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I. Introduction

Changes in the rate of growth of money seem to have temporary effects on real variables but

permanent effects only on inflation.  Models consistent with long-run neutrality are easily

constructed but no consensus model of the short-run non-neutrality of money has emerged.

Two modern candidates which do not rely on money illusion or systematic forecast errors are

the "misperceptions" model of Lucas (1973) and Barro (1976) and "menu costs" models such

as the one of Ball, Mankiw, and Romer (1988), BMR hereafter.

Interest in these models centers on their differing predictions regarding the short-run behavior

of output and employment.  Specifically, the BMR model predicts that higher trend inflation

leads to a steeper short-run Phillips curve while misperceptions models do not.  However, each

model provides predictions regarding a second type of non-neutrality: the effect of money

growth (and other determinants of inflation) on relative prices.  This paper exploits these

predictions to provide evidence on the value of the alternative models using individual

commodity prices from European hyperinflations. . 1

Such tests link models of non-neutrality with the literature on inflation dispersion.  The

dispersion literature begins with Mills’ (1927) finding that the dispersion of individual prices

is positively correlated with the overall inflation rate.  This regularity has been examined and

largely confirmed in numerous studies using a variety of measures for dependent and

independent variables .  Most studies examine the robustness of this relationship with respect2

to data sets rather than the implications for choosing among models of price setting.  3

An exception to this approach is Hercovitz’s 1981 paper in this journal, frequently cited in the

dispersion literature.  Hercovitz showed that in a misperceptions model where elasticities of

supply differ across goods, money shocks increase the dispersion of individual inflation rates.

Using data on individual prices from the German hyperinflation he regressed dispersion, as 
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measured by the variance of  individual inflation rates across goods, � ,  against the squared2
t

first difference of money shocks, (m-m ) , finding a significant positive relationship: t t-1
2

(A)        �  = a  + a (m - m )    a  > 02         2
t    0  1 t  t-1    1

Several studies have followed Hercovitz’s lead by estimating analogous relationships to test the

misperceptions model and rival menu cost models.  The predictions of  menu cost models (such

as BMR) regarding relative prices have not been worked out in equivalent detail, but a

common prediction is that higher inflation leads to greater dispersion even if fully anticipated.

Misperceptions models predict that anticipated increases in demand raise all prices equally.  At

the risk of oversimplifying this literature, one may say that a positive relationship between the

expected or actual rate of inflation and dispersion is taken as support for the menu cost model.

If only shocks affect dispersion, the misperceptions model is supported.  Results of different

studies have often been contradictory, at least in part because dividing price or money increases

into expected and unexpected portions is problematical.4

A different approach is suggested here.  Below I present estimates of the patterns in the

individual prices series.  Specifically, the change in the relative price of each good j, d , isjt

modeled as a heteroskedastic AR(1) process with a systematic aggregate shock effect:

(B)      d  = b (v -v ) + e  + ' e  jt  j t t-1   jt  jt jt-1

where v  is a measure of aggregate shocks (such as m) and e  is an error specific to good j.t         t   jt

The BMR model can be shown to imply that as the predictable portion of overall inflation

increases: (a) the conditional variance of e   rises without limit and (b)  '   approaches -1.  Injt        jt

contrast, the Hercovitz model predicts: (a) the coefficients '  and the variances of e  should bejt     jt

invariant to the predictable portion of inflation, and (b) the estimated coefficients of (A) and

(the N versions of) (B) should be satisfy: ( (b ) /N = a .j   1
2



4

Single equation estimates, such as (A), discard much of the information residing in the

individual series.  In fact, the results show that estimates of dispersion relationships may be

consistent with a particular theory even when the patterns in the individual series bear no

resemblance to those predicted by the theory.  Alternative tests based on individual inflation

series are potentially more decisive.

To support this methodological point the Hercovitz study is used as a point of departure.  I

estimate dispersion relationships and individual relative inflation specifications ((A) and (B))

using disaggregate price data from periods of hyperinflation. To anticipate the results: The

German data yield less support for the his model than Hercovitz' results imply, even when his

money shocks are used.  There is substantially more support for the menu costs model both

from an expanded German data set and previously unexploited data from contemporaneous

European hyperinflations which are used here and made available for others.

The paper is organized as follows: Section II derives predictions of the Hercovitz and BMR

models regarding the behavior of relative prices.  Predictions from the BMR model are new and

rely heavily on simulations.  Section III presents estimates of the specifications above applied

to individual price data from periods spanning the hyperinflations and subsequent reforms in

Austria, Hungary, and Germany.  A brief summary concludes the paper.

II. Predictions of the Alternative Models Regarding the Behavior of Relative Prices

In this section models of inflation dispersion based on the Hercovitz model and the BMR model

are sketched, rather than derived.   In order to arrive at consistent estimating equations, I

attempt to present the models in parallel ways.   In particular, to accommodate the discrete time

framework of the misperceptions model and the continuous time setup used by BMR, the
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question of time measurement is addressed in a hybrid way.  Changes in the demand for goods

occur frequently (hourly).  The index h measures the number of hours since time 0.  However,

the econometrician only has data for the end of each month.  The index t measures the number

of months since time 0.  Thus h = nt where n is the number of hours in a month. 

A. The Hercovitz Model

The heart of any misperceptions model is a general specification of the demand in an individual

market. Using the hourly time index:

(1)      y  = -� (P  - E(P ) ) + �(M  - E(P ) ) + u  + �  d   d
jh  jh  h h-L   h  h h-L   h  jh

where y  is the quantity of good j demanded at time h, P  is its price, P , is the price of thed
jh           jh    h

average good, M  is the nominal money supply, u  is the cumulative (nonmonetary) changeh      h

in demand common to all goods since time 0, and �  captures shifts in demand specific tojh

good j (white noise with variance ) ).  E( )  denotes the expectation of the variable in2
�    h-L

question conditional on information from L hours ago, when information on  aggregate

variables was last disseminated (thus L is the information lag in hours).  All quantities are in

logarithms and y is measured as the deviation from a benchmark level.

Hercovitz makes choices within this general specification.  First, (following Lucas and

Barro) he assumes that the information lag corresponds exactly to the sampling period of

the data (L = n).  This restrictive assumption facilitates the application of the model to

monthly data.  Second, he omits nonmonetary aggregate shocks, u, and sets � = 1, stream-

lining the model.  Third, he allows the relative price elasticity of demand to vary across

markets (�  g � ).  The resulting equation (now using the monthly time index, t) is:d   d             5
j  i

(1')      y  = -� (P  - E(P ) ) + (M  - E(P ) ) + �d   d
jt  j jt  t t-1   t  t t-1   jt
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Money growth is given by M  - M  = g  + m where g  is the rate of money growth which ist  t-1  t  t  t

predictable on the basis of information available at time t-1 and m is the unpredictable deviationt

from g distributed with zero mean and variance ) . The structural equations of the model aret       m
2

completed with a supply curve:6

(2)      y  = � (P  - E(P ) )s   s
jt  j jt  t t-1

Solution of the model requires equating demand and supply and imposing rational expectations.

The method of undetermined coefficients yields the results :7

(3)      P  = M  + g   + (�+(1-�)/�)m t  t-1  t   t

(4)      P  = P  + (�+(1-�)/� )�  + �((1/� )-(1/�))m jt  t  j jt  j t

where �  � �  + � ,  � � ) /() +�) ), and � is the geometric average of �  across goods.j  j  j     m m �         j
d   s     2 2 2

Agents cannot disentangle aggregate and relative demand shifts occurring between t-1 and t.

Thus, unexpected money growth, m, has a nonunitary effect on average prices (last term in (3))t

and a nonzero effect on real output (not shown).  Expected money growth, g , is not mistakent

for a relative shift.  All prices are affected proportionally leaving output and relative prices

unchanged. Thus, g  appears with a coefficient of 1 in (3) and does not appear in (4).t

I label the last term in (4) the “Hercovitz effect” because it demonstrates his central result.

Demand shocks systematically change the prices of some goods more than others.  Aggregate

shocks are mistaken, in part, for relative shocks in all markets but they have a greater effect on

prices where demand and supply curves are less elastic (�  < �).  If d  is relative inflationj     jt

(defined as %  - %  = (P - P ) - (P - P )) and �  is the dispersion of inflation (= ((d ) /N):jt  t  jt  jt-1   t  t-1   t       jt
2        2  8

(5)      d  = (�+(1-�)/� )(� -� ) + ((1/� )-(1/�))(1-�)(m-m )jt  j jt jt-1   j t t-1

(6)      �  = 2) ((�+(1-�)/�) +) (1-�) ) + (1-�) ) (m-m )2   2 2 2 2   2 2 2
t  � �   � t t-1
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where )  is the variance of 1/�  across goods.  (6) corresponds to:   (A)   �  = a  + a (m-m )2                  2     2
�     j            t  0  1 t t-1

referred to in the introduction, with a  � (1-�) ) .  With identical markets )  = a  = 0.  Note1  �      �  1
2 2      2

that (5) could also be estimated (for each market) as:

(B)      d  = b (m - m ) + e  - ejt  j t  t-1   jt  jt-1

where e  � (�+(1-�)/� )�  and b  �((1/� )-(1/�))(1-�). The model predicts a cross-equationj   j j  j j

restriction: a  = ( (b ) /N.  Where a  comes from (A) and the b  from the N estimates of (B).1   j    1      j
2

 
This last point is worth emphasizing.  The Hercovitz model does not simply predict that months

with large money shocks should also exhibit a large dispersion of inflation rates.  It predicts that

goods which tend to show above (below) average inflation rates when m-m  is positive shouldt t-1

exhibit below (above) average inflation rates when money shocks are negative.  Moreover, the

systematic effects of shocks in the individual equations, measured by b , should be large enoughj

(when squared and summed) to account for the effect of shocks on  dispersion, measured by

a , in the dispersion equation.  These predictions can only be addressed by adding estimates of1

the individual inflation relationships.

B. The BMR Model

One encounters two difficulties in deriving predictions about price dispersion and relative

inflation from the BMR model.   First, unlike Hercovitz, the authors were not interested in the9

behavior of relative prices, hence they derived no analogous expressions.  Second, their

continuous time framework does not give rise to similarly “clean” expressions.  My attempt to

surmount these difficulties involves three steps.  First, the BMR model is used to derive

expressions roughly parallel to those in Hercovitz.  Second, these expressions are used to
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provide a basis for conjectures on the behavior of relative inflation rates in this model.  Third,

simulated data derived from these expressions are used to confirm these conjectures.

BMR do not separate money from other influences of aggregate demand.  Thus, demand at

time h is given by: (g/n)h + u  where g is identified with the trend growth (per month) inh

demand and u is a measure of cumulative demand shocks since time 0.  Demand shocks are

described by a random walk: u  = v  + v  + v  ... , where v is the hourly (white noise)h  h  h-1  h-2

innovation in demand.  There is a relative demand shock �  as in Hercovitz.  The crucialjh

innovation is that firms change prices only once every � hours.  The fixed price period is

identical across firms but the timing of price changes is staggered randomly. 

This fixed price period introduces two complications to the determination of relative prices.

First, prices depend not on current demand but upon the conditions which prevailed when

prices were most recently changed.  Second, when firms change prices, they take into account

their expectation of conditions over the next � hours, including a forecast of the future reaction

of other firms to recent demand shifts.  Specifically, if firm j changes prices at hour h:10

(7)      P  = (g/n)h + �  + (g/n)�/2 + q v  + q v  + ...jh    jh    0 h  1 h-1

where the q‘s are endogenous weights which approach 1 from below as the lag increases.  

The terms (g/n)h and �  show that both predictable growth in aggregate demand and relativejh

shifts affect prices one-for-one.  The term (g/n)�/2 indicates that price setting at hour h

anticipates the average change in demand occurring over the next � hours during which Pj

remains fixed at P  The final terms show that demand shocks affect prices  less than one-for-jh. 

one (the q’s are less than 1) and have effects on output (not shown).  The reason firms do not

increase prices in proportion to observed demand shocks is that they know competing firms will

not respond until the end of their own fixed price periods. 
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But (7) applies only to prices that are set anew at hour h.  More generally, P  is the price whichj

seemed optimal at the time it was most recently set, k hours ago, where 0 < k < �.  Thus:

(7')      P  = (g/n)(h-k) + �  + (g/n)�/2 + q v  + q v  + ...jh    jh-k    0 h-k  1 h-k-1

Staggered price setting means that k varies randomly from 0 to �.  I  emphasize this with the

expression k(j,h) or k  (hours since P was last changed as of hour h).  P is the mean of the P :jh   j               j
11

(8)      P  = (g/n)h + w v  + w v  + ...h    0 h  1 h-1

where the w’s are averages of the q’s.  (7') is parallel to (4) in the Hercovitz model and (8)

parallels (3).  To construct a parallel to (5), the month-to-month relative inflation rate, one

subtracts (8) from (7') and subtracts a similar expression dated n hours (one month) in the past:

(9)   d  = g(k  - k ) + (�  - � )  + q v   + q v    + ...   - w v  - w v   - ...jt  jh-n  jh   jh-k(j,h)  hs-n-k(j,h-n)    0 h-k(j,h)   1 h-k(j,h-1)        0 h  1 h-1

                                                               - q v  - q v  - ...  + w v  + w v  + ...0 h-n-k(j,h-n)  1 h-n-k(j,h-n)      0 h-n  1 h-n-1

  
By defining q  = q  = ... = 0, switching to a monthly time index, and adopting some-1  -2

notational change (9) can be made more compact:

(9')      d  = g(k  - k ) + ��  + a v  + a v   +  ...   - a v  - a v  -  ...jt  jt-1  jt   jt  0jt h  1jt h-1        0jt-1 h-n  1jt-1 h-n-1

where k  is the time between the most recent change in P  and the end of month t (hour h),  kjt          j          jt-1

is the equivalent interval for month t-1, ��  is the cumulative relative shock between the mostjt

recent change of P  and the last price change of month t-1, and a  � (q  - w ). j          ijt  i-k(j,t)  i

Comparing this to the Hercovitz model, the second term, ��, corresponds to the first term in

(5).  Since the menu cost model assumes perfect information, relative demand shocks are not

mistaken for aggregate shocks.  Thus the coefficient on �� is 1 in (9') and less than 1 in (5).
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However, relative demand shocks are not easily observable, and the difference in results

provides no basis for testing the alternative models.

The terms in v from (9') describe the effects of demand shocks (as opposed to trend growth)

on relative inflation and correspond to the m-m  term in (5)   Unlike the Hercovitz model, thet t-1

BMR model does not provide clear predictions regarding the effect of cumulative end-of-month

to end-of-month shocks on monthly relative inflation .  Predictions based on numerical12

simulations are derived below.  Predictably, the BMR model might or might not generate a

positive relationship between demand shocks and inflation dispersion, depending on parameter

values.  Thus the response of relative prices to aggregate shocks also fails to provide a decisive

test of the alternative models.

C. Trend Inflation and Dispersion in the BMR Model

The novel term in (9') is g(k  - k ).  It describes the effect of trend inflation, g, on relativejt-1  jt

inflation.  There is no corresponding term in (5) because predictable changes in demand have

no effect on relative prices in a misperceptions model.  This term is the source of decisive

testing of the alternative models. The intuition is clear.  Part of the difference between monthly

inflation for good j and monthly inflation overall depends on whether the current fixed price

period for good j began shortly before or long before the end of month t .  If the last hour of

month t came toward the end of a fixed price period, k  is near its maximum, �, prices overalljt

moved ahead of P , and d  tends to be negative.  Conversely, if k  was large, P  began thejt   jt        jt-1   jt-1

month behind overall prices and d  tends to be positive as P  catches up.jt      j

With large trend inflation, the timing of the last price change is important and the effect is large.

This is a “timing”effect. The upper panel of Figure 1 depicts paths of the aggregate price level

(P) and the price of an individual good (P ) over several “shock-free” months.  In the lowerj



11

panel a “month” is superimposed to give a visual representation of the relationship between %jt

and %  (as they occur in monthly data) and the values for k  and k  (unobservable from sucht            jt  jt-1

data). The  dotted line in the lower panel is steeper than the timepath of P in the upper panel.

This indicates that %  > %  and d  > 0.  d  is positive because k  < k  for this month.  Thejt  t  jt    jt    jt  jt-1

difference in slopes would disappear (d = 0) if % or � =0.

More formally, we can examine the effect of trend inflation and the length of the fixed price

 period on the dispersion of inflation rates.  Squaring (9') and averaging across goods yields:

(10)   �  = *(d ) /N = g((�k ) /N + g (�k (terms in � and v)/N + ((terms in �  and v )/N2   2   2 2            2  2
t  jt   jt    jt

Random staggering means k is a random variable with a uniform distribution from 0 to �.  If

N is large one may replace the average of random terms with their expected values (as in Barro

and Hercovitz).  Thus ((�k ) /N = � /6, and (�k (...)/N = 0, yielding:jt     jt
2   2

(10')      �  = *(d ) /N = g� /6 + terms in )  + terms in v2   2   2 2     2     2
t  jt       �

The term in squared trend inflation is unique to the menu cost model and is an artifact of the

timing effect.  Hercovitz adds a term in squared actual (as opposed to unexpected) money

growth to his own specification as a test of this type of effect (p.355).  He refers to Sheshinski

and Weiss as a source for this specification.  However, the BMR model implies a somewhat

different specification.  Since � is endogenous, higher trend inflation leads to more frequent

changes in prices (lower �).  No simple functional form arises for this relationship, but Mussa

(1981) and Rotemberg (1983) show that a fixed menu cost combined with a quadratic

disequilibrium cost yields a fixed price period which decreases with the 2/3 power of trend

inflation. That is, � = Cg .  In this case (10') becomes:-2/3

(10'')      �  = *(d ) /N = g C /6 + terms in )  + terms in v2   2   2/3 2     2     2
t  jt       �
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Intuition for this result can also be gleaned from Figure 1.  If trend inflation were twice as large,

the trajectory of P would be twice as steep.  However, the “steps” for P  would be only 1/3j

“higher” because they would also be 2/3 less “wide”.  The timing of the most recent price

change relative to the end-of-month relative would be more important, but not proportionately

more important.  Therefore, the quadratic form of  the misperceptions model is not appropriate

for the BMR model.  An inclusive functional form is � = Cg  which implies:-�  13

(A’)      �  = a  + a (g )        a  = C /6 > 0;   1 = 2 - � < 2.  2     1         2
t  0  1 t        1

D. Demand Shocks and Dispersion in the BMR Model

Is the relative inflation rate of good j during month t increased or decreased as a result of a

positive demand shock i hours before the end of the month?  This answer is conveyed by the

sign of a  in (9') above.  It depends crucially on the (random) value of k  that month.  If Pijt             jt     j

changed shortly before month t ended (k  small) then P  will have adjusted to recent demandjt   j

shocks more fully than prices overall and the a  will tend to be positive.  If the  month endedijt

just before the end of firm j’s fixed price period (k  close to �), the average price will havejt

adjusted to recent demand shocks more fully than P  and the a  will tend to be negative.j   ijt

Figure 2 provides some intuition.  Here a single positive demand shock, v , has occurred duringt

the month in question.  It shows up as a jump in P superimposed on the positive trend.  Firm

1 changed prices after the shock and incorporated the shock into the price increase.  Firm 2

changed prices earlier in that particular month and has not yet had an opportunity to react (k2t

> k ).  Thus, the shock has tended to increase the gap between d  and d  and increase1t             1t  2t

dispersion overall.  Shocks, like trend inflation, contribute to the “timing effect” increasing

inflation dispersion. This has two implications: First, the effect of shocks on dispersion is not

the unique hallmark of the Hercovitz model and may not be the source of decisive testing of
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the models. Second, the use of actual inflation as a regressor in a dispersion relationship (hence

combining trend and shocks) is supported.

Demand shocks affect dispersion in the BMR model, but there is an important difference.

Unlike the Hercovitz result, there should be no consistent relationship (over time) between the

demand shocks and relative inflation for a given good.  A positive demand shock might increase

the relative inflation rate of good j one month and decrease it in a later period (when k  happensj

to be larger).  That is, the a  are themselves random variables and will be positive one monthijt

but negative the next for the same good.  In the Hercovitz model, goods for which the supply

or demand curve is steeper will consistently exhibit a larger than average price response to

aggregate shocks,  That is, the misperceptions model analogues for a  (b  in (B)) should haveijt j

the same sign each month for a given good.  

E. Individual Relative Inflation Rates in the BMR Model

The strategy of Hercovitz and all others of which I am aware is to estimate a version of (A):

A single equation with dispersion as the LHS variable.  This discards considerable information

contained in the individual series.  Estimating (5) or its menu cost analogue directly can exploit

this information. The proposed specification is:   (B) d  = b (v -v ) + e  + ' e   where v  is ajt  j t t-1   jt  jt jt-1   t

measure of aggregate shocks (a money shock or other demand shock), and e  is an error.jt

(5) can be viewed as a version of (B) with restrictions: (a) v  = m,  (b) the b  are fixed overt  t     j

time but vary across goods (b  = ((1/� )-(1/�))(1-�)),  and (c) '  = 0 (e  = (�+(1-�)/� )��  j  j     jt   jt  j jt

where ��  is white noise).  However, Hercovitz's assumption that relative shocks arej

random walks is a convenient one, rather than an essential.  Therefore, in estimates below,

violations of (c) ('  g 0) are not taken as evidence for rejection of the Hercovitz model.j
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With less precision (B) can be seen  as a version of (9') where v  measures demand shocks.t 

In the BMR model the b  (� a ) vary randomly about 0 over time implying estimated b  nearj  jt          j

0 for the sample.  We can examine the structure of the error terms in the BMR version of

(B) by putting aside terms in v  in (9') and again exploiting the uniform distribution of k:t

(11a)      E((d ) )  =  g E((k -k ) ) + E((�� ) )  =   g� /6 + ) ,jt     jt-1 jt   jt        �
2     2 2   2      2 2   2

(11b)      E(d d )  =  -g E((k ) ) + E(�� �� )  =  -g� /12 + µ) ,jt jt-1     jt-1   jt jt-1       1 �
2 2       2 2   2

where )  is the variance and µ  is the first order serial correlation of � (expectation of2
�     1

terms in k�� disappear).  If relative demand is a random walk (µ  = 0), and � depends on g1

(� = Cg , if (A’) applies).  Thus, d  fits an MA(1) process: d  = e  + 'e  where:1-2 
jt     jt  jt  jt-1

(11a’)      E((d ) )   =   (1+(') ))  =   g� /6 + )   =    g C /6 + )jt       e        �         �
2       2 2     2 2   2       1 2   2

(11b’)      E(d d )  =   ')  =   -g (� ) /12  =    -g C /12jt jt-1      e      j
2     2 2       1 2

 
Solving  (11a’) and (11b’) for ' and ) :2

e

 
(12a)      '  =  - (1 + (6) /C )g )   +   ((1 + (6) /C )g ) - 1) 2 2 -1         2 2 -1   1/2

�         �

(12b)      )  =  (g C /12)(1 + (6) /C )g )  +   ((1 + (6) /C )g ) - 1)2     1 2    2 2 -1        2 2 -1   1/2
e      �        �

As g becomes large ' approaches -1 and )  approaches g C /12 (assuming 1 > 0).  This2   1 2
e

can be seen in (11a’): )  becomes negligible by comparison as the term in g increases2
�

without limit.  Thus, as g rises, ' approaches -1 and )  increases without limit, although2
e

not necessarily in proportion to g.  In estimates below the assumption that � is a random

walk is relaxed as it was with the Hercovitz model. Thus, ' need not approach 0 as g = 0.

 
These results are intuitive.  Random variation in the timing of the most recent price change

contributes to the volatility of individual inflation rates.  Higher trend inflation increases

volatility unless it greatly reduces the length of the fixed price period as well.  Relative
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inflation for a given good does not rise or fall systematically with trend inflation.  Rather the

variances of all inflation rates increase during a period of higher trend inflation.

This timing effect also introduces a negative relationship between successive individual

inflation rates.  If the end of the month occurs soon after the last price change for good j,

(k  near 0), inflation for good j tends to be larger than average inflation (assuming g > 0).jt

Good j then starts the next month with a higher price.  Since P  is the base price for the nextj

monthly inflation rate, a lower than average inflation rate will follow most of the time.  As g

rises this negative correlation comes to dominate other sources of relative inflation. Both of

these patterns are found in synthetic data generated by a BMR model in the next section.

F. Simulations Results for the BMR model

The continuous time BMR model does not yield explicit estimating equations applicable to

discrete monthly observations .  Therefore I have relied heavily on intuition to establish

relative price predictions of the BMR model.  This section reinforces these predictions using

synthetic data generated from a simulated BMR model.  I anticipate the results of the

empirical section to come by applying the estimation procedures of that section to these

synthetic data.  The results show that if (A’) and (B) are estimated using data consistent

with the BMR model, the patterns described in the previous section do emerge.

The BMR model allows many choices for parameterization.  In choosing among them I

have  attempted to mimic the fluctuations in overall inflation exhibited in the German data

described in the next section.  Baseline data with 60 observations of 30 individual price

series are generated using (7').  Deterministic demand growth fits a trigonometric function

which from 0% to 100% per month.  The phase and period are selected to produce a single

peak roughly at the midpoint of the sample.  Aggregate demand shocks come from a
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pseudo-random number generator mimicking independent errors with a standard deviation

of 30% per month.  Thus, most of the monthly variation in inflation is due to shocks. 

Relative shocks have a standard deviation 1/4 as large.  This conforms to the notion that

aggregate shocks dominate relative shocks in such turbulent times.  I deviate from the BMR

model in one respect: � does not depend on g.  Rather �  = (2/3)n for all j (and all t).  Thusj

prices change somewhat more frequently than observations occur.  This is roughly

consistent with the number of unchanged prices observed in the German data.  Starting

dates for fixed price periods are staggered randomly within the month.

Table 1 displays the resulting baseline data for � and %.  Estimating (A’) or (B) requires

separating inflation, % , into a predictable part, g , and an unpredictable (shock) part, v .  Int      t       t

the empirical section (and here), I follow the familiar procedure of estimating a timeseries

process for inflation over the full sample.  Rational expectations are invoked to identify gt

with the conditional forecast for month t based on the estimated relationship.  The resulting

error, %  - g , is identified with the v ., The observer is assumed to have no direct knowledget  t      t

of the process generating the data.  Rather he or she fits an ARMA model.  The AR(1)

passes the usual specification tests as a description of the synthetic % data. Table 1 displays

the estimated parameters of the AR(1) and the resulting g  and v  series (with % and �  ).t  t   t  t

Estimates of the single equation dispersion relationship (A’) for the synthetic data should be

consistent with the BMR model.  Individual inflation rates should be highly dispersed when

trend inflation, g, or actual inflation, %, is large, not just when shocks are large.  OLS

estimates of (A’) are displayed in Table 2.  Lines (1) - (3) report estimates using baseline

data and the standard quadratic form (1 = 2) for three alternative RHS variables: actual

inflation, trend inflation, and the first difference of inflation shocks.  Estimates reported in

line (4) use actual inflation and allow 1 g 2. Three predictable patterns emerge: (a) demand
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shocks (the Hercovitz term) have no explanatory power, (b) both actual inflation and

expected inflation have significant explanatory power but actual inflation dominates, (c)

allowing a non-quadratic form (1 g 2) makes little difference.  The results are robust to

broad variation of the parameter values used to generate the data (not shown).  

It is not surprising that a quadratic form fits the data well.  With � fixed, the mechanism that

generates a non-quadratic relationship has been omitted.  The absence of a Hercovitz effect

is also to be expected.  However,  this effect could easily emerge in a menu cost model.  To

generate his effect Hercovitz simply added cross-market heterogeneity to Barro’s model. 

Heterogeneity could add realism to the BMR model as well.  An obvious candidate is

heterogeneity in �.  If the price of good j is changed more frequently than the average good

(�  < mean �) the price of good j will, on average, be more responsive to demand shocksj

than the average price.  Thus d  will tend, on average, to be positive (negative) when shocksj

are positive (negative).  This pattern will be superimposed on the random variation related

to the timing effect and will be reversed for � < mean �. j 

The results in line (5) use simulated data based on heterogenous � instead of the baseline

data.  � is set at 1/3 of a month for 15 goods while � = 1 month for the other 15.  Thus, the

mean value of � is identical to the baseline data, but rapidly adjusting firms change prices 3

times as often as the others.  Squared changes in shocks are now significant even when

combined with squared trend inflation. However, such significant Hercovitz effects are not

robust to changes in the model parameters (not shown).  Predictably, they emerge for

synthetic data with considerable heterogeneity in � and large aggregate shocks.

The methodological point of this paper is that patterns in individual price series are more

informative than dispersion relationships like (A).  As a vehicle for verifying such patterns

Table 3 presents  maximum likelihood estimates of  (B)  d  = b (v -v ) + e  + ' e      jt  j t t-1   jt  jt jt-1
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based on the synthetic BMR data.  As suggested by the discussion of the previous section,

'  and )  (the variance of e ) are expressed as functions of g.  The functional forms are:    'j  j    j                jt
2

= (R - rg )/(1 + rg )  and  )  = S (1 + sg ).  These are parsimonious versions of (12a) andj  t   t     jt  j   t 
2

(12b).  As g approaches 0, '  and )  approach the values  R  and S . As g increases withoutjt  jt     j  j
2

limit )  does the same (if s >0) and '  approaches -1 (if r > 0).  Since b , R , and S  are2
jt        jt         j  j   j

idiosyncratic, there are 30 separate values for each, but r and s are common to all series.  14

Results in rows (1) - (5) use the baseline data.  In (1) all b  = all R  = r = s = 0.  Thus,j   j

Hercovitz effects and serial correlation are not allowed and homoskedasticity (over time) is

imposed.  Values under S are the mean (standard deviation) of the 30 individual estimated

variances (S  = ) ).  The results in (2) allow heteroskedasticity (s g 0).  The conditionalj  j
2

variance of each series rises proportionally with trend inflation (estimated s > 0) .  The

column labeled )  lists the means (standard deviations) of individual variances which2
max

occur if trend inflation is 100% per month (g = 1), the approximate maximum value of g in

the sample.  Thus, entries under S and )  provide summary statistics for the approximate2
max

minimum and maximum estimated conditional variances for the sample.

Row (3) allows AR(1) errors (R  g 0) but requires each '  to be constant over time (r  = 0). j      j       

The means (standard deviations) of the individual R  (= '  ) appear under R.  They arej   j

predominantly negative but heterogeneous (standard deviation = .33).  The addition of

serial correlation decreases heteroskedasticity (s is smaller) but the effect of trend inflation

on variances remains significantly positive.   Row (4) displays estimates which allow for the

predicted relationship between g and '  (r g 0).  Since estimates of r are positive, higher

trend inflation moves each '  toward -1, reaching the values listed under '  when g = 1. j        max

Thus, mean '  falls from -.21 to -.94 and the standard deviation falls from .46 to .03 as gj

varies from 0 to 100% per month.  That is, when inflation is low, the correlation patterns of
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the underlying relative shifts (measured by R ) are quite different, but during high inflationj

the timing effect dominates, producing correlation parameters tightly clustered near -1.

Relaxation of the restriction s = 0 (r = 0) causes a change in likelihood from row (1) to (2)

(row (3) to (4)).  Twice each change in likelihood is distributed as 3 (1).  The value 570.62

(130.8) is far greater than the 1% threshold of 6.6.  Between (2) and (3), 30 restrictions are

relaxed (R  = 0).  The value 482.0 easily exceeds the 1% threshold (50.9) for a 3 (30). j
2

Estimates in row (5) allow a Hercovitz effect (b  g 0).  Predictably, there is little evidence ofj

one.  Twice the change in likelihood from (4) to (5) is 42.8 which falls short of 50.9. 

This may is consistent with the near zero coefficient in Table 2, line (3), and is forced by the

homogeneity of �  in the baseline data.  The heterogeneous � version of the synthetic dataj

are used for the results in (6) and  (7) .  The effects of g on )  and '  remain (s and r are2
j  j

significantly positive).  Removing the restriction that all b  = 0 (moving from (6) to (7)) nowj

yields a significant improvement in likelihood, consistent with a significant coefficient on

(v -v )  in line (5) of Table 2.  These results verify that if (B) is estimated using datat t-1
2

generated by a BMR mechanism: (a) the error terms will be heteroskedastic as conditional

variances vary with g.  (b) The coefficients on the lagged error terms will approach -1 as g

increases.  (c) A significant Hercovitz effect (b  collectively g 0) may or may not emerge.j

III. Empirical Results

A. Data

In order to see if the patterns generated above occur in real world data, I focus on the

commodity data from which Hercovitz  derived his dispersion measure.  I also extend the

sample for these  data and present analogous data for two other European hyperinflations.
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Hercovitz chose 68 monthly series of wholesale commodity prices with which to calculate

the variance of monthly inflation rates across commodities, � .  Other series which had a2

significant number of missing observations over the period Jan 1921 - Jul 1923 were

excluded.  He used a hypothesized money supply function to divide monthly money growth

into anticipated and unanticipated components, g and m, for Nov 1920 - Jul 1923.

For most of these commodities data has been located for the period January 1920 through

December 1924 .  Data on the mean, %, and variance, � , of individual inflation rates,15          2,

along with N, the number of non-missing observations for each month, are shown under

Germany A in Table 4.  About 30 of the series are unavailable before 1921.  Therefore,

alternative statistics based on the 37 series available over the entire 60 month period (with

few missing observations) are presented under Germany B.  Using Hercovitz’s categories,

Germany A contains 27 foodstuffs, 19 textiles and leathers, and 22 metals, oils, and coals. 

Germany B contains 17, 10, and 10 items in the respective categories.  Observations for

months which meet Cagan’s (1956) definition of hyperinflation appear in bold.

Similar data have been discovered for the nearly contemporaneous Austrian and Hungarian

hyperinflations.  The Austrian data are monthly observations of consumer prices including

28 fabrics and clothing items, 17 furnishings and hardware, and 6 categories of energy.  An

additional 5 series were excluded due to missing observations for Jan 1921 - Dec 1923.  16

There are two sets of Hungarian data.  The first (Hungary A) contains retail prices for 34

foodstuffs in Budapest for Jan 1923 - Dec 1925.  Hungary B contains wholesale prices in

Budapest for 43 foodstuffs, 8 metals and oils, and 8 fabrics and building materials for the

same period.  Table 4 lists means and variances for all data sets and the number of non-

missing observations for Hungary B (no missing observations for Austria or Hungary A).17
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Data of this sort provide extreme variations in the rate of inflation which can potentially be

used to discriminate between models.  Each set includes a period before the onset of

hyperinflation, the period of peak inflation, and some period after the ultimate monetary

reform.  The German data, in particular, fit into quite heterogenous periods.  For Germany

A, the hyperinflation period Aug 1922 - Nov 1923 has means (standard deviations) for %

and �  of 1.457 (1.784) and .117 (.103).  It was preceded by 30 months with values of .0642

(.141) and .033 (.028) and followed by a 13 month post-reform period with values of .001

(.047) and .015 (.015).  The others show similar, albeit less dramatic, patterns.  Because

German data display the greatest variation of inflation and have a large number of timeseries

observations, results based on Germany B are emphasized below.  Results from other data

sets are shown as confirmation.

B. Separating Trend Inflation from Inflation Shocks

Anticipated inflation has no effect on relative prices in a misperceptions model.  Various

effects of anticipated inflation on relative inflation define the menu cost implications for (A’)

and (B).  Hence inflation must be decomposed into trend and shocks to test these models. 

A similar separation of money growth was Hercovitz's first step.  It is difficult to have

confidence in any particular ex post decomposition.  I deal with this by attempting

alternative decompositions and examining the results for robustness with respect to the

choice.  In each case, a timeseries model of inflation is estimated for the full sample and

trend inflation is identified with the one-step-ahead conditional expectation of this process.

An AR(1) process (%  = �  + � %  + v ) fits the data fairly well.  A look at Table 4 or at  0  1 t-1  t

formal specification test confirms the pattern of  heteroskedasticity in v .  Hence an ARCHt

process ()  = 
  + 
 (v ) ) is estimated (see Engle (1982)).  This is specification (i). 2   2   2
vt  0  1 t-1

Estimates of (i) for all countries appear in Table 5.  An appealing, more complicated
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interpretation of the data is that there are two processes which generate inflation: (a) a low

variance AR(1) which describes the pre-hyperinflation and post-reform data, and (b) a much

higher variance, more persistent process which generates the hyperinflation proper.

For the second specification I assume process (b) fits data from Cagan’s hyperinflation

months.  For this period, one cannot bound the coefficient on lagged inflation away from 1,

hence inflation is modeled as a random walk.  An AR(1) process is fitted to the remaining

sample.  With the divided sample, evidence for heteroskedasticity within  either process is

greatly reduced.  Thus, this mixed process is estimated as specification (ii) with separately

homoskedastic errors (results in table 5).

A weakness of (ii) is the implicit assumption that contemporaries recognized the start and

end of the hyperinflation ahead of time, whereas Cagan identified the dates in retrospect (the

beginning date is particularly arbitrary).  Specification (iii) which uses Hamilton's model of

unobservable switching regimes to address this weakness.  Agents (and the econometrician)

know that some observations are generated by a high variance random walk and others by a

lower variance AR(1) process, but they cannot directly observe the process which generates

a given month’s inflation.  Instead they form ex ante and ex post estimates of the probability

that each observation was generated by one or the other.  I use estimates of each process

(Table 5)  to calculate ex ante probabilities for each month and form one-step-ahead18

inflation forecasts.  Resulting measures of forecast inflation (g ), inflation shocks (v ), andt    t

the conditional variance of inflation about g  () ) for Germany appear in Table 6.t vt
2       19

The alternative series for  trends and shocks are similar but there are important differences,

particularly at the very end of the hyperinflation.  In November 1923 Germany initiated a

currency reform and revision of fiscal policies that succeeded in ending the hyperinflation. 

Inflation dropped from over 5 (in logarithmic terms) in November to near 0 in December. 
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Specification (ii) implicitly assumes that contemporaries  knew the reform would succeed (g

= .06 for December).  Specifications (i) and (iii) assume that the reform into was not even

taken into account (g = 3.53 and 4.33, respectively).  Therefore (i) and (iii) show large

negative demand shocks for December 1923.

While (i) is primitive, (iii) is appealing.  Uncertainty about the onset of hyperinflation and its

possible return after a reform (inherent in a switching regimes model) add realism. 

Assuming agents ignored November’s reform as they forecast December’s inflation seems

unrealistic.  Rather than devising another, more complicated specification, I take a simpler

approach.  Below I include aditional estimates for a sample which omits December 1923. 

Thus, there are six results for each relationship: one for each specification and each sample.

C. Estimates of the Dispersion Relationship.

Estimates of the modified dispersion relationship (A’) for Germany appear in Table 7. 

Austria and Hungary results follow in Tables 8 and 9. Row (1) of each table displays the

results using the standard quadratic form with actual inflation.  Rows (2) - (4) contain

analogous results using the three alternative measures of trend inflation rather than actual

inflation.  For Germany the fit is poorer for g than for % but the relationship is quite

significant in each case.   As expected, the removal of the first post-hyperinflation month

improves the fit for trend inflation based on (i) and (iii).  Rows (5) - (8) contain estimates of

the same relationship using the flexible form suggested by the BMR model.  The fit

improves noticeably and 1 is significantly below 2 in each case for Germany.20

Remaining estimates in Table 7 assess the Hercovitz effect. The change in shocks replaces

trend inflation.  There is evidence of this effect for (ii).  The shock term has no explanatory

power in the other specifications.   Estimates for Austria and Hungary in Tables 8 and 921
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may be summarized: (a) % has more explanatory power than g or shocks in every case.  (b)

The flexible form (A’) provides a superior fit in every case.  (c) Omitting the first post-

reform observation has no effect if actual inflation is used but improves the performance of

some trend inflation specifications (this omission has no noticeable effect on any Hungarian

result, hence these results are not shown here or for (B) below).  (d) The Hercovitz term

sometimes emerges significantly , but tends to provide a poorer fitthan trend inflation and22

often has no explanatory power.

D.  Tests Based on Individual Relative Inflation Series

Estimates of (B) for full German sample and the sample with Dec. 1923 omitted appear in

Tables 10  and 11.  The format is that of Table 3, which was based on synthetic BMR data. 

Resulting statistics for hypothesis testing appear in Table 12.  Row (1) of each table shows

benchmark estimates of individual variances assuming each d  is white noise ('  = 0) withjt    j

fixed variance, )  (= S ).  Estimates allowing variances to rise with trend inflation (s g 0)2
j  j

appear in lines (2i, 2ii, 2iii) using g series from specifications (i), (ii), and (iii), respectively. 

The parameter c  is significantly positive (see Table 12) causing individual variances to rises

more than tenfold as g varies from 0  ()  = S ) to the maximum for the sample ()  = ) ).2          2   2
j  j        j  max

Estimates in (3i, 3ii, 3iii) and (4i, 4ii, 4iii) allow autocorrelation ('  g0).  '  varies acrossj   jt

goods in each case but is fixed over time (r = 0) in (3i, 3ii, 3iii) where the R  (= ' ) are nearj  j

0 and collectively insignificant.    In (4i, 4ii, 4iii) '  depends on g ('  = (R - rg )/(1 + rg )).23
j    jt  j  t   t

In this specification r is highly significant and the '  become collectively significant.   j
24

Estimates of '  at g = 0 (= R ) are mostly positive and highly dispersed.  As g approaches itsj      j

maximum the '  (= ' ) cluster tightly about a value near -1 (means -.87 to  -.90 andj  max

standard deviations � .02).  This mimics the pattern found in the synthetic BMR data.
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Estimates in (5i, 5ii, 5iii) allow a Hercovitz effect.  The term b (v -v ) captures systematicj t t-1

differences in the effect of aggregate shocks on individual inflation.  The presence of this

term cannot provide a decisive test since it can emerge in both models.  Nevertheless, the

results are illuminating. The b  are jointly significant for each specification, but the size andj

significance are sensitive to the scheme for decomposing inflation.  A useful calculation of 

size is the mean of (b ) .  This measures the effect of a unit change in (v -v )  on thej            t t-1
2            2

dispersion of inflation. Values from Table 10 yield .0025, .0169, and .0016 for (i), (ii), (iii),

respectively - somewhat smaller than .0028, .0321, and .0025, the coefficients on (v -v )  int t-1
2

Table 7.  Thus, the effect of shocks on dispersion found in (B) is smaller than those found in

(A) and is sensitive to the measure of shock. In contrast, the effect of trend inflation on

relative inflation is insensitive to the decomposition of shocks and trends. 

Overall, estimates of (B) for the German data are consistent with a menu-cost mechanism

operating in the data. Estimates of (B) were also derived for Austria and Hungary.  For

brevity, only the statistics useful to hypothesis testing appear in Tables 13 and 14.  Inflation

induced heteroskedasticity is pervasive (s is always significant).  Inflation induced auto-

correlation (r >0) is the rule (specification (ii), full Austrian data is the notable exception). 

The Hercovitz effect (bj g 0) is again sensitive to shock measures and sample.  It emerges

significantly about half the time (Austrian specification (ii) and all Hungary B results).

E.  Estimates Based on Hercovitz' Money Shocks

Sensitivity of the Hercovitz effect to the measurement of shocks suggests that his original

money shocks be examined as an alternative.  Hercovitz calculated shocks for Nov 1920 - 

Jul 1923, thus omitting the peak hyperinflation and the post-reform period.   Rather than25

trying to calculate money shocks for the full sample, I estimate (A) and (B) for the shorter

sample using both money shocks and the alternative shocks used above.  Tables 15 and 16
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contain estimates for (A) and (B), respectively.  Row (1) of Table 15 reports a reproduction

of the Hercovitz base regression with Germany B data.   In  (2), (3), and (4), my inflation26

shocks provide no explanatory power.  Relationships using trend inflation in (5), (6), and

(7)  are significant but yield a poorer fit than (m-m ) .  However, %  provides the best fitt t-1    t
2    2

as a single regressor (8) and (m-m )  adds no explanatory power when %  is included (9).t t-1       t
2      2

The greater explanatory power of  (m-m )  compared to the various (v -v )  suggests thatt t-1      t t-1
2     2

Hercovitz devised a better decomposition of shocks and trends.  The superiority of %  as a2
t

regressor suggests that the data were not generated by a Hercovitz mechanism, rather

spurious correlation has indicated one in a short sample. Such fragile results are common to

this literature and reinforce the notion that estimates of (A) are unlikely to be conclusive. 

For a deeper look at the effect of shocks, Table 16 provides estimates of  (B), where mt

replaces my v  .  As before, idiosyncratic values for ' , ) , and b  appear in each equation. t        j  j   j
2

Aggregate shock effects are omitted (b  = 0) in (1).  Rows (2) - (5) report the results ofj

using money shocks, m, and my three versions of v  as alternative sources of shock effects.t       t

Money shocks have little effect on relative inflation.  Improvement in likelihood from (1) to

(2) is insignificant relative to threshold levels for 3 (37).  The cross-equation restriction on2

(A) and (B) is also violated.  The coefficient on (m-m )  in Table 15 should equal the meant t-1
2

of the (b )  in Table 16.  It is 60 times larger: 12.57 vs .21 (= (-.11)  + (.44) ).  Moneyj
2              2  2

shocks correlate with dispersion but do not display the systematic effects on individual

inflation which is the source of correlation in misperceptions models.  Paradoxically, each of

my demand shocks display significant effects in the individual equations.  This is further

evidence that estimates of the dispersion relationship are uninformative.

IV. Conclusion
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I have derived alternative relationships which distinguish between the effects of trend

inflation on relative inflation rates predicted by misperceptions and menu cost models of

price setting.  They have been estimated using individual price data from the European

hyperinflations of the 1920's.  Strong evidence of menu cost patterns is found even in this

turbulent period.  The evidence for misperceptions models reported by Hercovitz seems

weak when individual inflation rates are examined rather than inflation dispersion.

Of broader importance, traditional methods of testing these models using a dispersion

relationship are found to be less useful for two reasons.  First, menu cost models as well as

misperceptions models can generate shock effects.  Second, dispersion contains less

information than the individual prices upon which it is based.  By exploiting this

information, appropriate estimation of individual series proves more useful.  Given the often

contradictory results of traditional methods, this promises to be a more fruitful tool for

decisive testing using modern data as well.



1.  This approach is in the spirit of Ball and Mankiw (1995) which, in a very different way,
assesses the ability of a menu cost model to account for relative price changes.  This paper also
examines the ability of a model to “...explain facts it was not designed to explain.” (pg. 191)

2. Blejer (1981), Bomberger and Makinen (1993), Danziger (1987), Debelle and Lamont
(1997), Domberger (1987), Fischer (1981), Graham (1930), Grier and Perry (1996), Lach and
Tsiddon (1992), Parks (1978), Parsley (1996), Reinsdorf (1994), Van Hoomisen (1988), and
Vining and Elwertowski (1976) among others.

3.  For instance both Domberger and Reinsdorf examine the dispersion of prices within markets
while Debelle and Lamont examine the dispersion across cities.

4. Blejer, Grier and Perry, Lach and Tsiddon, and Parks use this approach. Hartman (1991)
claims an additional weakness: some functional forms for dispersion equations are guaranteed
to yield a positive relationship, and are, thus, uninformative regarding the underlying model.

5. This is equation (2), page 331 in Hercovitz.

6. The supply shocks which appear in equation (1), page 331 of Hercovitz are omitted.

7.  These expressions correspond to (12) and (13) p. 334 in Hercovitz.

8.  Hercovitz skips a step in his derivation, hence no expression corresponding to (5) occurs.
However, (6) corresponds to the expression directly below (15) p.335 in Hercovitz. To derive
(6) one replaces of the realized average of (� )  with its expected value )jt      �

2     2

9.  I concentrate on this model because its structure parallels the misperceptions model and
permits relatively easy simulations.  It has no relative price predictions which are qualitatively
different from previous models such as Ceccheti (1985), Mussa (1981), Rotemberg (1983), and
Sheshinski and Weiss (1977).  Accordingly, my analysis breaks no new theoretical ground.

10. This expression can be arrived at by substituting (A6) and (A2) into (A1) on page 61 of
BMR.  The trend growth in supply is suppressed as before and notation is changed so as to
conform to my treatment of the Hercovitz model.

11.  This corresponds to (10) in BMR p. 23.  BMR do not derive (7').

12. Hercovitz obtains clean results by assuming the  information lag exactly equals the sampl-
ing period.  Otherwise, the distribution of shocks within a month would matter as it does here.

13.  Both Blejer and Lach and Tsiddon impose a linear relationship.  Danziger has terms in both
%  and % .  Van Hoomisen combines linear and quadratic terms.  It is somewhat surprising that4/3  2

no-one has chosen (A’)  which allows many of these forms as special cases.

FOOTNOTES

*  I thank Steven Webb for 1920-21 German data, and especially, Robert Anderson and
Gail Makinen for uncovering the remaining data and for inspiring and aiding this project.



14.  Results for the synthetic data and the European data below are insensitive to the choice
of alternative functional forms.  All parameters are estimated by a grid search procedure.

15.  The data for 1920 are from Wirtshcaft und Statistich.  Statistiches Reichsamt 1912/22,
1923, 1924 contain the later data.  I do not attempt to extend Hercovitz’s money shocks over
the same period.  Instead inflation is divided into expected and unexpected portions below.

16.  Data are from Statistiches Handbuch Fur Die Republik Osterreich 1921, 1922, 1923.

17.  Data are from Annuaire Statistiques Hungroise.  Both series were selected from a larger
group of series (38 and 77, respectively) on the basis of missing observations.  A third
Hungarian data set runs from Jan 1915 through Dec 1925.  Its length makes it interesting but
its coverage of only 12 goods reduces its usefulness. All series will be provided on request.

18.  Switches between the two regimes are described by a Markov process with fixed transition
matrix.  Estimation includes values for p , the probability of the AR(1) continuing for anotheraa

period (no switching) and p , the probability of continuing in the random walk regime.  Thebb

probabilities of switching regimes are p  = 1 - p , and p  = 1 - p .  See Hamilton (1989)ab    aa   ba    bb

19.  Although each process is assumed homoskedastic as before, the ex ante probabilities that
the coming month's inflation will be drawn from (a) or (b) vary from month to month.  Hence,
the conditional variance of future inflation varies over time.

20. Since the insignificant constant term is omitted leaving two fitted parameters, this form
does not increase the degrees of freedom and improvement of fit is not inevitable. This result
(0 < 1 < 2) is consistent with the notion that higher g increases the frequency of price changes
but less than proportionally.  It is also consistent with the results reporteded in the next section.

21.  If v is used instead of �v, the adjusted R  drops below .2 for all specifications (not shown).2

If both g and �v are included for specification (ii)  the result is:
                                                                    _
  �  = .038  +  .0125(g )  - .0098(�v )        R  = .582       2   2       2

t      t   t

         (.005)    (.0040)        (.0140)

22.  In particular this term is significant for Austrian specifications (ii) and (iii) and remains
significant if trend inflation is added to the specification (not shown).

23.  Twice the change in likelihood from (2) to (3) is distributed as a 3 (37) due to relaxation2

of the restriction that each of 37 R = 0.  This falls short of the 1% threshold of 60.0 (Table 12).j

24.  Twice the change in likelihood between (3) and (4) is distributed as a 3 (1).  Row (2)2

constrains r  = all R  = 0.  Hence a 3 (38) is relevant for hypothesis testing ((2) to (4)).  Thej
2

respective 1% threshold values of 6.6 and 61.3 are easily achieved in each case (Table 12).

25.  “The vertiginous monetary expansion initiated in August 1923 differentiates the last phase
of hyperinflation, and, thus, is not included in the sample”.  Hercovitz p.330

26.  The LHS variable is the 37 item variance from Germany B.  I use the longest sample for
which m is available, Nov 1920 - July 1923.  Despite these slight data differences, the estimatest

are virtually identical to Hercovitz’s (p. 347).


