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Abstract. Observational or nonrandomized studies of treatment effects are often constructed

with the aid of polynomial-time algorithms that optimally form matched treatment-control pairs

or matched sets. Because each observational comparison may potentially be affected by bias,

investigators often reinforce a single comparison with an additional comparison that is unlikely

to be affected by the same biases, for instance using multiple control groups or evidence factors

or control+instrument designs. Use of two comparisons affected by different biases may detect

bias if the two comparisons disagree, or may show that two comparisons with different weakness

concur in their conclusions. Even this simplest addition — a second comparison — creates

design problems without polynomial-time solutions. Faced with a problem that no polynomial-

time algorithm can solve, a so-called “approximation algorithm” is a type of compromise: it

provides a solution in polynomial time that is provably not much worse than the unattainable

optimal solution. Building upon existing techniques for related problems in operations research,

we develop an approximation algorithm for minimum distance matching with near-fine balance

for three comparison groups. This algorithm is a practical approach to most observational

designs that add a second comparison. The method is applied to an observational study of

the effects of side airbags on injury severity in the US Fatality Analysis Reporting System.

For many car makes and models, side airbags were initially unavailable, then later available

as optional equipment for an additional fee, then still later provided as standard equipment.

Within sets matched for make and model of car, for safety belt use, for direction of impact,
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and other covariates, we compare crashes in these three periods, where each comparison has

different limitations. The method is implemented in the R package approxmatch, whose

example reproduces some of the calculations.

Keywords: Approximation algorithm; causal inference; evidence factors; matching; multiple

control groups; observational study.

1 The need for approximation algorithms when constructing an observational

design

1.1 Optimal constructions with polynomial-time algorithms

An algorithm is said to solve a problem in polynomial time if there is a polynomial, say

n3, such that the algorithm can solve any instance of the problem of size n in at most

κn3 arithmetic operations, where κ is a constant, and in this case the algorithm runs

in O
(
n3
)
-time. Generally, the constant multiplier, κ, depends upon the programming

language, computer and other details, while the exponent, here 3, does not, so the focus

of attention is on the exponent. Saying that a problem cannot be solved in polynomial

time means saying that there are always problem instances such that it takes more than

κna arithmetic operations to solve them, no matter how the constants κ and a are picked.

If a problem cannot be solved in polynomial time, then large problems may be virtually

impossible to solve. See Papadimitriou and Steiglitz (1982) or Korte and Vygen (2012)

for general discussion of combinatorial optimization algorithms and their performance. In

this section, we first mention common uses of polynomial-time algorithms to construct

observational studies, then point out that even some very simple and important designs

cannot be built in this way.

Many methods of constructing a design for an observational study solve a combinatorial

optimization problem using a polynomial-time algorithm. For instance, many treatment-
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control matching problems involving n people are reexpressed as optimal assignment prob-

lems or minimum cost flow problems in a network and are solved by algorithms that run

in O
(
n3
)
-time. In the simplest case, matched pairs are found to minimize the total over

pairs of the covariate distance between the treated and control individuals within each pair;

see, for instance, Rosenbaum (1989). The covariate distance might combine a propensity

score with some form of Mahalanobis distance, or other techniques. The algorithm need

not construct pairs: it may construct matched sets with two controls matched to each

treated individual, or it may be a full matching in which each matched set contains either

one treated subject and one or more controls, or one control and one or more treated

individuals; see, for instance, Hansen and Klopfer (2006). It is often useful to add fine-

balance or near-fine balance constraints to minimum distance matching: these minimize

the total distance within pairs subject to the constraint that a nominal variable, perhaps

with many categories such as ICD-10 surgical procedure, is as balanced as possible; see,

for instance, Rosenbaum, Ross and Silber (2007), Yang et al. (2012) and Pimentel, Yoon

and Keele (2015) for methods and Silber et al. (2016) for an application. These tech-

niques are implemented in R in Hansen’s optmatch package (Hansen and Klopfer 2006;

Hansen, 2007) and Pimentel’s rcbalance package (Pimentel, 2016, 2017). Zubizarreta

(2012) enlarges the scope of matching techniques in his designmatch package using mixed

integer programming methods that often perform well despite lacking an explicit time

bound (Zubizarreta and Kilcioglu 2016); Keele, Titiunik and Zubizarreta (2015) provide

an application to enhancing regression discontinuity designs through matching.

A second polynomial-time algorithm used to design observational studies involves min-

imum distance nonbipartite matching; see Lu et al. (2011) and the references given there.

Where bipartite (or two-part) matching pairs individuals from two groups, treated or con-

trol, nonbipartite (or, awkwardly, not-two-part) matching begins with a single population.
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Nonbipartite matching splits a single population into nonoverlapping matched pairs in such

a way that the total distance within pairs is minimized. Derigs’ (1988) algorithm is avail-

able in the R package nbpMatching (Beck et al. 2016). One use of nonbipartite matching

is in strengthening a weak instrument; see Baiocchi et al. (2010) and Keele and Morgan

(2016) for discussion and Lorch et al. (2012) for an application.

For general discussion of matching in observational studies, see Rosenbaum (2010, Part

II; 2017, Chapter 11) and Stuart (2010).

1.2 Closely related problems are much more difficult

If instead of matching two groups, treated and control, to minimize the distance within

pairs, as in §1.1, we wished to match three groups of equal size to form minimum distance

matched triples — the 3-dimensional assignment problem of Pierskalla (1968) — then the

problem is believed to be very difficult and is classified among problems believed to have

no solution by a polynomial-time algorithm; see Crama and Spieksma (1992, Theorem 1).

Crama and Spieksma (1992, §3) proposed several approximation algorithms for matching

everyone in three groups of initially equal size. These algorithms are not immediately

applicable to statistical problems, because: (i) comparison groups are rarely of equal size

prior to matching, (ii) we may want multiple controls from some groups, and (iii) one

typically imposes additional constraints, such as fine-balance or near-fine balance for certain

nominal variables; see §3.2. In §3, we employ ideas from Crama and Spieksma (1992) to

produce a polynomial time approximation algorithm that incorporates features (i)-(iii).

Before discussing the algorithm, we motivate its use in an application in §2.
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2 Motivating Application: Effects of Side Airbags in Crashes

2.1 Side airbags: at first unavailable, then optional, then standard

According to the Insurance Institute for Highway Safety (http://www.iihs.org/iihs/ratings/safety-

features), side airbags protecting both the driver’s head and torso were unavailable in 1997,

and were standard equipment on 97.9% of cars in the 2017 model year. Over 20 years,

more and more makes and models of cars gradually added side airbags, often offering them

initially as optional equipment for an additional fee, later providing them as standard

equipment. For instance, the Volvo C70 did not have side airbags in 1998, had them as

optional equipment from 1999 to 2002, and then had them as standard equipment in 2003.

The Nissan Altima did not have side airbags in 2006, had them as optional equipment from

2007-2009, and had them as standard equipment in 2010. It is not attractive to judge the

safety effects of side airbags by comparing a Volvo C70 to a Nissan Altima, because side

airbags are only one difference between these vehicles and their drivers. Perhaps Volvos

attract drivers concerned with safety, with the possible consequence that Volvos are driven

differently from, say, Dodge Chargers.

More attractive is to compare crashes of the same make and model of car in eras that

differ in availability of side airbags. For instance, one might compare a crash of a 1998

Volvo C70 to a crash of a 2003 Volvo C70, the latter having a side airbag. Presumably, the

decision to purchase a Volvo C70 in 1998 rather than in 2003 mostly reflects an individual’s

need to acquire or replace a car in those years, not a greater concern with automotive safety

by the purchaser of the 2003 model with side airbags. Nonetheless, the world changed in

many ways between 1998 and 2003, not just in the addition of side airbags to Volvo C70s,

so the wide separation in time raises other concerns. The comparison of the era before

side airbags and the era with side airbags as standard equipment is, in certain respects, an
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attractive natural experiment, but it is not a perfect one.

In contrast, the middle era of optional side airbags has both attractions and concerns.

Models built in the same or adjacent years may be more similar than models separated

by five years. An attraction of the optional era is that one could compare a 2002 Volvo

C70 to a 2003 Volvo C70, or a 1998 Volvo C70 to a 1999 Volvo C70. Indeed, one could

compare two 2000 Volvo C70’s, one with a side airbag, the other without. The concern

is that, during the optional period, 1999-2002 for Volvo C70s, some drivers paid extra

for side airbags and others declined to do so, perhaps indicating their different levels of

concern with traffic safety. Perhaps a driver concerned with automotive safety expresses

that concern in more than one way, say buying a side airbag, driving soberly and slowly,

and abstaining from tailgating, so that comparisons within the optional era confound side

airbags with other safety behavior. Presumably, the decision to purchase a Volvo C70 in

2000, rather than 1998 or 2003, again mostly reflects an individual’s need to acquire a car

in 2000, but the secondary decision, paying extra for side airbags in 2000, could be strongly

related to other unmeasured safe driving behaviors. So the optional era nudges people

towards side airbags, but it does not determine whether they acquire a side airbag or not.

One conventional strategy would compare the optional era to one of the other two eras,

viewing the optional era as an instrument or instrumental variable for the purchase of a

side airbag, thereby side-stepping the decisions of individual drivers about paying extra for

a side airbag; see Baiocchi et al. (2014) for a review of instruments. Viewing the optional

era in this way, an assumed exclusion restriction would attribute changes in injuries over

eras to changes in the changed frequency of side airbags, leading to an estimate of the

complier average effect of side airbags; see Angrist et al. (1996).

We will form matched sets consisting of crashes involving the same make and model of

car, one before side airbags were available for this make and model, one after side airbags
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became standard equipment, and between 1 or 3 crashes in the optional period. As noted

above for the Volvo C70 and Nissan Altima, the years involved vary from one make and

model to another. We tried to find 3 crashes in the optional period because most buyers

did not buy side airbags during the optional period. However, if there were too few crashes

to form 1-3-1 matched sets, perhaps because the optional period was brief, we formed 1-1-1

matched triples instead. Ultimately, there were 978 matched sets of the form 1-3-1, and

1398 sets of the form 1-1-1. The data came from the US Fatality Analysis Reporting

System, described in §2.2.

2.2 The Fatality Analysis Reporting System

Provided by the US National Highway Traffic Safety Administration, the US Fatality Anal-

ysis Reporting System (FARS) records information about motor vehicle accidents with at

least one fatality. The FARS data contain extensive information about the vehicles in-

volved, some information about the occupants of the vehicles including a measure of severity

of injury, 0 for uninjured to 4 for death, and some information about the circumstances of

the crash. No doubt, crashes in FARS are unrepresentative of all crashes, because every

crash in FARS was severe enough to cause at least one death.

Some care is needed when using FARS data to examine the effects of safety equipment.

A crash is recorded only if there is at least one fatality. In FARS, a crash involving a lone

driver hitting a tree is always lethal for the driver, not because driving alone is dangerous,

nor because trees are invariably deadly, but because a crash involving just one person is

recorded in FARS only if that person died. More subtly, if safety equipment prevents all

deaths in a crash, then it also prevents the accident from being recorded in FARS, whereas

removing the safety equipment might have caused a death, so the same crash would be

recorded in FARS. For discussion of issues that arise when a treatment can cause data to
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go uncollected, see Rosenbaum (2005).

We looked at crashes involving at least two vehicles between 1995 and 2015. We

included cars, minivans, SUVs and pickup trucks, but excluded motor cycles and large

trucks. In such crashes, we picked at random one vehicle with at least one death, discarding

that vehicle. The remaining vehicle or vehicles may or may not have had a death. We

do know, however, that data on the remaining vehicles that we studied would have been

collected by FARS whether or not side airbags or their absence caused or prevented a death

in the vehicle, because the discarded vehicle would, in either case, have prompted FARS to

collect data about this accident. This selection process makes the vehicles we examined

unrepresentative of vehicles in FARS, but it avoids a tautological source of bias. We may

hope that the selection process makes vehicles unrepresentative in a parallel manner in the

three eras that we examine, the era prior to side airbags, the optional era, and the era

when they were standard equipment. For brevity in tables and figures, these three eras

are called “none”, “optional” and “all”, and by definition the years involved vary from one

make and model to another. We considered only makes and models that had cars in all

three eras, so that, for instance, we would exclude a new make of car that was first sold in

2012 with standard side airbags.

Many car models had no cars in one or more eras, “none”, “optional” and “all”. For

instance, a new car model might have had side airbags from the beginning. A discontinued

car model might never have had side airbags. A car model might go from “none” to “all”

with no “optional” period. We required a car model to have at least 40 cars in each of

the three periods, “none”, “optional” and “all”, and we used these 40 cars to define the

eras. There were 31,505 cars that qualified. This number was slightly reduced by 2,282

cars due to missing data on key variables. For each car model, we matched the smallest

group, “none”, “optional” or “all”, to the two larger groups. Where possible, we matched
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1-3-1, none-optional-all, because most cars in the optional period did not have side airbags,

so selecting three cars increased the chance that one had side airbags. If 1-3-1 was not

possible because 3 optional era cars were not available, we matched 1-1-1. This yielded

2376 matched sets. In the end, we had 978 matched 1-3-1 sets and 1398 matched 1-1-1

sets, where 2376 = 1398 + 978, with a total of 9084 cars in these 2376 matched sets.

The matching used the new algorithm in §3. The R package approxmatch implements

the procedure in §3; Karmaker (2017). That package includes a data frame called Dodgeram

with 6953 crashes involving Dodge Ram trucks. The examples in the documentation for the

kwaymatching function in the approxmatch package in R reproduce the 3-way matching

of the Dodge Ram trucks.

2.3 Matched crashes

Table 1 describes covariate balance after matching. In Table 1, each matched set counts

the same, so the optional period for a 1-1-1 triple contributes one driver age for the optional

period, but a 1-3-1 matched set contributes one average of three driver ages. Table 1 shows

characteristics of the driver, such as age, and of the crash, such the direction of impact

and whether a fire or explosion occurred. By definition, we did not match for the model

year, nor did we match for the crash year. The years are out of balance by definition: for

each make and model, the none-era precedes the optional era which precedes the all-era.

In the optional era, about 18% of owners had purchased cars with side airbags. We also

matched for some additional variables not shown in Table 1, such as characteristics of the

right front passenger if there was one, and the stated highway speed limit which may or

may not have been heeded.

Table 1 shows the balance achieved by matching, but it does not contrast the situations

before and after matching. Figures 1 and 2 show this contrast, with the left bar showing
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the situation before matching, the right bar showing the situation after matching. We

hope to see that the right bars, after matching, are of similar height, and indeed they are.

Plots use ggplot2 (Wickham 2009). Notably in Figure 1, belt use and age are similar

after matching, but they were different before matching. The mean driver’s age was about

four years younger in the “none” period than in the “all” period, perhaps because the

baby-boomers are aging, and there was also about a 12% increase in use of safety belts

over this period. Also, there were more female drivers in the later “all” period. Of course,

the match controlled for age, gender and restraint use, but there could be other factors

that were not measured. Notably in Figure 2, the direction of impact shifted slightly as

the periods passed, with an increase in rear and right impacts, and a decrease in front

impacts and rollovers. Recall that FARS records only lethal crashes, so this is a change in

the pattern of lethal crashes, not necessarily a change in the pattern of all impacts. Again,

the matching removed these differences.

The match used a distance that satisfied the triangle inequality, and it finely balanced

several covariates and was exact for the presence of a right front passenger. Specifically,

the match near-finely balanced indicators of rollover and fire occurrence during the crash.

Following the idea in §4, the distance was the weighted sum of distances involving the

absolute difference in logits of the propensity score, a rank based Mahalanobis distances for

occupant characteristics, and two other rank based Mahalanobis distances for direction of

impact and safety belt use; see the examples in the approxmatch package in R. Weighting

several distances permits the combined distance to satisfy the triangle inequality while

giving the analyst control of the relative importance of variables in the match. In principle,

finding an optimal 1-1-1 match or 1-3-1 match is for all intents impossible in large problems.

The match was produced using the approximation algorithm we describe and develop in

§3. The approximation algorithm runs in polynomial time.
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3 Problem, algorithm, and guarantee

3.1 Matching structure and distance

There are three disjoint sets of units, I = {1, . . . , I}, J = {1, . . . , J} and K = {1, . . . ,K}

with I ≤ J ≤ K. In §2, the sets I, J , and K were eligible car crashes in the three eras,

“none”, “optional” and “all”.

There is a distance, δij ≥ 0, between pairs of units, i ∈ I and j ∈ J , a distance

δ
′
ik ≥ 0 between pairs of units in i ∈ I and k ∈ K, and a distance δ

′′
jk ≥ 0 between pairs

of units in j ∈ J and k ∈ K. Write δ for the vector of IJ + IK + JK distances, δij ,

δ
′
ik, δ

′′
jk, i = 1, . . . , I, j = 1, . . . , J , k = 1, . . . ,K. Although it is suggestive to call the

numbers in δ distances, they are required to have some but not all of the properties of

distances in a metric space. Precisely, we require without further mention that the entries

in δ be nonnegative, possibly infinite, and satisfy a part of the triangle inequality, namely

δ
′′
jk ≤ δij + δ

′
ik, and we call such a δ a “matching distance array”, or briefly a “distance”.

Notice that the triangle inequality bounds distances δ
′′
jk between units in j ∈ J and k ∈ K,

but need not bound δij for i ∈ I and j ∈ J , nor δ
′
ik for i ∈ I and k ∈ K. We need

δ
′′
jk ≤ δij + δ

′
ik, but not other implications of the triangle inequality, because our algorithm

makes δij and δ
′
ik small, then concludes that δ

′′
jk could not be very big by virtue of this

inequality. Distances are not defined for two units in I, nor for two units in J , nor for two

units in K; rather, distances are defined between units in different sets. We understand

δ
′′
jk ≤ δij + δ

′
ik to hold trivially if either δij = ∞ or δ

′
ik = ∞. For instance, if individual

i has covariates xi, individual j has covariates xj , and Σ is the covariance matrix of

the covariates, then the Mahalanobis distance defined as δij =
√

(xi − xj)
T Σ−1 (xi − xj)

satisfies the triangle inequality. Although the Mahalanobis distance yields a formula, we

do not assume that a single formula produced the δij , δ
′
ik, δ

′′
jk, leaving open the possibility
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that δ
′′
jk is defined differently from δij or δ

′
ik, requiring only that δ

′′
jk ≤ δij + δ

′
ik. Section 4

discusses various useful distances that satisfy the required conditions.

Let ρ ≥ 1 be an integer such that ρ ≤ J/I and let κ ≥ 1 be an integer such that

κ ≤ K/I. A common and basic case is (ρ, κ) = (1, 1). We want to construct a closely

matched and balanced blocked study such that each block contains 1 unit from I, ρ units

from J and κ units from K, and no units appear more than once. If (ρ, κ) = (1, 1), then

we want matched triples with one unit each from I, J and K.

More precisely, a (1 + ρ+ κ)-tuple B = (i, j1, j2, . . . , jρ, k1, k2, . . . , kκ) is a (ρ, κ)-

block if i ∈ I, j1 ∈ J ,. . . , jρ ∈ J , k1 ∈ K, . . ., kκ ∈ K where j1, . . . , jρ are distinct and

k1, . . . , kκ are distinct. A (ρ, κ)-design B is a collection of blocks B such that every unit

i ∈ I appears in exactly one block, and each j ∈ J and each k ∈ K appears in at most

one block B ∈ B.

A block B = (i, j1, j2, . . . , jρ, k1, k2, . . . , kκ) has total between group distance

δB =

ρ∑
`=1

δi,j` +
κ∑

m=1

δ
′
i,km +

ρ∑
`=1

κ∑
m=1

δ
′′
j`,km

. (1)

If δB is very small, then i is typically close to j1, j2, . . . , jρ and close to k1, k2, . . . , kκ,

each j in the block is close to each k in the block. The design B has total distance

δB =
∑

B∈B δB. We would prefer a design in which δB is small.

The distance in (1) worries about distances between I, J , and K, not distances within

them. To see why this is reasonable, consider a simple case. Suppose that δij is the

absolute difference in age and ρ = 2. If i has age 25, j1 has age 24 and j2 has age 26,

then
∑ρ

`=1 δi,j` in (1) is |25− 24|+ |25− 26| = 2. In contrast, if i is 24, j1 is 25 and j2 is

26, then
∑ρ

`=1 δi,j` is |24− 25|+ |24− 26| = 3. So we prefer the first triple of ages to the

second, and this makes sense because in the second distribution of ages i is younger than

both j1 and j2, so they are inferior as a control group. Had the first term in (1) included
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a distance between the two units from J , with three terms instead of δi,j1 + δi,j2 in the

first sum in (1), then |25− 24|+ |25− 26|+ |24− 26| = 4 for both distributions of age, so

the distance would not represent our preference for the first distribution of ages.

3.2 Fine balance and near-fine balance of nominal categories

Fine balance entails equating, in two or more groups, the marginal distributions of a nomi-

nal covariate, often a covariate with many levels, without worrying about whether individ-

uals are paired for this covariate. A very large completely randomized experiment balances

the marginal distributions of covariates without pairing individuals, and fine balance aims

at an analogous form of balance for an observed nominal covariate. Fine balance can

ensure that many nominal categories are balanced, while permitting the pairing to focus

on other covariates strongly associated with the outcome.

There are C ≥ 1 mutually exclusive and exhaustive categories, C1, . . . , CC , such that

every unit, i ∈ I belongs to exactly one category, say i ∈ Cc for one specific c, and the

same is true for every unit, j ∈ J and every unit k ∈ K. For example, C1 might be the set

of females and C2 might be the set of males. More commonly, C1, . . . , CC might represent

dozens or hundreds of categories, say principal surgical procedures or car models. The

trivial case C = 1 places everyone in the same category, and it will permit a single theorem

to cover the situations with categories (C > 1) and without categories (C = 1). Write fcg

for the number of units in category c from group g = 1, 2, 3, where group 1 is I, group 2

is J and group 3 is K.

If B is a (ρ, κ)-design, then it exhibits a certain degree of imbalance with respect to the

categories C1, . . . , CC . Write fB for a C× 3 matrix of counts defined as follows. For (ρ, κ)-

design B, the count, fBcg in row c and column g is the number of units in B in category c

from group g. So, by definition, the column totals are
∑C

c=1 fBc1 = I,
∑C

c=1 fBc2 = ρI and
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∑C
c=1 fBc2 = κI. Because B takes everyone in group I, we have fc1 = fBc1 for each c, and

because B takes some people from groups J and K, we have fc2 ≥ fBc2 and fc3 ≥ fBc3.

The (ρ, κ)-design B is finely balanced if fBc1 = fBc2/ρ = fBc3/κ for c = 1, . . . , C; that

is, every matched group has the same proportion of individuals in each category. Fine

balance is discussed in Rosenbaum (1989, §3.2; Rosenbaum 2010, §10). Fine balance is

not always feasible. Write fcmin = min (fc1, fc2/ρ, fc3/κ). If fcmin = fc1 for c = 1, . . . , C,

then fine balance is feasible, and if it is feasible, then we wish to require it. The (ρ, κ)-

design B is near-fine or exhibits near-fine balance if fBc1 ≥ fcmin, fBc2/ρ ≥ fcmin and

fBc3/κ ≥ fcmin for c = 1, . . . , C. Near-fine balance is always feasible, and when fine

balance is feasible, near-fine balance implies fine-balance. In a sense, near-fine balance

exhibits minimal deviation from fine balance. Requiring near-fine balance when C = 1

imposes no constraint, and in this case the focus is entirely on minimizing distance, δB,

with no concern for balance over categories. This definition of near-fine balance is similar

to the definition in Yang et al. (2012) but has been adjusted to permit three groups instead

of a treated and a control group.

The traditional three-dimensional assignment problem is to minimize δB with C = 1,

ρ = κ = 1, and I = J = K, and even in this simplest case, finding an optimal solution is not

practical; see Crama and Spieksma (1992). Consider the general problem of finding a near-

fine (ρ, κ)-design B with a small distance, δB. We propose an approximation algorithm

for general C, ρ, κ, I, J , K: it finds a near-fine (ρ, κ)-design with a total distance, δB,

that is at most 1 + max (ρ, κ) times the minimum distance for all near-fine (ρ, κ)-designs.

The approximation algorithm runs in O
(
K3
)

time in the worst case, and for matched

triples, ρ = κ = 1, it produces a value of δB that is at most twice the true minimum as

1 + max (ρ, κ) = 2.
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3.3 An approximation algorithm

Define a partial block P = (i, j1, j2, . . . , jρ) to be ρ + 1 distinct units with i ∈ I and

j1, j2, . . . , jρ ∈ J . A set P of partial blocks will be called acceptable if it is the initial

part of some near-fine (ρ, κ)-design B; however, this needs to be said with a bit more care.

A set P of partial blocks P is compatible with a near-fine (ρ, κ)-design B if each block

B = (i, j1, j2, . . . , jρ, k1, k2, . . . , kκ) ∈ B has an initial segment P = (i, j1, j2, . . . , jρ)

that is a partial block in P. A set P of partial blocks is defined to be acceptable if its

partial blocks are compatible with at least one near fine (ρ, κ)-design B. If P is acceptable,

then it necessarily follows that its partial blocks are nonoverlapping and fBc1 ≥ fcmin,

fBc2/ρ ≥ fcmin. An unexciting but nonetheless important subtlety here is that fBc1 and

fBc2 are determined by P without reference to group K, but fcmin is defined in a way that

involves group K.

The following two-step algorithm first assigns j’s in J to each i ∈ I to produce an

acceptable set P of partial blocks P = (i, j1, j2, . . . , jρ); then, it assigns k’s in K to each

partial block, P .

Step 1: Match I and J to form an acceptable set P of partial blocks of minimal distance

∑
(i, j1, j2,..., jρ)∈P

ρ∑
`=1

δi,j` . (2)

Step 2: Extend each partial block P = (i, j1, j2, . . . , jρ) ∈ P into a block

B = (i, j1, j2, . . . , jρ, k1, k2, . . . , kκ)
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so that the resulting collection of blocks B is a near-fine (ρ, κ)-design B that minimizes

∑
(i, j1, j2,..., jρ)∈P

κ∑
m=1

(
δ
′
i,km +

ρ∑
`=1

δ
′′
j`,km

)
.

Step 1 matches individuals in I to individuals in J forming partial blocks, while Step

2 takes those partial blocks and matches each partial block to individuals in K. In other

words, the entire procedure consists of two matches, one of individuals to individuals, the

other of partial blocks to individuals. The entire procedure is suboptimal because Step 1

makes decisions with no allowance for their consequences in Step 2, but we will show that

the procedure’s mistakes are limited in size. It is the triangle inequality that limits the

size of the errors.

Consider the requirement of near-fine balance, namely the requirement that fBc1 ≥

fcmin, fBc2/ρ ≥ fcmin, and fBc1/κ ≥ fcmin. This definition of near-fine balance refers to all

three groups because fcmin is derived from all three groups. The definition of fcmin ensures

that the requirement of near-fine balance is feasible: a (ρ, κ)-design B exhibiting near-fine

balance always exists, albeit perhaps with an infinite total distance if some distances δ are

infinite. Because Step 1 requires the partial blocks to be acceptable, they are compatible

with near-fine balance; that is, the partial blocks are the initial parts of the blocks of some

(ρ, κ) design B that exhibits near-fine balance. Step 2 requires that these partial blocks be

extended to complete blocks so that the resulting (ρ, κ)-design B exhibits near-fine balance.

So, by the definitions of Steps 1 and 2, the algorithm returns a (ρ, κ)-design B exhibiting

near-fine balance, albeit perhaps with an infinite total distance.

Can Steps 1 and 2 be performed? Indeed they can, and in computational time that

is O
(
K3
)
. Step 1 can be done in O

(
K3
)

steps by solving a minimum cost network

flow problem, matching elements of I to ρ elements of J with a requirement of near-
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fine balance defined by the given values fcmin; see Rosenbaum (1989, §3.2) or Yang et al.

(2012, Appendix) with very minor changes to accommodate the value fcmin obtained from

all three groups. (Specifically, in the language of these references, the capacity of the

edge from the category c node to the sink is set to ρfcmin in Step 1 and set to κfcmin in

Step 2, with one additional bypass node with capacity ρI−ρ
∑
fcmin in Step 1 or capacity

κI − κ
∑
fcmin in Step 2 delivering the remaining flow to the sink.) The match in Step

2 can also be done in O
(
K3
)

steps by solving a minimum cost network flow problem, now

matching each P ∈ P to κ elements of K, so that the selected controls from K again exhibit

near-fine balance defined by the given values of fcmin.

In brief, the approximation algorithm entails solving two minimum cost flow problems,

each of which runs in O
(
K3
)

steps, so the approximation algorithm itself is a polynomial

time algorithm that runs in O
(
K3
)

steps.

3.4 A bound on the error of approximation

Proposition 1 says that the polynomial-time algorithm in §3.3 finds a near-fine design B

whose total distance δB is at most a fixed multiple of the distance δB for the unattainable

optimal near-fine design, say B. The multiplier, 1 + max (ρ, κ), in Proposition 1 equals 2

in the common case with ρ = κ = 1.

The proof of Proposition 1 extends certain ideas from Crama and Spieksma (1992) for

the simpler 3-dimensional assignment problem to matching with (i) near-fine balance, (ii)

unequal initial groups, I ≤ J ≤ K, and (iii) matching with multiple controls, ρ ≥ 1 and

κ ≥ 1. One device they use with I = J = K cannot be used here: Step 1 of our algorithm

must start with the smallest group, I.

Proposition 1 Let B be a near fine (ρ, κ)-design whose distance δB is minimal. Let B

be produced by Steps 1 and 2 in §3.3. Then B is a near-fine (ρ, κ)-design with δB ≤
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{1 + max (ρ, κ)} δB.

Proof. Let P be the set of partial blocks P = (i, j1, j2, . . . , jρ) in B produced in Step

1. We now define a compromise B̃ between B and B, anchoring the compromise by

units i ∈ I. Define B̃ to be a (ρ, κ)-design with near-fine balance whose blocks B̃ =

(i, j1, j2, . . . , jρ, k1, . . . , kκ) are such that P = (i, j1, j2, . . . , jρ) ∈ P is a partial block

of P, and for some `1, . . . , `ρ ∈ J , B = (i, `1, . . . , `ρ, k1, . . . , kκ) ∈ B is a block of the

optimal design. By the triangle inequality, we always have

δ
′′
j`,km

≤ δi,j` + δ
′
i,km (3)

By definition,

δB =
∑

(i, j1, j2,..., jρ, k1, ..., kκ)∈B

(
ρ∑
`=1

δi,j` +
κ∑

m=1

δ
′
i,km +

ρ∑
`=1

κ∑
m=1

δ
′′
j`,km

)
.

Now B and B̃ have the same partial blocks, P = (i, j1, j2, . . . , jρ), but for these fixed par-

tial blocks, Step 2 completed the partial blocks in B as (i, j1, j2, . . . , jρ, k1, . . . , kκ) where

the k’s were chosen to minimize
∑

(i, j1, j2,..., jρ, k1, ..., kκ)∈B

(∑κ
m=1 δ

′
i,km

+
∑ρ

`=1

∑κ
m=1 δ

′′
j`,km

)
;

therefore,

δB ≤ δB̃ =
∑

(i, j1, j2,..., jρ, k1, ..., kκ)∈B̃

(
ρ∑
`=1

δi,j` +

κ∑
m=1

δ
′
i,km +

ρ∑
`=1

κ∑
m=1

δ
′′
j`,km

)
. (4)

Applying the triangle inequality (3) to
∑ρ

`=1

∑κ
m=1 δ

′′
j`,km

in (4) yields

δB ≤ δB̃ ≤
∑

(i, j1, j2,..., jρ, k1, ..., kκ)∈B̃

{
(1 + κ)

ρ∑
`=1

δi,j` + (1 + ρ)

κ∑
m=1

δ
′
i,km

}
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≤ {1 + max (ρ, κ)}
∑

(i, j1, j2,..., jρ, k1, ..., kκ)∈B̃

{
ρ∑
`=1

δi,j` +

κ∑
m=1

δ
′
i,km

}
. (5)

Because B and B̃ have the same partial blocks, P = (i, j1, j2, . . . , jρ), and Step 1 picked

the (j1, j2, . . . , jρ) in these blocks to minimize
∑

(i, j1, j2,..., jρ, k1, ..., kκ)∈B
∑ρ

`=1 δi,j` ,

∑
(i, j1, j2,..., jρ, k1, ..., kκ)∈B̃

ρ∑
`=1

δi,j` =
∑

(i, j1, j2,..., jρ, k1, ..., kκ)∈B

ρ∑
`=1

δi,j` ≤
∑

(i, j1, j2,..., jρ, k1, ..., kκ)∈B

ρ∑
`=1

δi,j` .

(6)

By the definition of B̃,

∑
(i, j1, j2,..., jρ, k1, ..., kκ)∈B̃

κ∑
m=1

δ
′
i,km =

∑
(i, j1, j2,..., jρ, k1, ..., kκ)∈B

κ∑
m=1

δ
′
i,km . (7)

Combining (5), (6) and (7) yields

δB ≤ {1 + max (ρ, κ)}
∑

(i, j1, j2,..., jρ, k1, ..., kκ)∈B

{
ρ∑
`=1

δi,j` +

κ∑
m=1

δ
′
i,km

}

≤ {1 + max (ρ, κ)}
∑

(i, j1, j2,..., jρ, k1, ..., kκ)∈B

{
ρ∑
`=1

δi,j` +
κ∑

m=1

δ
′
i,km +

ρ∑
`=1

κ∑
m=1

δ
′′
j`,km

}

= {1 + max (ρ, κ)} δB.

3.5 The bound is tight

For ρ = κ = 1, or 1-1-1 matching, the bound in Proposition 1 is δB ≤ {1 + max (ρ, κ)} δB =

2 δB. This bound cannot be improved without additional assumptions. To see this,

consider I = {i}, J = {j1, j2}, K = {k1, k2}, where xi = 1, xj1 = xk1 = 0, xj2 = 2 − ε,

and xk2 = 3 − 2ε, where 0.01 > ε > 0, and the distance between a and b is |xa − xb|, as
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depicted in (8).

x 0 − 1 − (2− ε) − (3− 2ε)

unit j1, k1 i j2 k2 (8)

The optimal 1-1-1 match B is (i, j1, k1) with δB = |xi − xj1 | + |xi − xk1 | + |xj1 − xk1 | =

1 + 1 + 0 = 2. The approximation algorithm would first pair (i, j2) with a distance of

|xj2 − xi| = |2− ε− 1| = 1−ε < 1 = |xj1 − xi|. Then, the approximation algorithm would

pair (i, j2) with k2 rather than with k1 because |xi − xk2 |+|xj2 − xk2 | = (2− 2ε)+(1− ε) =

3 − 3ε < |xi − xk1 | + |xj2 − xk1 | = 1 + 2 − ε = 3 − ε. So the approximation algorithm

would yield B consisting (i, j2, k2) with distance δB = |xj2 − xi|+ |xk2 − xi|+ |xj2 − xk2 | =

|1− ε|+ |2− 2ε|+ |1− ε| = 4− 4ε. Because ε > 0 can be made arbitrarily small, the best

bound is δB = 2 δB. Problems with δB = 2 δB of any size can be constructed by replicating

this example with x’s that are spaced apart by, say, 10 units for each replicate, say at 10,

11, 12− ε and 13− 2ε for the second replicate.

4 Covariate distances that satisfy the needed triangle inequality

Statistical matching has often used covariate distances, but is typically indifferent about

whether those distances satisfy the triangle inequality. Recall that a matching distance

array δ only requires nonnegative, possibly infinite numbers such that δ
′′
jk ≤ δij + δ

′
ik,

i = 1, . . . , I, j = 1, . . . , J , k = 1, . . . ,K, with some convenient consequences when δ
′′
jk is

defined differently from δij and δ
′
ik. In this section, we briefly discuss some options in

defining δ.

If δ and δ̃ are two matching distance arrays, then so is wδ +w̃δ̃ for any nonnegative

real numbers w ≥ 0, w̃ ≥ 0. For instance, a positively weighted combination of two or more

Mahalanobis distances involving different, perhaps overlapping, sets of covariates, yields a
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new distance array. This permits some covariates to receive greater emphasis, others to

receive less. If a first match using distances δ leaves an unsatisfactory imbalance for a few

covariates, then use of a second distance wδ +w̃δ̃ may fix the problem if δ̃ emphasizes the

problematic covariates.

With three groups, we may estimate a two-dimensional propensity score; see Imai

and van Dyk (2004). A matching distance array is obtained as a positively weighted

combination of a Mahalanobis distance for the two dimensional propensity score and a

Mahalanobis distance for all or for a subset of covariates used in defining the scores.

A robust, rank-based variant of the Mahalanobis distance is often used to limit the

influence of outliers and of rare binary covariates; see Rosenbaum (2010, Chapter 8). This

rank-based distance is not a metric on the Euclidean space of covariates, but it produces

nonnegative numbers that satisfy δ
′′
jk ≤ δij + δ

′
ik, so it yields a matching distance array.

In (1), the distance is a total, but when ρ ≥ 2 or κ ≥ 2, this total emphasizes the groups

who will have more controls in the match. It is straightforward to alter given distances

so that groups, rather than individuals within groups, receive equal emphasis. For any

matching distance array δ, define δ̃ij = δij/ρ, δ̃
′
ik = δ

′
ik/κ and δ̃

′′
jk = δ

′′
jk/ (ρκ). Because δ

is a distance array satisfying δ
′′
jk ≤ δij+δ

′
ik and ρ ≥ 1, κ ≥ 1, it follows that δ̃ is a matching

distance array satisfying δ̃
′′
jk ≤ δ̃ij + δ̃

′
ik. Computing (1) with δ̃ in place of δ yields

δ̃B =

ρ∑
`=1

δ̃i,j` +

κ∑
m=1

δ̃
′
i,km +

ρ∑
`=1

κ∑
m=1

δ̃
′′
j`,km

=
1

ρ

ρ∑
`=1

δi,j` +
1

κ

κ∑
m=1

δ
′
i,km +

1

ρκ

ρ∑
`=1

κ∑
m=1

δ
′′
j`,km

,

so the revised distance is an average rather than a total. The distinction between δ and δ̃

will matter when ρ is large, because Step 2 of the approximation algorithm has one distance

from I and ρ distances from J in each block distance to k ∈ K. When ρ is large, δ̃ or

some compromise between δ and δ̃ may be more appropriate than δ alone as a distance
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array.

Often, we wish to match exactly for a covariate, say belted or unbelted driver in Table

1. Because of the near-fine balance constraints in §3.2, matching exactly for one covariate

with E ≥ 2 categories and balancing another covariate with C ≥ 2 categories is not the

same as splitting the matching problem into E separate matching problems, say matching

belted drivers, and separately matching unbelted drivers, because splitting attempts the

more difficult task of balancing the E × C joint categories. When either E or C or both

are large, as is often true, near-fine balance of E×C joint categories often entails tolerating

larger deviations from fine balance than balancing C categories. When feasible, how can

exact matching for E categories of one nominal variable be combined with near-fine balance

for C categories of another?

To implement exact matching with near-fine balance constraints, start with any match-

ing distance array δ, so δ
′′
jk ≤ δij + δ

′
ik. Define δ̃ij = ∞ if i and j differ in their exact

match category, otherwise δ̃ij = δij , similarly define δ̃
′
ik = ∞ if i and k differ in exact

match category, otherwise δ̃
′
ik = δ

′
ik, but define δ̃

′′
jk = δ

′′
jk. Trivially, δ̃

′′
jk ≤ δ̃ij + δ̃

′
ik, so δ̃ is

also a matching distance array. Also trivially, if i and j are in the same exact category,

and if i and k in the same exact category, then j and k are in the same exact category.

It follows that a near-fine balance (ρ, κ)-design B is exactly matched for the E-category

variable if and only if δ̃B < ∞. Let B be a near fine (ρ, κ)-design whose distance δ̃B is

minimal. If δ̃B = ∞, then there is no near-fine (ρ, κ)-design B that is exactly matched

for the E-category variable. If δ̃B <∞ for the optimal design, then Proposition 1 implies

that the near-fine (ρ, κ)-design B produced by the approximation algorithm has finite to-

tal distance, δ̃B < ∞, so that design is also exactly matched for the E category variable.

Additionally, if δ̃B < ∞, then the bound, δ̃B ≤ δ̃B < {1 + max (ρ, κ)} δ̃B in Proposition

1 has avoided the infinite distances, and is referring to entries from the original matching
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distance array, δ, for a match that is constrained to be both exact for the E category

variable and near-finely balanced for the C category variable. In practice, distances that

mismatch the E exact categories are increased not to ∞, but rather increased by a large

finite penalty, so infeasibility of near-fine balance joint with exact matching is recognized

when such a penalized distance appears in the match; see the discussion of “almost exact”

matching in Rosenbaum (2010, §9.2).

5 Distinguishing effects of side airbags and unmeasured biases

In every nonrandomized or observational study of treatment effects, observed associations

may reflect effects caused by the treatment under study, or biases in who was treated,

or a combination of the two. A strength of the design in §2 is that it provides several

comparisons relevant to the effects of side airbags. These several comparisons may concur,

strengthening evidence that associations are effects caused by side airbags, or they may

clash suggesting that some or all associations are not effects of side airbags. A design that

always encourages causal conclusions, a design that cannot suggest caution and restraint,

is not a good design. An easy way to publish false causal conclusions is to decline to look

for evidence that might reveal bias if present.

A study contains two or more evidence factors if it provides two or more tests of the

null hypothesis of no treatment effect that would be (essentially) independent were there

no effect. A formal discussion of evidence factors involves technical issues that we do not

present here; see Rosenbaum (2011; 2015, §3; 2017a; 2017b, §7). Recall that only 18% of

studied vehicles in the optional period had side airbags.

Expressed more formally, our comparison contains several evidence factors, strict con-

trols, and potential instruments. The “none” era is a control for the treated “all” era,

because make and model determined the presence or absence of a side airbag in those eras,
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but those two eras are separated by several years. This study has two evidence factors: (i)

all-versus-other-eras and (ii) optional-versus-none. The availability of side airbags during

the optional era can serve as an instrument for the purchase of a side airbag when the

optional era is compared to the other eras. Additionally, there is another comparison

within the optional era, comparing cars with or without side airbags; however, these are

typically comparisons between, rather than within, matched sets. We do not present these

analyses in detail, because two graphs tell the whole story.

Figure 3 shows the injury severity sustained by the driver, broken down by era: “none”,

“optional” or “all”. There is a substantial and statistically significant reduction in injury

severity between “none” and “all”, but this is not plausibly an effect caused by side airbags,

because the entire decline is already present in the “optional” era, when only 18% of owners

had purchased vehicles with side airbags. Figure 4 is confined to the optional period,

ignoring the matching, comparing vehicles with and without side airbags when owners had

a choice about buying them. In Figure 4, the distribution of injuries looks similar with

and without side airbags. In brief, the three-group design shows that some associations

between side airbags and injuries are not plausibly effects caused by side airbags. With

two rather than three groups, the same associations for two groups might mistakenly have

been taken to be effects caused by side airbags.

6 Discussion

6.1 Summary

Observational studies often attempt to examine, possibly strengthen, a causal inference by

making two comparisons instead of one treatment-versus-control comparison. The two

comparisons may use two control groups, or two evidence factors, or combine a treated-

control comparison with a instrument. Optimal construction of the relevant designs is
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essentially impossible; see Crama and Spieksma (1992, Theorem 1). We have proposed

a polynomial time approximation algorithm that produces a near-fine (ρ, κ)-design whose

distance is not much greater than the unattainable optimal design.

6.2 Analyses with evidence factors or multiple control groups

The algorithm in Proposition 1 can be used to create two evidence factors, as in the

example, or two control groups. The appropriate analysis depends upon the nature of the

groups.

Two evidence factors provide two essentially independent tests of one null hypothesis

of no treatment effect. These two independent tests and sensitivity analyses may be

combined in a single analysis that combines independent P -values, such as the truncated

product of Zaykin et al. (2002). The case ρ = 1, κ ≥ 1, is discussed in detail in Rosenbaum

(2011), and it is illustrated in the sensitivitymv package in R; see Rosenbaum (2015b).

The general case ρ ≥ 1, κ ≥ 1, involves a stratified test (Rosenbaum 2018), rather than

a matched test with multiple controls, and it may be implemented using the senstrat

package in R; see also Rosenbaum (2017a) for elaboration.

Two control groups entail dependent tests. A simple strategy controls the family-

wise error rate by testing several hypotheses in order, quitting when a null hypothesis is

accepted. First, the treated group is compared to a combined control group, then to each

control group separately, and finally comparisons attempt to show that the treated group

differs more from both control groups than the control groups differ from each other; see

Rosenbaum (2008) for specifics.
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6.3 More than three groups

In most observational studies, finding two enlightening evidence factors or control groups

is already a challenge, so we have focused on this situation, with a treated group and two

comparison groups, or three groups in total. The situation with four or more groups

is essentially parallel, and is implemented in the approxmatch package in R; see Crama

and Spieksma (1992) for discussion of the simple case of groups of equal size without fine

balance constraints. Step 2 of the algorithm is applied again, now matching blocks of the

three group design to individuals from the fourth group, and so on. The approximation

bound in Proposition 1 becomes worse because the triangle inequality is used again to

bound some distances that were not optimized.
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Table 1: Balance on covariates in 1398 matched 1-1-1 matched triples and 978 matched 1-
3-1 sets. Cars were also matched for make and model. Group “none” refers to an era when
side airbags were not available for this make/model, “optional” to an era when side airbags
were optional for this make/model, and “all” to an era when all cars of this make/model
had side airbags. For driver’s age, crash year, and model year, values are means; otherwise,
they are percentages. A mean is computed within a matched set, then averaged over sets.

Driver Direction of Impact Roll- Fire Year
Group Age Female Belted Left Right Front Rear over Crash Model

None 40 35 87 14 13 65 7 4 1 2006 1996
Optional 40 37 88 14 13 66 6 4 1 2010 2004

All 41 37 87 14 12 65 7 4 1 2012 2010
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Driver's Characteristics
Before and After Matching

                        Before                    After

None Optional All
	0%

	10%

	20%

	30%

	40%

	50%

Side Airbag Era

F
em

al
e

None Optional All
	   0

	   20

	   40

	   60

Side Airbag Era

A
ve

ra
ge

 A
ge

None Optional All
0%

25%

50%

75%

100%

Side Airbag Era

B
el

te
d

Figure 1: Driver’s characteristics before matching and balance of the characteristics after matching
across the three eras, None, Optional, and All. Bars of similar height after matching indicate that
matching has balanced the covariate.
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Characteristics of the Crash
Before and After Matching
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Figure 2: Characteristics of the crash before matching and balance of the characteristics after
matching across the three eras, None, Optional, and All. Bars of similar height after matching
indicate that matching has balanced the covariate.
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Figure 3: Injury severity in matched crashes grouped by the three eras, None, Optional, and All.
The star in the boxplot and the vertical line in the barplot represent the mean.
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Figure 4: Unmatched crashes in the optional era grouped by whether side airbags were present.
The star in the boxplot and the vertical line in the barplot represent the mean. This interesting
but unmatched comparison is not an evidence factor.
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