a
pinene and limonene was not evident (0.05 confidence level),
from a qualitative perspective a slightly stronger sorption of
limonene was observed. This could be explained by the different
geometry of the monoterpenes. The less sterically hindered 3D
structure of limonene probably allows a more energetically
favourable occupation of sorption sites. One line of evidence
supporting this is that the estimated solvent–water partitioning
coefficients for wet octanol, dry octanol, chloroform, acetone,
methanol, acetonitrile, DMSO, hexane, benzene, toluene and
diethylether (Table S3 in the Supporting information), do not
differ greatly between a pinene and limonene, (variation of
0.15 log units at most). This similarity suggests that the stronger
sorption of limonene could not occur because of different interaction
properties without being related to molecular structure. Another line
of evidence that supports the notion that compound geometry could
affect sorption, was the difference in linearity of the isotherms. For a
pinene, isotherms were close to linear (N values of 0.75 ± 0.08–1.01
± 0.09), while the slightly stronger sorbing limonene exhibited non
linear sorption to lignite coke (N of 0.50 ± 0.04) and more linear
sorption to other geosorbents (N between 0.80 ± 0.05 and
0.99 ± 0.04). Due to its less sterically hindered 3D structure, limonene
may have better access to the narrow pores in lignite coke that have
a high sorption energy. As a pinene is sterically hindered to a greater
degree than limonene, it requires a larger cavity volume in order to
fill sorption sites and this becomes less favourable, for example, for
the higher energy sorption sites in lignite coke. Differences in the
geometry of n-octane and cyclooctane were implicated previously
for the lower partitioning coefficients of cyclooctane sorbed to lignite
coke, bituminous coal and Pahokee peat (Endo et al., 2009). A similar
explanation was given related to the stronger adsorption of planar
PCBs and PAHs compared to non planar molecules, to the graphite
used here, (Jonker and Koelmans, 2002) and for a similar PAH and
PCB study using a black carbon isolate (Cornelissen et al., 2004).

3.3. The influence of surface area on the sorption of a pinene and
limonene to carbonaceous geosorbents

Also shown in Table 2 are micropore (defined as pores <1.5 nm
and determined with CO2 as the probe gas) and nanopore surface
area (defined as pores 1.5 nm to 50 nm and determined with N2

as the probe gas) normalised carbonaceous geosorbent-water dis-
tribution coefficients (Kd,micro,SA and Kd,nano,SA mL m�2). The specific
surface areas of the sorbents are shown in Table 3. The surface area
of Pahokee peat is not relevant for such comparisons as Pahokee
peat sorbs hydrophobic compounds mainly by a partition
mechanism and as such is not represented by SA. For this reason
the discussion focuses on the other carbonaceous geosorbents.
The nanopore surface area (SA) of the reference materials
decreased in the order: lignite coke > biochar > graphite > bitumi-
nous coal while the micropore SA decreased in the order: lignite
coke > biochar > bituminous coal > graphite.

The data show that all sorbents had greater than 90% of their
surface present within micropores, except lignite which had about
half of its surface within nanopores. SA-normalised distribution
coefficients (both Kd,micro,SA and Kd,nano,SA mL m�2) for a pinene



Fig. 1. 12–18-point sorption isotherms of (a) a pinene and (b) limonene on PE
passive samplers. Error bars represent the average of three data points.

Fig. 2. 14 point sorption isotherms for (a) a pinene and (b) limonene on graphite
(j, green), lignite coke (N, red), bituminous coal (d, blue), biochar (�, black),
Pahokee peat (N, orange) and soil (4, white). Error bars represent the average of
two data points. (For interpretation of the references to colour in this figure legend,
the reader is referred to the web version of this article.)
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were largest for graphite and decreased through bituminous coal
and lignite coke, and were smallest for biochar. Thus these distri-
bution coefficients were not well correlated with SA and the
hypothesis that the adsorption of the monoterpenes would
increase with an increase in the surface area of the geosorbents
was not correct in this case. For limonene, the micropore and nano-
pore SA normalised distribution coefficients followed different
trends. Nanopore normalised values decreased as: graphite > bitu-
minous coal > lignite coke > biochar. Micropore normalised values
decreased in the following way: graphite > lignite coke > bitumi-
nous coal > biochar. Again these values were not well correlated
with SA.

Previously sorption of organic compounds to various sorbents
has been related to sorbent SA (Chen and Chen, 2009; Kasozi
et al., 2010; Cornelissen et al., 2013). For example, sorption of
catechol to a range of biochars was found to be directly related
to micropore SA (Kasozi et al., 2010). The lack of clear correlation
of sorption with SA can probably be explained by different affin-
ities of that the monoterpenes have for the various sorbents,
where SA only reflects sorption capacity. In addition; (1) Sorbates
may be restricted from entering sorbent pores either due to size
or kinetic restraints. For example, proteins were inhibited from
sorbing to alumina and silica sorbents with nanopores of diame-
ters similar to the protein molecular dimensions (Zimmerman
et al., 2004). We estimate the molecular dimensions of the mon-
oterpenes to be about 0.8 nm (following a previous method
(Zimmerman et al., 2004)), while the molecular dimensions of
the sorption sites in the carbonaceous geosorbents were found
to be in the same range, but are likely to be heterogeneous
(Kasozi et al., 2010). (2) The measurements made of sorbent sur-
face areas may not reflect the actual SA seen by the sorbate in
the aqueous environment. For example, graphites can be com-
pressed, expanded or exfoliated, creating varying SA
(Shornikova et al., 2009). The assumption of homogeneous sur-
face chemistry used by the BET and DFT models to calculate SA
is most likely inappropriate for all of these carbonaceous sorbents
except graphite. CO2 may also partly dissolve in organic materials
and this could lead to overestimations in micropore SA, since the
DFT model assumes all sorbed CO2 is sorbed to micropore
surfaces, not partitioned in a matrix.



Table 2
Carbonaceous geosorbent distribution coefficients (log Kd), Freundlich isotherm parameters (log KFr (lg g�1) (lg mL�1)�N, Freundlich exponent, N (–)), organic carbon normalised
distribution coefficients (log KOC) and surface area normalised distribution coefficients (log Kd,nano,SA Log Kd,micro,SA (mL m�2)) for; biochar, lignite coke, graphite, Pahokee peat and
bituminous coal.

Sorbent Log KFr (lg g�1)
(lg mL�1)�N

N (–) Log Kd (L kg�1) Log Kd (L kg�1) calculated
at 1 lg L�1

Log KOC Log Kd,nano,SA
a

(mL m�2)
Log Kd,micro,SA

b

(mL m�2)

a pinene
Pahokee peat 3.76 ± 0.09 0.75 ± 0.12 3.91 ± 0.36 4.52 4.25 c c

Biochar 3.82 ± 0.04 0.84 ± 0.08 3.87 ± 0.18 4.29 4.32 2.22 1.43
Lignite coke 4.19 ± 0.07 0.83 ± 0.08 4.32 ± 0.25 4.71 4.43 1.98 1.66
Bituminous coal 3.94 ± 0.06 0.75 ± 0.08 4.07 ± 0.27 4.68 4.21 3.51 1.89
Graphite 5.29 ± 0.13 1.01 ± 0.09 5.30 ± 0.16 5.25 5.35 4.21 3.22

Limonene
Pahokee peat 3.94 ± 0.09 0.81 ± 0.10 4.10 ± 0.36 4.52 4.44 c c

Biochar 4.24 ± 0.07 0.80 ± 0.05 4.49 ± 0.30 4.83 4.95 3.03 2.24
Lignite coke 4.85 ± 0.05 0.50 ± 0.04 5.61 ± 0.66 6.35 5.72 3.28 2.95
Bituminous coal 4.43 ± 0.05 0.82 ± 0.04 4.62 ± 0.26 4.97 4.77 4.08 2.45
Graphite 5.40 ± 0.06 0.99 ± 0.04 5.43 ± 0.12 5.43 5.48 4.33 3.25

a Nanopore surface area (pores 1.5–50 nm) was determined using N2 as the probe gas at 77 K.
b Micropore surface area (pores <1.5 nm) was determined using CO2 as the probe gas at 273 K.
c Pahokee peat was not included in the discussion (see text).

Table 3
Nanopore and micropore surface areas (m2 g�1) and elemental composition of biochar, lignite coke, graphite, Pahokee peat and bituminous coal.

Pahokee peat Biochar Lignite coke Bituminous coal Graphite

Nanopore surface area (m2 g�1)a 1 29 214 4 12
Micropore surface area (m2 g�1)b 48 178 458 150 121
Pore volume (cm3 g�1) 0.016 0.13 0.046 0.004
% C 44 70 76 71 96
% H 4.5 1.6 n.dd 4.8 n.d
% O 35 10 18 16 1
% N 3.0 1.4 n.d 1.4 n.d
% Ashc 13 10 6.8 7.3 2.4
H/C 0.10 0.022 n.de 0.068 n.de

O/C 0.80 0.14 0.23 0.22 0.012
H/O 0.13 0.16 n.de 0.30 n.de

a Nanopore surface area (pores 1.5–50 nm) was determined using N2 as the probe gas at 77 K.
b Micropore surface area (pores <1.5 nm) was determined using CO2 as the probe gas at 273 K.
c Determined by heating to 700 �C for 6 h.
d The carbon peak tailed into the hydrogen peak and therefore a determination of the % H could not be made.
e Ratios could not be calculated as the % H was below detection.
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3.4. The influence of elemental composition on the sorption of a pinene
and limonene to carbonaceous geosorbents

Organic matter is often characterised by the H/C and O/C atomic
ratios which indicate the aromaticity or degree of condensation,
similarly the H/O atomic ratio can be used as an index of the degree
of oxidation of the organic matter (Xing et al., 1994). A high H/O
ratio indicates relatively low amounts of O containing functional-
ities (corresponding to a relatively low polarity and high hydro-
phobicity) and therefore a high sorption affinity of non-ionic
organic compounds by the organic matter (Grathwohl, 1990).
H/C and O/C ratios have been used previously to characterise
organic matter in terms of sorption (Huang and Weber, 1997).
During progressive stages of diagenesis and catagenesis, the coal
carbon content increases and sorption becomes stronger and more
nonlinear (Grathwohl, 1990; Huang et al., 1997; Johnson et al.,
2001). The elemental composition of the geosorbents and elemen-
tal ratios are shown in Table 3 and a van Krevelen plot for H/C and
O/C ratios is shown in Fig. S1 in the Supporting information. When
placed in order of increasing degree of condensation (or alteration),
the geosorbents displayed the following; Pahokee peat < lignite
coke < bituminous coal < biochar < graphite. This order is also
somewhat different to that of the experimental distribution coeffi-
cients showing that the hypothesis that an increase in degree of
condensation is positively correlated to an increase in sorption.
Overall this leads to the conclusion that one single factor, be it
SA or elemental composition, is not enough to explain the relative
the carbonaceous geosorbent sorption.

3.5. Environmental implications

The sorption of organic compounds to environmental geosor-
bents is important as it implicates their fate and transport. The
investigation of the sorption of monoterpenes to environmentally
relevant geosorbents provides relevant information if such a
method was to be used to remove these compounds from the envi-
ronment. For example, the use of monoterpenes as natural
pesticides provides a potential use for this strategy as the monoter-
penes could be sequestered and removed from the environment
after they have performed their environmental function. The pres-
ence of various carbonaceous geosorbents in soils and sediments
(Cornelissen et al., 2005) also suggests that this could occur as a
natural process and without the need for invasive treatment
methods.

Of special interest is the sorption of the monoterpenes to the
biochar used in this study, as previously monoterpenes have been
implicated as one way in which the addition of biochar to soil can
suppress the anaerobic formation of the strong greenhouse gas
nitrous oxide (Rondon et al., 2007; Yanai et al., 2007). The sorption
demonstrated here warrants further investigation into the
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mechanism by which monoterpenes could reduce greenhouse gas
emissions.
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