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• Historic records of atmospheric pollutant
emissions in SW Europe are needed.

• PAH and Pb concentrations and ratios
from a north Spain salt marsh core were
used.

• Atmosphere emissions mainly from re-
gional coal burning increased in the ear-
ly 1800s.

• Emissions associated with leaded gaso-
line peaked in 1975 CE.

• The results suggest 1800 CE as the
Holocene/Anthropocene transition.
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There is an uneven geographical distribution of historic records of atmospheric pollutants from SW Europe and
those that exist are very limited in temporal extent. Alternative data source is required to understand temporal
trends in human impacts on atmospheric pollution. Polycyclic aromatic hydrocarbons (PAHs), heavy metal con-
tent and stable Pb isotopic ratios in a sediment core from a saltmarsh in northern Spainwere used to reconstruct
the regional history of contaminant inputs over the last 700 years. Pre-1800s concentrations of Pb and PAHs rep-
resented baseline concentrations, i.e. pre-Industrial, conditions. During the initial stages of the Industrial Revolu-
tion, 1800s to 1860s, PAH concentrations increased by a factor of about two above baseline levels in the sediment
column. By the 1930s, PAH levels reached ca. 10 times pre-Industrial levels and, along with Pb, reached a peak at
ca. 1975 CE. Since then, sedimentary PAH and Pb concentrations decreased significantly. A combination of PAH
isomer and Pb stable isotope ratios suggests that the contaminant sources are regional, likely derived partially
from wood, but mainly coal used by the metallurgic industry in the Basque country since the 1800s and until
the 1970s when leaded petrol saw increased use. This chronology of regional atmosphere-derived pollution
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expands current southwest Europe emission records and shows coastal salt marsh sediments to be useful in
reconstructing the Anthropocene.

© 2013 Elsevier B.V. All rights reserved.
1. Introduction

Historical atmospheric pollutant emissions data are very limited for
SW Europe and consist of country-specific emission records which are
fairly recent (i.e. since the 1970s) (Pacyna et al., 2003, 2007). In the
Iberian Peninsula, atmospheric pollutant records have been mainly re-
stricted to cores from high altitude lake sediments (Fernandez et al.,
2002) and peat bogs (Martinez-Cortizas et al., 1997, 2002), leaving a
very limited understanding of atmospheric emissions at regional scale.
The historic patterns of these emissions may also be recorded in coastal
salt marsh sediments through integration of the atmospheric and aquatic
(watershed) deposition. Coastal wetlands are of great ecological value
and rank among themost productive of all natural ecosystems, and coast-
al areas have been attractive sites for human settlement over several
millennia (Perillo et al., 2009). Globally, 1.2 billion people (23% of the
world's population) live within 100 km of the coast, and 50% are likely
to do so by 2030 Common Era (CE) (Adger et al., 2005), highlighting
the critical need to study the historical record of pollutant deposition
and storage within coastal sediments. In this context, the study of
undisturbed sediment cores offers great potential to reconstruct
the history of contamination (Valette-Silver, 1993; Ridgway and
Shimmield, 2002). Although interpretation of the obtained data may
be challenging due to the complicating effects of sediment re-
suspension, early diagenetic reactions or bioturbation (Farmer, 1991;
Eggleton and Thomas, 2004), these problems can be overcome by a
multi-proxy approach including various indicators such as heavy metals,
organic chemicals, radionuclides and Pb isotopic signatures (Kim et al.,
2004; Cantwell et al., 2007; Louchouarn et al., 2012).

Pollution sources (e.g., burning of wood, coal, and oil-derivate prod-
ucts) may vary greatly but the atmosphere is the predominant route for
combustion derived contaminants, including organic molecules such as
polycyclic aromatic hydrocarbons (PAHs) and heavy metals such as Pb
(Gallon et al., 2005; Louchouarn et al., 2012). The measurement of
PAHs (and their isomer ratios) and Pb stable isotope ratios can yield
information about contaminant sources and distribution pathways
(Louchouarn et al., 2012). For instance, PAH isomer ratios can be used
to differentiate between pyrogenic (combustion) and non-pyrogenic
(petrogenic) sources of these compounds (Reddy et al., 2002). Moreover
PAH isomer ratios can also be used to indicate the ‘fuels’ combusted (e.g.,
coal versus oil-derivate products) (Vane et al., 2011). Likewise, different
sources of atmospheric Pb, such as wood burning, fossil fuel combustion
or metal smelting, can be identified by their distinct Pb isotopic signa-
tures (Gallon et al., 2005; Sturges and Barrie, 1987). Another advantage
of the use of Pb as a proxy is that its stable isotope ratios are minimally
altered by physical or chemical processes within the sediments (Gallon
et al., 2005). Lead is considered immobile in peat sediments, peat bogs
and lake sediments (see Shotyk et al., 1998 and references therein). The
few studies which have examined ratios of Pb stable isotopes in conjunc-
tionwith PAHs in sediments have been successful in identifying the types
of fuel that contributed combustion-derived contaminants to the sedi-
ment (e.g. charcoal, wood, coke, coal, smelting, gasoline) (Gallon et al.,
2005; Louchouarn et al., 2012; Vane et al., 2011). Further, the combina-
tion of several proxies allows assessment of the mobility and stability of
each proxy within sediment cores (Brandenberger et al., 2008, 2011;
Kuo et al., 2011; Louchouarn et al., 2012).

This study aims to produce a reliable sedimentary record of atmo-
spheric pollution from coastal sediments in northern Spain using a
multi-proxy approach. Concentrations of a wide range of PAHs and
heavy metals were determined in a sediment core collected in the
Kanala salt marsh. From this, a 700 year record of combustion-
derived inputs for this estuarine area of southwestern Europe was
reconstructed, providing a high resolution historical record of the tran-
sition from the Holocene (last interglacial, ca. last 11,500 years) to the
Anthropocene (sensu Crutzen and Stoermer, 2000) in this region.

2. Materials and methods

2.1. Study site

The study site was selected based on previous sedimentological
studies on the Atlantic Iberian coast which have identified zones of con-
sistent and uniform accretion i.e. Kanala salt marsh, Urdaibai estuary, N.
Spain (Leorri et al., 2010). The Urdaibai estuary represents the tidal por-
tion of the Oka River, covers an area of 7.65 km2, and occupies the flat
bottom of the 11.6 km long, 1 km wide alluvial valley. The local and
regional characteristics have been described elsewhere (Leorri and
Cearreta, 2009; Cearreta et al., 2013; Leorri et al., 2013). This area is
dominated by detrital sedimentation (mainly silt) with very little autoch-
thonous organic matter (Cearreta et al., 2002b; Leorri et al., 2013), where
Al, a proxy for clay minerals, andmetal concentrations show a strong lin-
ear relationship (r = 0.85; Cearreta et al., 2002a). Thus, clays, and not or-
ganic matter, likely control heavy metal sorption in these sediments (see
also Bradl, 2004). In addition, this estuary is highly valuable from an eco-
logical perspective since it is the most extensive and pristine coastal area
in the Basque region and was included within the Biosphere Reserve de-
clared by UNESCO in 1984 CE (Cearreta et al., 2013).

2.2. Sample collection

One core, 39-cm long, was collected in 2004 CE from the Kanala salt
marsh (Supporting Information [SI] Fig. 1), located in themid reaches of
the Urdaibai estuary at 4.055 m above local ordnance datum (LOD).
Two PVC tubes (12.5 cm diameter) were inserted into the sediment in
order to obtain sufficient material to determine grain size, sediment
geochemistry (PAHs, elemental analysis, and lead stable isotope ratios),
and provide a geochronology. The outmost 2–3 mmof the sedimentswas
removed to minimize contamination from the PVC tube and downcore
smearing during coring. The corewas described andphotographed before
being sectioned into 1 cm intervals. Topographic elevation (Leica station;
elevation error: ±0.005 m) was measured, and this information is
presented relative to the LOD (lowest tide at the Bilbao Harbour on
27th September 1878). Samples were dried at 40 °C over 24 h and
then stored in sealed containers until analyzed. Compaction of
the sediment during sampling was considered to be negligible and
autocompaction (loss of porosity due to the load of overlying sedi-
ments) was considered minimal due to its dominance of detrital sedi-
ments (Leorri et al., 2008; Brain et al., 2011). In this study, we assume
that sediment re-suspension, early diagenetic reactions and bioturba-
tion minimally affect downcore profiles of the targeted proxies. This is
based on the minimal mobility of Pb in sediments (see references
above), strong correlation between PAHs and Pb, the similarity of
the Pb profile and previously published records (e.g., Leorri et al.,
2008) and the strong correlation between Fe (redox sensitive element)
and Al (r2 = 0.91) which suggests grain-size control of elemental dis-
tributions rather than post-depositional changes.

2.3. Sediment dating

The geochronology of the top 10 cm of the core was calculated from
the 210Pbprofile using the constant rate of supplymethod (CRS) (Appleby
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and Oldfield, 1978) supported by 137Cs activities and it is presented and
discussed elsewhere (Leorri et al., 2010, 2013). Samples for 210Pb and
137Cs were analyzed following the methodology described by Appleby
(2001) at the University of Plymouth (UK) Consolidated Radioisotope Fa-
cility, using an EG&GOrtec planar (GEM-FX8530-S N-type) HPGe gamma
spectrometry systembuilt to ultra-lowbackground specification for 210Pb
detection (see Leorri et al., 2013). Additional information is provided in
the SI Text and results are presented in SI Table 1. This core presented
anunsupported 210Pb (210Pbxs) inventoryof 6846 ± 416 Bq m−2 slightly
greater than the average for the Basque coastal region (ca. 5806 ±
200 Bq m−2; Cearreta et al., 2013; Leorri et al., 2013), had an exponential
decay profile that suggested a constant sediment accumulation rate in the
upper section (ca. 100 years), and did not showany signs ofmajormixing
or disruption of the sedimentation. In order to extend the chronology
downcore, two samples (at 24 and 38 cm depth) were carbon-14 dated
by accelerator mass spectrometry-AMS at Beta Analytic Inc. (USA). Be-
cause the presence of black carbon (BC) could bias radiocarbon dating
based on total organic carbon (TOC) leading to an overestimation of the
age (Masiello and Druffel, 1998; Dickens et al., 2004), the radiocarbon
age of the BC isolate (extracted using Kuhlbusch, 1995; see also SI Text)
was also determined by AMS. The ‘corrected’ age of deposition was esti-
mated using a mixing model that removed the influence of old recycled
carbon (BC) stored within the sediments (Dickens et al., 2004) (see SI
Text, SI Table 2, and SI Fig. 2).

2.4. Chemical analyses

Sediments were analyzed for concentrations of 33 PAH com-
pounds, 36 elements, and four Pb stable isotopes as proxies for residues
of combusted biomass and fossil fuels (Hites et al., 1980; Rosman et al.,
1997) resulting from vehicle exhaust, heating, cooking, large-scale
power generation and open burning (CPSA, 1983; Dunlap et al., 1999).
Analysis and quantification of PAHs were carried out at East Carolina
University (USA) on a Shimadzu QP 2010s gas chromatograph/mass
spectrometer (GC/MS) in selected ion monitoring (SIM) mode (see
Mitra et al., 2012). PAHswere extracted using a Dionex Accelerated Sol-
vent Extractor (ASE 350) in 66 mL sample cell spiked with 1 mL of deu-
terated PAH surrogate standard consisting of deuterated naphthalene,
anthracene, benz[a]anthracene, benz[a]pyrene, and benz[g,h,i]perylene,
in acetone. Solvent [acetone:hexane cocktail (2:1 v:v)] heated at
100 °C was purged through the sample cell over three static cycles
of 3 min. PAHs in the extracts were purified using silica open-column
fractionation (Dickhut and Gustafson, 1995) and then quantified by
gas chromatography–mass spectrometry (GC/MS) after adding 1 mL
of deuterated PAH internal standard (deuterated acenaphthylene,
phenanthrene, chrysene, perylene, and indeno[1,2,3-c,d]pyrene). Each
extraction batch included a lab blank and aNational Institute of Standards
and Technology (NIST) Standard Reference Material (SRM) 1941b
(Organic Marine Sediment) or 1649a, following the PAH extraction
procedures as described above. Compounds were considered not
quantifiable (NQ) if the PAH abundance in a sample was less than
twice the abundance from the lab blanks (averaged over 6 months),
if the recovery of the deuterated surrogate standard compared was
less than 50% of the deuterated internal standard or if PAH concen-
trations deviated by more than 10% from certified values in the SRM.

Metal concentrations were determined at Activation Laboratories
Ltd. (Canada) by inductively coupled plasma-optic emission spectrom-
etry (ICP-OES) after microwave digestion with aqua regia (Cearreta
et al., 2013; Leorri et al., 2013). Sediment samples for stable lead isoto-
pic ratios were analyzed using a multi-collector-inductively coupled
plasma-mass spectrometer (Neptune, Thermo Scientific), at the Geo-
chronology and Isotope Geochemistry Research Facility of the Universi-
ty of the Basque Country (Spain) (following Irabien et al., 2012). The
contribution of anthropogenic sources above baseline values was calcu-
lated using two sets of mixing models (see Alvarez-Iglesias et al., 2012
and references therein).
Geochemical fluxes were calculated as the product of sediment ac-
cumulation rate and the concentration of each component. Fluxes of
PAHs were calculated for both total PAH (TPAH) and high molecular
weight PAH (HMW-PAH; those with four or more aromatic rings). The
SI Text describes themethods used in greater detail, including a compi-
lation of data fromSpain and Europe regarding several isomer ratios and
downcore total organic carbon, δ13C and total N, and all data are
presented in SI Table 3a and b (PAHs), 4 (metals) and 5 (Pb isotopes),
supported by SI Figs. 3–9.

3. Results and discussion

3.1. Sediment chronology

Sedimentation rate estimates derived from the CRS (Appleby and
Oldfield, 1978) method indicate that the uppermost 10 cm was depos-
ited over about 100 years. The downcore profile of 137Cs shows a clear
subsurfacemaximum in activity at 3.5 cm depth. Assuming this subsur-
face 137Cs maximum to be 1963 CE, i.e., during peak atmospheric bomb
testing, it corroborates the 210Pbxs-derived age estimates. Considering
the apparent minimal sediment mixing in this core, the ages of each
sediment depth were calculated by linear interpolation between the
C-14 dated horizons. The resulting geochronology yielded three zones
of different sediment accumulation rates: 0–10 cm depth, 0.055 ±
0.022 g cm−2 year−1; 10–25 cm depth, 0.056 ± 0.006 g cm−2 year−1;
and 25–39 cm depth, 0.039 ± 0.003 g cm−2 year−1 (SI Fig. 2).

3.2. Pollutant delivery

While it is assumed that the high marsh sediments contain a record
of atmosphere-delivered contaminants, the possibility of other sources
is examined here. High salt marshes are affected by sporadic flooding,
mainly during spring tides, accumulating pollutants from both atmo-
spheric and aquatic sources. River-derived pollutants might be stored
in intermediate reservoirs (e.g., soils) providing a time lag between
emissions and the final deposition in the salt marsh, biasing the tempo-
ral reconstructions. In Kanala, the sporadic tidal flooding controls the
sedimentation. The Urdaibai watershed is small and steep with the
rainfall evenly distributed during the year (Bruschi et al., 2013). These
characteristicsmost likelyminimize large variations in sediment source.
To assess the contribution of atmospheric versus watershed inputs, we
have calculated a focusing factor which can indicate augmentation
of 210Pbxs inventory by allochthonous sediments enriched in 210Pbxs
(Callender andVanMetre, 1997; Chillrud et al., 1999). Based on the con-
stant rate of supply (CRS) model (Appleby and Oldfield, 1978) the
210Pbxs at year 0 flux is 21 ± 1.3 mBq cm−2. The modeled flux was
then used to reconstruct the theoretical inventory which was within
1% of the measured inventory of 6846 ± 416 Bq m−2, suggesting a
constant source dynamics. 210Pbxs fluxes up to 18.3 mBq cm−2 year−1

from ombrotrophic peats (210Pbxs derived from atmospheric deposi-
tion) in the NW Iberian Peninsula (Olid et al., 2013; less than 400 km
to the west of Kanala) seem an adequate regional reference for atmo-
spheric 210Pbxs fluxes based on the similarity of the averaged invento-
ries between NW Spain and the Basque region (5443 ± 340 Bq m−2

and 5806 ± 200 Bq m−2 in, respectively). Kanala presents greater fluxes
and inventory than the regional estimates, although within global 210Pb
flux calculated range (15.5 ± 7.5 mBq cm−2 year−1) (Turekian et al.,
1977; Baskaran, 2011). Taken together, the regional and global esti-
mates suggest combined atmospheric and aquatic (transported in the
watershed) sources for the 210Pbxs, with the atmosphere contributing
86 ± 13% of 210Pb.

During transport, PAH signatures can be modified, for instance,
fluxes and concentrations of individual PAHs when normalized to TPAH
generally decrease as a function of increasing PAHmolecular weight.
For example, phenanthrene (PHEN)/TPAH is generally higher than
pyrene (PYR)/TPAH, followed by coronene (COR)/TPAH values (SI
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Fig. 3). These differences in relative abundances across PAH molecular
weight may either be due to varying relative intensity of atmospheric
to estuarine-derived influx or to changing source of combustion. In
that direction, sedimentary concentrations of total PAHs and Pb are
very strongly correlated (r2 = 0.99) (e.g., SI Fig. 4 indicates the con-
comitant increase of PYR and Pb since the 1820s to 1975 CE), implying
a common combustion-derived source which suggest that changes in the
patterns are related to changing sources of combustion rather than being
associated to changes in the transport pathways of pollutants.

Belowwe consider downcore profiles of PAH isomer ratios, PAH flux,
metal concentrations and fluxes, as well as Pb stable isotopes for three
time intervals with distinct geochemical signatures: 1300–1800 CE,
1800–1930 CE, and 1930–2000 CE.

3.2.1. 1300 to 1800 CE
Geochemical variables in the Kanala core sediments deposited prior

to the 19th century show similar temporal variations in TPAH, Pb, and
Zn concentration and fluxes (Fig. 1). During the period from 1300 to
1800 CE, high molecular weight PAH isomer ratios benzo[a]anthracene
(BaA) to chrysene (CHRY), and benzo[a]pyrene (BaP) to benzo[e]pyrene
(BeP) are relatively uniformproceeding upcore (Fig. 2). The high molec-
ular weigth PAH isomer pairs do not change when adjusted for
photodegradation (SI Fig. 5) and present a strong correlation with
each other (SI Fig. 6) confirming their application to reconstruct
historical sources.

The vertical dashed lines in Fig. 2 represent the atmospheric signal
of regional combustion throughout Spain as represented by downcore
profiles of PAH isomer ratios in sediments from high mountain lakes
(Fernandez et al., 2000) (SI Fig. 7). The remarkably uniform PAH isomer
ratios from 1830 to ca. 2000 CE would suggest that the combustion-
derived aeolian sources of PAHs throughout Spainwere constant during
that time period. From 1300 to 1800 CE, BaA/CHRY and BaP/BeP in the
Kanala core are notably similar to the ratios between 1830 and 2000
CE in high mountain lake sediments throughout Spain (Fig. 2). Organic
matter properties of bulk sediments in the Kanala core also remain
0 20001000 0 50 100

Pb (mg kg-1)
50

Zn 

0 1000 2000

Pb flux
(µg m-2 y-1)

TPAH (ng g-1) 

0 2000 4000
 0

 5

 10

 15

 20

 25

 30

 35

 40

D
ep

th
 (

cm
)

1300

1350

1400

1450

1500

1550
1600

1650
1700
1750
1800

1850

1900

1950

A
ge

 (
ye

ar
s 

C
E

)

2004
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relatively constant from 1300 to 1800 CE (SI Fig. 9). Together, these ob-
servations suggest that the sources of PAHs to the Kanala salt marsh
from 1300 to 1800 CE were predominantly aeolian. Thus, the enriched
relative abundance of low molecular weight compounds such as PHEN
in contrast to PYE or COR is driven by the type of fuel used from 1300
to 1800 CE. A similar enrichment of low molecular weight PAHs was
documented in sediments from an ombotrophic bog of the Iberian
Peninsula from 1000 to 1750 CE (Pontevedra-Pombal et al., 2012).

Similar to PAHs, concentrations of Pb deposited during this pre-
19th century period are low (average 24 mg kg−1) as are Pb fluxes
(11 μg m−2 year−1) and the 208Pb/206Pb ratios are uniform (Fig. 2),
similar to PAH data. The materials analyzed from this period present
Pb concentrations similar to background data in the region (Cearreta
et al., 2013) and S. Spain (Garcia-Alix et al., 2013) and Pb isotopic ratios
are similar to background values in Greenland ice cores (Rosman et al.,
1997), in a peat bog from Switzerland (Shotyk et al., 2002) (Fig. 3) and
coastal salt marshes from SW France (207Pb/206Pb = 0.835) (Alfonso
et al., 2001). In that sense, the period 1300 to 1800 CE could be used
as baseline data (i.e., pre-Industrial) to assess the impact during the
Industrial period. Baseline values would be differentiated from back-
ground values (i.e., pre-Anthropogenic) based on the fact that back-
ground values of atmospheric emissions are usually estimated from
materials older than 5000 years B.P. (Monna et al., 1997; Shotyk et al.,
2002) although vary region to region (Garcia-Alix et al., 2013). In addi-
tion, previous work has indicated four deviations from background
concentrations of Pb during the late Holocene of the Basque region
(Monna et al., 1997), some concomitant with other records in the NW
Iberian Peninsula (Martinez-Cortizas et al., 1997, 2002; Pontevedra-
Pombal et al., 2012), Europe (Shotyk et al., 2002) and Greenland
(Rosman et al., 1997) related to the mining activities in western
Europe (Pontevedra-Pombal et al., 2013). Locally, these excursions
have been associated with deforestation via wood burning (Monna
et al., 1997). In this context, the period 1300 to 1800 CE most likely
reflects atmospheric emissions of wood burning, supported by the
similarities with high altitude lakes in Spain (also associated with
100 150
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wood burning) (Fernandez et al., 2000), and recorded in both NW
Spain (Pontevedra-Pombal et al., 2012) and the Basque region (Monna
et al., 1997).

3.2.2. 1800 to 1930 CE
Exponential increase in PAH and Pb abundances and fluxes occurs

upcore throughout this period. Concentrations of TPAHs increase from
ca. 200 ng g−1 to more than 2400 ng g−1 by 1930 CE (Fig. 1). TPAH
concentrations are 3.5 times greater than baseline levels by 1860 CE
and ca. 10 times greater by 1930 CE, with the majority of the PAH in-
crease being driven by changes in high molecular weight compounds.
Both Pb and Zn (Fig. 1) and some other metals such as Cr similarly in-
crease in abundance during this time period. Neither properties of
bulk organicmatter norwatershed humanpopulation changes are coin-
cidentwith the timing of the changes in PAH and Pb concentrations and
fluxes (SI Fig. 9). Fig. 2 indicates an increase in 208Pb/206Pb towards less
radiogenic values beginning at 1800 CE. These increases in PAH and Pb
concentrations frombaseline levels and less radiogenic Pb isotope ratios
are likely related to the initial stages of the Industrial Revolution in
Europe (Bindler et al., 2001; Eades et al., 2002; Renberg et al., 2002;
Gabrieli et al., 2010). For example, in the nearby region around the
city of Bilbao the first metallurgical furnace was already established in
1841 CE followed by a second one in 1857 CE. At this time, themetallur-
gical industry became one of the dominant economic drivers in the re-
gion (Cearreta et al., 2002a). However, the progressive increase of Pb,
Zn (Fig. 1) and Cu (SI Table 2) could also reflect a more local effect.
For instance, the establishment of local industry (weapons and cutlery
manufacturers) around the town of Gernika (SI Fig. 1) occurred be-
tween 1913 and 1917 CE (Leorri et al., 2013). The departure from base-
line values reported here occurring at 1800 CE has been previously
pinned at 1850 CE (Olid et al., 2010) and ca. 1900 (Martinez-Cortizas
et al., 2012) in the NW Iberian Peninsula. Following the methods de-
scribed in Alvarez-Iglesias et al. (2012), the Pb contribution from Indus-
trial pollution in the Kanala salt marsh was calculated to surpass 80%
by 1930 CE. This value is greater than those reported from NW Iberian
Peninsula peat bog sediments that suggest the industrial contribution
to be between 24 and 35% also by the 1930s (Martinez-Cortizas et al.,
2012). The greater and earlier signs of industrial pollution in Kanala
could be related to the focusing factor of coastal sediments versus peat
bogs, a more intense industrialization in the Basque region, or both. Nev-
ertheless, 210Pbxs fluxes and inventory indicate a minimal contribution
from the focusing factor.

The dramatic shifts in Pb isotope ratios and high molecular weight
PAH ratios that occur during this time period (Fig. 2) imply that sources
of combustion dramatically changed at the beginning of this time inter-
val. The trends in PAH isomer ratios and Pb stable isotope ratios in
Kanala are coeval, suggesting that they may be used to discern sources
of combustion. Unfortunately, historical data on fuel consumption from
the Basque region are not available. However, since the 1850s there has
been an exponential increase in coal use in Spain (Rubio, 2005). This sug-
gests that coal was replacing wood as the primary fuel at this time as re-
ported elsewhere in Europe (Elmquist et al., 2007). These changes in PAH
isomer ratios during this time are not observed in high mountain lakes
throughout Europe (Fernandez et al., 2000) but are observed in an
ombrotrophic bog in the Iberian Peninsula (Pontevedra-Pombal et al.,
2012), and it could represent a further evidence that from 1800 to 1930
CE, local atmospheric deposition dominates the sediment profiles at this
site. In fact, the lack of record of similar changes in PAH isomer ratios in
Spain's high altitude mountain lakes may be explained by the fact that
the residue from coal combustion is enriched in coarse grained aerosols
(N1 μm) (Kauppinen and Pakkanen, 1990). Most likely, these coarse
grained aerosols would deposit before traveling to high mountain areas.

Lead stable isotope ratios that become less radiogenic from 1800 CE
onwards (Figs. 2 and 3) are also indicative of increasing influence of
coal. A Pb isotope mixing model was applied for this time assuming
only two end members of combustion, baseline values (associated with
wood burning) and coal. Samples from this core older than 1930 CE
(Fig. 3 inset, open triangles) cluster together with baseline data (white
circles) except for one sample (Fig. 3). This mixing model indicates a
clear switch from wood to coal with the latter becoming dominant after
1900 CE. Unfortunately, the overlap of the PAH isomer ratios in our
study of wood and coal precludes their ability to distinguish between
these sources during this time interval.
3.2.3. 1930 to 2000 CE
This time period is marked by an increase in sedimentation rate (SI

Fig. 2), decrease in Al and Fe concentrations, a depletion in δ13C values
(down to −27.3‰ compared to an averaged value of −24.5‰ before
1930 CE; SI Fig. 9) and higher total organic carbon to nitrogen ratio.
All, this suggests changes in land use (land clearance and soil erosion),
likely associatedwith increasing human population during this timepe-
riod (Bruschi et al., 2013), reflected in the sediments through more de-
pleted δ13C values and higher TOC/N ratios.

Concentrations and fluxes of PAHs increase from ~1930 to 1970 CE,
followed by a gradual decrease proceeding to 2000 CE (Fig. 1), a pattern
observed both regionally and globally (Van Metre et al., 2000; Dreyer
et al., 2005; Gallon et al., 2005; Vane et al., 2011). This pattern of increas-
ing PAH from early tomid 1900s followed by a decrease in the latter half
of the 20th century has been attributed to increasing residential and
industrial development followed by greater governmental controls on
fuel combustion emission (Van Metre et al., 2000; Lima et al.,
2003; Gallon et al., 2005). The sedimentary flux of TPAHs during
this time period ranges from ca. 1300 μg m−2 y−1 in the early 1930s
to ca. 2500 μg m−2 y−1 during the 1970s. These values are significantly
higher than those reported for high altitude Alpine snow and ice
(Gabrieli et al., 2010), high altitude lakes in Western and Central
Europe (Fernandez et al., 1999, 2000), ombotrophic bogs in Spain
(Pontevedra-Pombal et al., 2012), or remote lakes in the USA
(Fernandez et al., 1999; Quiroz et al., 2005), but similar to sedi-
mentary fluxes in urban and industrial lakes (Quiroz et al., 2005).

Pb isotopic ratios in samples from this period (after 1930 CE) are the
least radiogenic and cluster together with ratios very similar to those of
coal reference materials from both Spain (Díaz-Somoano et al., 2007)
and the United Kingdom (Farmer et al., 1999) (Fig. 3). Data from British
coal are pertinent as this was the main source of coal used for the steel
industry in the Basque region (Villanueva, 1991).

Leaded gasoline, which was introduced in the 1920s, became the
major source of atmospheric emissions in Europe by the 1950s (Dunlap
et al., 1999) and the major fuel source in Spain since 1970s (Rubio,
2005). Then, it seems reasonable to expect that PAH isomer ratios in
this Kanala core will align with ratios available in the literature for petro-
leum combustion. Isomer ratios of fluoranthene (FL)/(FL + PYR) and
indeno[1,2,3-cd]pyrene (IP)/(IP + benzo[ghi]perylene (Bghi)) from pe-
troleum combustion are typically suggested to range from 0.4 to 0.5 and
from 0.2 to 0.5, respectively (Yunker et al., 2002). Post-1930 CE average
ratios of FL/(FL + PYR) and IP/(IP + Bghi) in the Kanala sediments are
0.55 and 0.57, respectively. The higher values in these materials would
suggest that either the dominant source of PAHs from 1930 CE onwards
is derived fromgrass/wood/coal combustion or that values of PAH isomer
ratios denoted in Yunker et al. (2002) are not appropriate for interpreting
PAH sources in Europe. In spite of the known post-Industrial Revolu-
tion record of petroleum use throughout Europe, two other studies
reconstructing patterns of fossil fuel use in the 20th century detect-
ed no influence from petroleum combustion in PAH isomer ratios
(Gabrieli et al., 2010; Pontevedra-Pombal et al., 2012). Another re-
cent study noted that PAH composition in charcoals have, in some
respects, source signatures similar to unburned fossil materials (i.e.
crude oil), suggesting the potential for misinterpretations of the
source signatures of natural PAHs in soils and sediments (Keiluweit
et al., 2012). Thus, PAH isomer ratio data should be used with cau-
tion in intercontinental comparisons of pyrogenic pollutant types.
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The contribution of anthropogenic sources is calculated to be ca. 90%
by 1975 CE and the leaded gasoline influence increased from almost
negligible in 1930 CE to 13–24% by 1975 CE (see Alvarez-Iglesias et al.,
2012 for methods). The peak at 1975 CE occurred later than the one at
1955–1962 recorded in NW Spain (Olid et al., 2010; Alvarez-Iglesias
et al., 2012) but contemporaneous to the maxima reported in Europe
(1970s–1980s). While the Pb contribution from gasoline in Kanala is
similar to the values reported from an estuarine system in NW Spain
(Alvarez-Iglesias et al., 2012), the Pb contributions from gasoline are
smaller than those at a peat bog from NW Spain (Martinez-Cortizas
et al., 2012) and other European records (Dunlap et al., 1999; Shotyk
et al., 2002). This reflects the greater importance of coal to local and re-
gional combustion emissions in NW Spain.

The gradual decrease in PAH abundance from 1970s is accompanied
by a decrease in isomer ratios of high molecular weight PAHs. The lead
isotope ratios become more radiogenic and Pb and Zn concentrations
also decrease after the 1970s (Figs. 1 and 2). All this is coincident with
the general trend of Spain's decreasing emissions of BaP relative to
those of the rest of Europe from 1970 CE onwards (Pacyna et al.,
2003). While it is tempting to ascribe these recent changes to declining
population throughout the watershed, on the contrary, human popula-
tion has increased in the watershed of the estuary in recent years (SI
Fig. 9). These changes suggest a transition to the use of non-BaP
enriched fuels from 1970s up to the present. Similar decreases have
been noted in several other regional and global studies and have been
attributed to more effective emissions control, improved combustion
technologies and/or substitution of coal combustion by cleaner fuels
(Van Metre et al., 2000; Pacyna et al., 2003; Dreyer et al., 2005; Gallon
et al., 2005).

3.3. Conclusions

This reconstruction of combustion-derived contaminant delivery
from a SW Europe salt marsh over the past 700 years using PAHs and
Pb isotopic data reveals temporal trends that bear a striking resem-
blance to records obtained in other regions. While it suggests that the
record reflects global-scale changes, the large calculated fluxes and dis-
tinct geochemical signatures indicate a more regional source. In fact,
PAH isomer and Pb isotopic ratios indicate a strong influence of regional
coal use as a major factor in the observed local patterns of metal and
PAH delivery since the 1800s. This coal use was most likely associated
with the regional iron and steel industries and paralleled the local eco-
nomic development (Villanueva, 1991).

This study also shows that salt marshes contain potentially valu-
able records of regional atmosphere delivery of contaminants. Fur-
thermore, this study demonstrates the value of a combined organic
geochemistry and metal chemistry approach, which makes use of
isomer and isotope ratio analyses, in reconstructing this type of
records.

This record from the Urdaibai estuary has captured a regional finger-
print of pollution that fills an important data gap towards reconstructing
the chronology of pollution in coastal sediments. This information can be
used to narrow down chronological uncertainties in other records with a
less continuous sedimentary accumulation using the history of the
pollutants emissions. Crutzen and Stoermer (2000) have called for
a new epoch, the Anthropocene, referring to the interval of human
alteration of global biogeochemical cycles beginning after the inven-
tion of the steam engine in the late 18th century. The record in coast-
al sediments reconstructed here would suggest a date of ca. 1800 CE
for the boundary between the Holocene and the Anthropocene epochs
in northern Spain.
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