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SUMMARY 15

A sensitivity analysis for an observational study assesses how much bias, due to non-random
assignment of treatment, would be necessary to change the conclusions of an analysis that as-
sumes treatment assignment was effectively random. The evidence for a treatment effect can be
strengthened if two different analyses, which could be affected by different types of biases, are
both somewhat insensitive to bias. The finding from the observational study is then said to be 20

replicated. Evidence factors allow for two independent analyses to be constructed from the same
data set. When combining the evidence factors, the type-I error rate must be controlled to obtain
valid inference. A powerful method is developed for controlling the familywise error rate for
sensitivity analyses with evidence factors. It is shown that the Bahadur efficiency of sensitivity
analysis for the combined evidence is greater than for either evidence factor alone. The proposed 25

methods are illustrated through a study of the effect of radiation exposure on risk of cancer. An
R package ‘evidenceFactors’ is available from CRAN to implement the methods of the paper.

Some key words: Design sensitivity; Evidence factors; Observational study; Quasi-experiment; Sensitivity analysis.

1. INTRODUCTION

In an observational study, treatment assignment is typically assumed to be effectively ran- 30

dom conditional on measured covariates. However, the presence of unmeasured confounding
can result in non-random treatment assignment, such that standard analysis methods can provide
biased estimates of treatment effects. The potential for measured and unmeasured confounding
motivates consideration of sensitivity analyses to assesses how much bias, due to non-random
treatment assignment, would be necessary to change the conclusions of a randomization infer- 35

C⃝ 2017 Biometrika Trust



2 B. KARMAKAR, B. FRENCH AND D. S. SMALL

ence (Cornfield et al., 1959; Rosenbaum, 1987; Keele & Minozzi, 2013; Stuart et al., 2013; Ding
& VanderWeele, 2016; McCandless & Gustafson, 2017).

Evidence factors – two or more independent tests that could be sensitive to different biases –
provide an approach to strengthen the evidence for a treatment effect (Rosenbaum, 2010, 2011).
When considering sensitivity analyses with evidence factors, multiple comparisons arise by per-40

forming more than one test of the same null hypothesis and by considering different sensitivity
parameters. Therefore, multiplicity error must be controlled to obtain valid inference. Previous
research has not considered the impact of multiplicity error when generating inference based on
evidence factors. Standard methods for multiplicity adjustment, such as a Bonferroni correction,
could impose a harsh penalty when there are multiple sources of evidence. Consideration of evi-45

dence factors is meant to strengthen the aggregate evidence for a treatment effect, but a punitive
penalty for multiple comparisons can hamper the ability to detect a significant treatment effect.
Can the attractive benefits of evidence factors analysis always be obtained? This paper provides
an affirmative answer. We provide a powerful and computationally fast method for combining
evidence factors that controls for multiplicity. We show that, in terms of the Bahadur efficiency50

of the sensitivity analysis, our approach for combining evidence from multiple sources has better
performance than considering any of the sources separately.

2. EXAMPLE: SOLID CANCER INCIDENCE IN ATOMIC BOMB SURVIVORS

Understanding the health effects of radiation exposure is important for establishing recom-
mendations for radiation protection, including limits on occupational exposure to radiation and55

guidelines for diagnostic and therapeutic use of radiation. Because randomized experiments on
humans are unethical, observational studies are a key resource for estimating radiation effects.

In 1945, the United States detonated two atomic bombs over the Japanese cities of Hiroshima
and Nagasaki. The Life Span Study investigates the long-term health effects of radiation exposure
among survivors of the atomic bombings. The Life Span Study includes: proximal survivors,60

who were within 3 km of the hypocenter; distal survivors, who were between 3 and 10 km
of the hypocenter; and city residents who were not in either city at the time of the bombings,
and therefore not exposed to radiation. A survivor’s radiation dose is estimated from a dosimetry
system that accounts for the survivor’s reported location and shielding at the time of the bombing,
with the total dose given by the sum of the γ-ray dose and 10 times the neutron dose in units of65

gray (Gy) (Cullings et al., 2017).
Following Preston et al. (2007), our goal is to evaluate the hypothesis that radiation increases

the risk of solid cancer. At the time of the bombings, there were notable differences between
Hiroshima and Nagasaki. Hiroshima, with even terrain, was an embarkation port and a site of
major military headquarters, whereas Nagasaki, with varied terrain, was a center of heavy indus-70

try, with associated air pollution. To minimize heterogeneity, our analysis was limited to those
Life Span Study participants from Hiroshima alive and at risk for solid cancer as of January 1,
1958, when population-based cancer registries were established. In addition, we did not consider
distal survivors because of concern that distal survivors, who lived in more rural areas, and prox-
imal survivors, who lived in more urban areas, could have different cancer rates for reasons other75

than radiation dose (Pierce & Preston, 2000).
To assess the effect of radiation exposure on the risk of solid cancer, one could compare

proximal survivors with high doses to proximal survivors with low doses; the validity of this
comparison relies on the assumption that proximal survivors with low and high doses are simi-
lar on all characteristics other than their radiation exposure. This assumption could be violated80

because the hypocenter was close to the urban center, so that the proximal survivors with high



Integrating the evidence from evidence factors in observational studies 3

Table 1. Solid cancer incidences among atomic bomb survivors in Hiroshima
distance from hypocenter radiation dose number of participants number of solid cancers percentage
< 3000 m Low (≤ 2 Gy) 38932 6,989 18·0
< 3000 m High (> 2 Gy) 397 140 35·3
< 3000 m all 39329 7129 18·1
not-in-city – 19259 3160 16·4

Table 2. Sensitivity analysis for the hypothesis of no carcinogenic
effect of radiation versus harmful effect of radiation

Γ Maximum p-value Γ1 Γ2 joint evidence
High-dose vs. Low-dose survivors 1 1 1·47×10−11

1 0·0021 1 1·1 0·00032
1·2 0·0443 1 1·2 0·01420
1·3 0·1166 1·2 1 2·73×10−10

1·2 1·1 0·00491
Proximal survivors vs. NIC residents 1·2 1·2 0·17117

1 2·35×10−10 1·3 1 6·94×10−10

1·1 0·0131 1·3 1·1 0·01145
1·2 0·9207 1·3 1·2 0·34688

NIC, not-in-city.

doses tended to be located in more urban areas; also, high-dose survivors might have been com-
paratively healthier to have survived a high dose (Preston et al., 2007). Alternatively, one could
compare cancer rates between proximal survivors and not-in-city residents; the validity of this
comparison relies on the assumption that proximal survivors and not-in-city residents are simi- 85

lar on all characteristics other than their radiation exposure. This assumption could be violated,
for example, if not-in-city residents were better educated or employed. Although both of these
comparisons use the proximal survivors, we will show that under the null hypothesis of no ef-
fect, they are nearly independent in the sense that their p-values are stochastically as large as the
p-values from two independent comparisons under the null hypothesis, which are uniform on the 90

unit square. This will be discussed more formally in §3·1 and additional details provided in §2.2
and §2.3 of the supplement.

Table 1 provides a summary of these two comparisons. The incidence rate of solid cancer was
18·0% among proximal survivors exposed to low doses versus 35·3% among those exposed to
high doses, amounting to an 18·1% incidence rate among all proximal survivors. Among not- 95

in-city residents, the incidence rate was 16·4%. After matching on age and sex, 58 strata were
created for the low-dose versus high-dose comparison among proximal survivors and 30 strata
were created for the comparison of all proximal survivors versus not-in-city residents. Both the
comparisons give strong evidence suggesting radiation exposure is harmful, with one-sided p-
values from Mantel–Haenszel tests 0·0021 and 2·35×10−10 respectively. 100

What is the gain from considering two p-values from two analyses? Each p-value is com-
puted based on an assumption of no unmeasured confounders for the given comparison. This
assumption could be violated for one comparison but not the other. For example, there might be
unmeasured differences between people who lived near the hypocenter of the bomb, high-dose
proximal survivors, versus far, low-dose proximal survivors, but not between people who were 105

in or out of the city at the time of the bombing, or vice versa. If both p-values indicate strong
evidence against the null hypothesis, then there would have to be unmeasured confounders for
both comparisons in order to bring the results into question. For each of the two comparisons, we
associate a single sensitivity parameter measuring the bias due to the presence of unmeasured
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confounders. One can study the effect of potential bias by evaluating the strength of evidence 110

for a treatment effect from the comparison for different values of the sensitivity parameter. This
sensitivity parameter is defined as the maximum odds that, among two participants with the same
measured confounders, one participant would receive treatment and the other control compared
to vice versa because of differences in unmeasured confounders (e.g. Rosenbaum, 1987). In §3·2
a formal definition of this sensitivity parameter is given. When the value of this sensitivity param-115

eter is 1, it indicates the assumption of no unmeasured confounders; a value of 2 would mean that
the unmeasured confounders can double the odds of receiving treatment. Let Γ1 and Γ2 denote
these sensitivity parameters for the two comparisons. Table 2 reports the maximum p-values for
the two comparisons for different values of these parameters. When Γ1 =1·2 and Γ2 =1·1, both
the comparisons reject the null hypothesis with maximum p-values 0·0443 and 0·0131 respec-120

tively. The evidences from the two comparisons are sensitive at bias levels Γ1 =1·3 and Γ2 =1·2,
respectively. Table 2 also reports the joint evidence given (Γ1,Γ2) values. The joint evidence is
calculated using Fisher’s combination method. If (Γ1,Γ2) = (1·2,1·2) we fail to reject the null
hypothesis. The existing theory of evidence factors only allows us to make these statements about
a given pair (Γ1,Γ2). An objective statistician would not choose a value of (Γ1,Γ2), but rather125

present the results for a range of values, in particular focusing on the value where the inference
is sensitive. Hence, we would like to make a comprehensive statement for a range of values of
(Γ1,Γ2) while ensuring that the familywise error rate is controlled.

3. EVIDENCE FACTORS: A GENERAL VIEWPOINT

3·1. Definition of evidence factors130

Suppose we wish to test a hypothesis H0 and let A1 and A2 be two different assumptions
under which the hypothesis can be tested. Let the evidence gathered against H0 based on A1 be
E1 and the evidence based on A2 be E2 after taking out E1. If E1 and E2 are p-values calculated
from the data given the assumptions A1 and A2 respectively, then E1 and E2 would constitute
separate evidence factors if they are independent upon the assumption of A1 ∩ A2. Henceforth135

in our discussion by evidence against null we mean the (maximum) p-value. The requirement
of independence can be relaxed because the desired property of (E1, E2) is: when considered
jointly they provide more evidence against H0 than separately. The pair (E1, E2) are called
evidence factors if, when both A1, A2 and H0 hold, the joint cumulative distribution function
of (E1, E2) is stochastically larger than the joint distribution of two independent p-values. As140

shown in §3·2, this definition implies that, most tests for the null hypothesis using the evidence
factors can use the cutoff calculated assuming independence and be valid. Since p-values are
uniformly distributed under the null hypothesis, this amounts to having for all (p1, p2) ∈ [0, 1]2

pr(E1 ≤ p1, E2 ≤ p2) ≤ p1 × p2. (1)

DEFINITION 1. A set D ⊆ Rk is called a decreasing set if for any x, y ∈ Rk with x ≤ y, if
y ∈ D then x ∈ D. For two random vectors X and Y we say that X is stochastically larger than145

Y , in notation X � Y , if pr(X ∈ D) ≤ pr(Y ∈ D) for all decreasing sets D.

DEFINITION 2. The pair (E1, E2) is said to form evidence factors for testing H0 assuming A1

and A2 if, (E1, E2) � (U1, U2) under A1 ∩ A2 and H0, for two independent Unif[0,1] random
variables U1 and U2.

Since [0, p1]× [0, p2] are decreasing sets, if (E1, E2) are evidence factors then (1) is satisfied.150
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3·2. Sensitivity analysis and evidence factors
Consider the sensitivity of the evidences E1 and E2 with respect to their corresponding as-

sumptions A1 and A2. Let Γ1(≥ 1) be a real number that quantifies possible deviation from as-
sumption A1 (Gastwirth, 1992; Hosman et al., 2010; Zubizarreta et al., 2012; Rosenbaum, 2002,
§4). For instance, when the assumption A1 is that the treatment is randomly assigned among 155

the treated and the control units, i.e. there are no unmeasured confounders, Γ1 would quantify
bias in treatment assignment due to possible unmeasured confounders. To make this precise, we
discuss one definition of the parameter Γ1 (Rosenbaum, 2002, §4) here. Let i = 1, . . . , n be the
indices assigned arbitrarily to n units. Let Zi be the indicator for unit i being in the treatment
group. Also, let xi denote the observed pretreatment covariates while ui is an unobserved num- 160

ber summarizing the unobserved confounders for unit i (see Rosenbaum, 1987). Finally, suppose
unit i if exposed to treatment would have response rTi and if spared exposure would have re-
sponse rCi. Consequently, both rTi and rCi are not observed simultaneously (Neyman, 1923).
Let F = {(rTi, rCi, xi, ui) | i = 1, . . . , n}. Then the sensitivity parameter Γ1 will be defined by,
Γ1 = max1≤i,i′≤n;xi=xi′

pr(Zi = 1 | F)pr(Zi′ = 0 | F){pr(Zi′ = 1 | F)pr(Zi = 0 | F)}−1. In 165

words, the model for treatment assignment is such that due to unobserved covariates the odds
of being treated for two units i and i′ with the same observed covariates is allowed to differ at
most by a multiplicative factor Γ1 (≥ 1). When there are no unmeasured confounders, Γ1 = 1
and two units similar in terms of their observed covariates have the same probabilities of receiv-
ing treatment. Let A1(Γ1) denote all treatment assignment distributions that deviate from this 170

randomized assignment, assumption A1, by bias level at most Γ1.
In a more general setup, when testing H0 based on a test statistic T1, the set A1(Γ1) would

specify a family of possible distributions P1(Γ1) for T1, and the larger Γ1 is, the larger the
family of distributions P1(Γ1) becomes. Define sensitivity parameter Γ2 (≥ 1) and correspond-
ing A2(Γ2) similarly for the second factor. Thus, the larger Γj is, the more uncertain we are 175

about the design and Γj = 1 implies that we are certain about the aspect Aj of the design, i.e.
Aj(1) = Aj for j = 1, 2.

The sensitivity analysis computes the largest possible p-values under A1(Γ1) and A2(Γ2)
as E1{A1(Γ1)} and E2{A2(Γ2)}. Naturally, a larger uncertainty about the design will lead to
weaker evidence. Because these assumptions are nested; for j = 1, 2, with Γj ≤ Γ′

j 180

Aj(Γj) ⊆ Aj(Γ
′
j), Ej{Aj(Γj)} ≤ Ej{Aj(Γ

′
j)}. (2)

Following §3·1, {E1{A1(Γ1)} | Γ1 ≥ 1} and {E2{A2(Γ2)} | Γ2 ≥ 1} are said to form evi-
dence factors for testing H0 if for any Γ1 and Γ2 the pair (E1{A1(Γ1)}, E2{A2(Γ2)}) constitute
evidence factors under the assumptions A1(Γ1) and A2(Γ2). We use the shorthand notation E1,Γ1

and E2,Γ2 for E1{A1(Γ1)} and E2{A2(Γ2)}, respectively, because there is no ambiguity.

4. COMBINING EVIDENCE 185

How should we quantify combined evidence against H0 from the evidence factors? Fisher’s
method, which is used in §2, is a natural choice.

LEMMA 1. Under H0, the distribution of −2 log E1E2 is stochastically smaller than the χ2-
distribution with 4 degrees of freedom.

Proof. Let U1, U2 be two independent Unif[0, 1] random variables. For 0 ≤ p, q ≤ 1, pq = 190

pr(U1 ≤ p, U2 ≤ q). Further, −2 log U1U2 is distributed as χ2 with 4 degrees of freedom. As
(p, q) 7→ −2 log pq is a monotone function in both coordinates by Theorem 6.B.16 of Shaked &
Shanthikumar (2007, §6), −2 log E1E2 is stochastically smaller than χ2

4 distribution. �
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Since, by definition, (E1,Γ1 , E2,Γ2) form evidence factors, the combined evidence for bias
levels Γ1 and Γ2, calculated using Fisher’s method is EΓ1,Γ2 = pr(χ2

4 > −2 log(E1,Γ1E2,Γ2)).195

An alternative method of combining p-values is Zaykin et al. (2002)’s truncated product
method, which puts more emphasis than Fisher’s method on looking for small p-values. The
truncated product for some α̃ ∈ (0, 1) is defined as

E∧,Γ1,Γ2=1E1,Γ1
≤α̃ log E1,Γ1 + 1E2,Γ2

≤α̃ log E2,Γ2 ;

with 1A denoting the indicator of an event A. An evidence factor contributes to E∧,Γ1,Γ2 only if
the evidence from that factor is strong, i.e., less than α̃. Fisher’s method corresponds to α̃ = 1.200

Hsu et al. (2013) presented simulations and discussion that suggested that the truncated product
method often performs better than Fisher’s method in sensitivity analysis. The following lemma
studies the null distribution of E∧,Γ1,Γ2 .

LEMMA 2. Let W be a random variable on [0, α̃2] with the distribution function

FW (w) = 2α̃(1− α̃)(1− FExp(1)[− log {w(α̃)−1}]) + α̃2(1− FGamma(2,1)[− log {w(α̃)−2}]).

Then under H0 and A1(Γ1) ∩ A2(Γ2), exp(E∧,Γ1,Γ2) is stochastically larger than W .

Proof. Hsu et al. (2013) provided a simple argument to prove the lemma in the case where205

E1,Γ1 and E2,Γ2 were independent. Define f∧(x, y) = exp{1x≤α̃ log x+ 1y≤α̃ log y}. Then, f∧
is a monotone nondecreasing function. Because the pair (E1,Γ1 , E2,Γ2) form evidence factors,
by Theorem 6.B.16 of Shaked & Shanthikumar (2007, §6), exp(E∧,Γ1,Γ2) � f∧(U1, U2). Using
this fact and the argument of Hsu et al. the proof of the lemma follows. �

Based on the truncated product E∧,Γ1,Γ2 , H0 is rejected at level of significance α if210

exp(E∧,Γ1,Γ2) is smaller than the αth quantile of the distribution FW . The combined evi-
dence EΓ1,Γ2 is quantified as FW (exp E∧,Γ1,Γ2). The choice of α̃ is more subjective. Choosing
α̃ =0·10 and 0·20 has been advised (Hsu et al., 2013; Zaykin et al., 2002).

Other methods of combining p-values, where the combination is increasing in Ej,Γj , can be
used, e.g. the mean of normal transformations of the evidences defined as Φ{w1/2Φ−1(E1,Γ1) +215

(1− w)1/2Φ−1(E2,Γ2)} (Liptak, 1958). Which method is best for combining p-values remains
unsettled. Littell & Folks (1971) show that asymptotically, in terms of Bahadur efficiency,
Fisher’s combination method is optimal. Won et al. (2009) and Whitlock (2005) both show
that with appropriate choice of weights, Liptak’s method has more power than Fisher’s method.
Becker (1994) provides a comprehensive survey of various methods for combining p-values.220

5. INTEGRATING EVIDENCE

5·1. Sensitivity analysis and familywise error rate control
A sensitivity analysis for increasing, potentially infinite, sequences of {Γ1i | i = 1, . . .} and

{Γ2i | i = 1, . . .} values involves tests of multiple hypotheses. For a pair (Γ1i,Γ2i′) the hypoth-
esis being tested is

H0,Γ1i,Γ2i′ : H0 ∩ A1(Γ1i) ∩ A2(Γ2i′).

In words, H0,Γ1iΓ2i′ is the hypothesis that H0 is true and the deviation from assumption A1 is
at most Γ1i and from A2 is at most Γ2i′ . Since multiple hypotheses are tested simultaneously,
controlling type-I error is a concern. Fortunately, as shown below, the structure of the problem225

allows us to perform each test at level α while controlling for total error at α.
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Fig. 1. Illustration of the collection of the hypotheses in a finite
sample. Gray area is the null hypotheses and the hatched area

depicts the hypotheses not rejected based on the data.

Let Γ̄j = min{Γji | i = 1, . . . ; Aj(Γji) is true} for j = 1, 2 with the convention that the min-
imum of an empty sequence is infinity. When H0 is true, H0,Γ1iΓ2i′ is true if and only if
Γ1i ≥ Γ̄1 and Γ2i′ ≥ Γ̄2. In Fig. 1 the shaded gray area denotes the set of true null H0 =
{H0,Γ1i,Γ2i′ | Γ1i ≥ Γ̄1,Γ2i′ ≥ Γ̄2}. Let EΓ1i,Γ2i′ denote the combined evidence against H0 un- 230

der A1(Γ1i) ∩ A2(Γ2i′). In sensitivity analysis on a single parameter, take Γ1 for example, under
H0 a false rejection at level Γ1i ≥ Γ̄1 implies false rejection at Γ̄1 which is controlled at level α.
Thus the familywise error rate for sensitivity analysis on a single parameter is controlled at the
desired level. The following theorem shows that the same argument generalizes for more than
one parameter when the parameters correspond to different evidence factors. 235

THEOREM 1. Suppose EΓ1i,Γ2i′ is a nondecreasing function of individual evidences. Con-
sider the testing procedure where H0,Γ1i,Γ2i′ is rejected if and only if EΓ1i,Γ2i′ < α. Then the
probability of rejecting any H0 is at most α.

Proof. If H0 is false there is nothing to prove. Recall property (2) of individual evidences.
Now, the joint evidence is nondecreasing in individual evidences. As a consequence of these facts 240

the retained set of hypothesis, i.e. the set of H0,Γ1i,Γ2i′ with EΓ1i,Γ2i′ ≥ α, must be an increasing
convex set as depicted in form of gridded area in Fig. 1. Thus, for the proposed testing proce-
dure under H0, pr(any H0 is rejected) = pr(H0,Γ1i,Γ2i′ is rejected for some Γ1i ≥ Γ̄1and Γ2i′ ≥
Γ̄2) ≤ pr(H0,Γ̄1,Γ̄2

is rejected) = pr(EΓ̄1,Γ̄2
< α) ≤ α. The first inequality follows from convex-

ity of the retention set; the second inequality uses the fact that EΓ̄1,Γ̄2
� Unif[0,1]. � 245

Methods of combining evidence described in §4 (Fisher’s method, the truncated product
method) all satisfy the condition of Theorem 1 that EΓ1i,Γ2i′ is a nondecreasing function of the
individual. However other methods, such as a modified Liptak’s method where w is a function
of |ϕ−1(Ej,Γj )| as in Chen & Nadarajah (2014) do not.

The retention set of biases, {(Γ1i,Γ2i′) | EΓ1i,Γ2i′ ≥ α}, has a nice structure – it is a con- 250

vex and increasing set. As a consequence, this set can be computed in O(log maxj=1,2 |Gj |)
time, where |Gj | is the range for bias on jth evidence factor. This benefit is substantial when
there are d evidence factors each with a finite possible bias range |Gj |. Then the complexity,
O(d log maxdj=1 |Gj |), is linear in d as compared to O(

∏d
j=1 |Gj |) for linear search algorithms.
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The supplement of this paper includes pseudo code for such an algorithm. We have written an R 255

package evidenceFactors, available on CRAN, that implements this algorithm along with
other methods of this paper.

The above result is more general than stated. One can restrict attention to special subsets of
the grid and still ensure multiplicity control. For example Pimentel et al. (2015) discusses testing
for pairs {(Γ1i,0·80Γ1i), i = 1, . . .}. Proof of the following corollary is given in the supplement.260

COROLLARY 1. Let EΓ1i,Γ2i′ be as in Theorem 1. Let G be a fixed continuous subset of {Γ1i |
i ≥ 1} × {Γ2i | i ≥ 1} such that G ∩ {(1,Γ2i) | i ≥ 1} ∪ {(Γ1i, 1) | i ≥ 1} is non-empty. Then,
the probability that the testing procedure of Theorem 1 on G falsely rejects any hypothesis is at
most α.

5·2. Design sensitivity, consistency and asymptotic rate265

Most problems of testing have a design sensitivity attached to them, which is an asymptotic
measure of power of sensitivity analysis that is not dependent on α (see Rosenbaum, 2004). The
design sensitivity is the level of bias above which the power goes to zero as the sample size
goes to infinity for any significance level, and below which the power goes to one. The design
sensitivity, denoted by Γ̃, is the value of the sensitivity parameter at which the corresponding270

test can asymptotically distinguish a treatment effect with no bias from no treatment effect with
bias less than Γ̃, but not from no treatment effect with bias larger than Γ̃. Let Γ̃1 and Γ̃2 denote
the design sensitivity of the first and second kind of biases respectively. Then by definition, for
j = 1, 2; Ej,Γj → 1 for Γj > Γ̃j , and Ej,Γj → 0 for Γj < Γ̃j . All convergence statements here
and later are in almost sure sense as the sample size goes to infinity. To explicitly show the275

dependence on sample size n we write Ej,Γj |n and EΓ1,Γ2|n. A consequence of the above is that
the joint evidence satisfies: EΓ1,Γ2|n → 0 if Γ1 < Γ̃1 or Γ2 < Γ̃2; EΓ1,Γ2|n → 1 if Γj > Γ̃j for
both j = 1, 2. Pictorially, this means that the gridded area in Fig. 1, which is the collection of
hypotheses not rejected, in the limiting case, with the sample size going to infinity, will coincide
with the gray rectangular area depicting the collection of true null hypotheses (H0). Hence, the280

design sensitivity of the joint conclusion is (Γ̃1, Γ̃2).
However, these limits do not provide any information on the rates at which such convergences

take place. One can consider the Bahadur slope (Bahadur, 1967), which is the rate of convergence
of Ej,Γj on a logarithmic scale. For example, if it exists, the Bahadur slope for Γj < Γ̃j would
be limn→∞ n−1 log Ej,Γj |n for the jth evidence factor and for the joint evidence it would be285

limn→∞ n−1 log EΓ1,Γ2|n. Rosenbaum (2015) introduced the Bahadur efficiency of sensitivity
analysis in this context. Taking cue from that discussion, we consider the probability of large de-
viation in rejection and acceptance decisions for the evidences. As shown by Rosenbaum (2015),
existence of an exact rate depends on the test statistic used. But an upper bound of the rate can
always be considered (Dembo & Zeitouni, 2010, §4·5). Let Ij,Γj be functions defined on [0, 1]290

taking non-negative values, including possibly ∞, such that, for any compact subset F of [0, 1],
for j = 1, 2

lim sup
n→∞

n−1 log pr(Ej,Γj |n ∈ F ) ≤ − inf
x∈F

Ij,Γj (x). (3)

Because Γ̃j is the design sensitivity of jth factor, if Γj > Γ̃j we would expect Ij,Γj (x) > 0 for
any x < 1 and if Γj < Γ̃j we would expect Ij,Γj (x) > 0 for any x > 0. In quantitative terms
(3) says, when Γj > Γ̃j the probability of rejecting the null based on jth factor is less than ε295

for sample sizes more than log(1/ε)/ infx∈[α,1] Ij,Γj (x). Similarly if Γj < Γ̃j the probability of
failing to accept the null based on evidence j is less than ε for n > log(1/ε)/ infx∈[0,α] Ij,Γj (x).
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We wish to establish that the joint test has a rate which is larger than that of the individual
tests. Theorem 2 requires (E1,Γ1 , E2,Γ2) to be evidence factors in the following sense

(E1,Γ1|n, E2,Γ2|n) � (Ẽ1,Γ1|n, Ẽ2,Γ2|n), (4)

where Ẽ1,Γ1|n and Ẽ2,Γ2|n are independently distributed and Ẽj,Γj |n have the same distribution 300

as Ej,Γj |n. While Definition 2 uses stochastic ordering under H0, (4) is a more general statement
also under the alternative hypothesis.

THEOREM 2. Suppose Ij,Γj satisfies (3) for j = 1, 2. Then with α < 0.20, for Fisher’s com-
bination

lim sup
n→∞

n−1 log pr(EΓ1,Γ2|n < α) ≤ − inf
x:x≤α

max
j=1,2

Ij,Γj (x), (5)

lim sup
n→∞

n−1 log pr(EΓ1,Γ2|n ≥ α) ≤ − inf
x:x≥α

max
j=1,2

Ij,Γj (x). (6)

Since Ej,Γj |n, for j = 1, 2, converges to zero or one almost surely, with α̃ fixed, Fisher’s 305

method and truncated product are equivalent for large n. Thus, Theorem 2 holds for the trun-
cated products method as well. Theorem 2 does not assume that evidence factors are well be-
haved, i.e. does not assume that in (3) the limit of n−1 log pr(Ej,Γj |n ∈ F ) exists. It allows us
to make claims about the worst rates, e.g. in terms of lim supn−1 log pr(EΓ1,Γ2|n ≥ α) and
lim supn−1 log pr(EΓ1,Γ2|n < α). If in (3), lim sup can be replaced by lim and equality in place 310

of inequality, hence the exact rates of rejection and acceptance for the factors exists, then both
(5) and (6) hold with lim sup replaced by lim. Theorem 2 can be interpreted as: the joint ev-
idence requires a smaller sample size to make the correct decision than the factors considered
separately. An illustration of this result is given through simulation in §6. The proof of Theorem
2 is given in the supplement. 315

If the evidence factors are well behaved, more accurate statements about the rates can be made.
Theorem 3 indicates that if individual factors have Bahadur slopes, then the Bahadur slope of the
joint evidence is again better than the individuals.

THEOREM 3. Suppose for a pair (Γ1,Γ2), there exits two non-negative numbers r1,Γ1 and
r2,Γ2 such that: (i) n−1 log E1,Γ1|n → −r1,Γ1 , and (ii) n−1 log E2,Γ2|n → −r2,Γ2 . Then for 320

Fisher’s combination method, limn→∞ n−1 log EΓ1,Γ2|n = −(r1,Γ1 + r2,Γ2). Also, if for some
non-negative aj,Γj , n−1 log (1− Ej,Γj |n) → −aj,Γj , for j = 2 (or 1), then with (i) (or (ii)),
limn→∞ n−1 log EΓ1,Γ2|n = −rj̄,Γj̄

, where j̄ = 1 (or 2).

Proof. Recall that EΓ1,Γ2|n = pr(χ2
4 > −2 log E1,Γ1|nE2,Γ2|n). For any t, as n → ∞,

n−1 log pr(χ2
4 > nt2) → −t2/2. Now under (i) and (ii), −2n−1 log E1,Γ1|nE2,Γ2|n → 325

2(r1,Γ1 + r2,Γ2). Let c and d be any numbers such that c < (r1,Γ1 + r2,Γ2) < d,
then, 2c < −2n−1 log E1,Γ1|nE2,Γ2|n < 2d for large enough n. Thus for large n,
n−1 log pr(χ2

4 > 2dn) ≤ n−1 log pr(χ2
4 > −2 log E1,Γ1|nE2,Γ2|n) ≤ n−1 log pr(χ2

4 > 2cn).
Therefore, −d ≤ lim infn→∞ n−1 log EΓ1,Γ2|n ≤ lim supn→∞ n−1 log EΓ1,Γ2|n ≤ −c. Let
c, d → (r1,Γ1 + r2,Γ2) to get, limn→∞ n−1 log EΓ1,Γ2|n = −(r1,Γ1 + r2,Γ2). 330

If, n−1 log (1− E2,Γ2|n) → −a2,Γ2 and (i) holds, then 2n−1 log E1,Γ1|nE2,Γ2|n → −2 r1,Γ1 .
The rest of the proof follows the same arguments as above. �

5·3. Which evidence factor(s) provide evidence?
In an analysis based on evidence factors, it is useful if the decision to reject the null hypothesis

can be attributed to one or both the factors. The closed testing principle of Marcus et al. (1976) 335
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can be used for this purpose. For a pair (Γ1i,Γ2i′), consider three comparisons: (i) EΓ1i,Γ2i′ < α,
(ii) E1,Γ1i < α, (iii) E2,Γ2i′ < α. If (i), (ii), and (iii) are true, then we reject H0 based on evidence
from both factors. If (i) and (ii) are true, then we reject based on the first factor. Similarly, if (i)
and (iii) are true, then we reject based on the second factor. If only (i) is true, then rejection is
based on the combined evidence alone, and the rejection decision cannot be attributed to one340

factor.
We are working in a scenario where it seems plausible that one assumption is true with the

other being false. The following argument establishes that the above procedure preserves the
probability of rejecting any {H0,Γ1i,Γ2i′ | Γ1i ≥ Γ̄1} ∪ {H0,Γ1i,Γ2i′ | Γ2i ≥ Γ̄2} at the level α. If
H0 is false there is nothing to prove. Assume H0 is true. Then, possible scenarios are: (1) H0 is345

true and both A1(Γ1i) and A2(Γ2i′) are true; (2) H0 is true and A1(Γ1i) is true but A2(Γ2i′) is
false; and (3) H0 is true and A2(Γ2i′) is true but A1(Γ1i) is false. For any pair (Γ1i,Γ2i′) at most
one of (1)–(3) can be true. When (1) holds, any false rejection implies {EΓ̄1,Γ̄2

< α}, when (2)
holds, a false rejection implies {EΓ̄1

< α}, and finally, when (3) holds, a false rejection implies
{EΓ̄2

< α}. Thus the familywise error rate is controlled at desired level α.350

6. SIMULATION: COMBINED EVIDENCE DOES BETTER IN FINITE SAMPLE

This section aims to verify that the Bahadur efficiency results of §5·2 provide an adequate
guide to finite samples. We wish to verify that the combined evidence factor analysis requires
a smaller sample size to make the correct decision with high probability than an analysis using
either evidence factor alone.355

Our simulation is based on the structure of the Life Span Study data (§2). We assume the
data have S strata of triplets with exposures zero-dose, low-dose and high-dose. The response is
Bernoulli with probability expit(αs) if exposed zero-dose or expit(αs + βl) if exposed to low-
dose or expit(αs + βh) for high-dose; here expit(x) = exp(x)/{1 + exp(x)} and βl ≤ βh. The
strata effect αs is sampled independently from N(0,0·22). The sample size (n) of §5·2 here is360

the number of strata (S), and increasing the sample size is equivalent to adding more and more
strata while keeping the size of each stratum fixed. Figure 2 summarizes the simulation results
in three panels of plots (A)–(C). Each panel corresponds to a separate simulation scenario with
varied values of the effects βl, βh. Within each panel three plots correspond to three different
pairs of values of (Γ1,Γ2). Each plot shows the performance of the various tests as the sample365

size increases. Recall that Γ1 is the sensitivity parameter for the high versus low dose comparison
and Γ2 is the sensitivity parameter for exposed versus unexposed comparison.

Panel (A) considers the null case βl = βh = 0. Recall that the simulation does not impose any
bias in treatment assignment. In this situation, even a small amount bias will cause the probability
of rejection to go to zero as the number of strata increases. A test is better if the rate at which370

this probability of rejection, plotted on the vertical axis, goes to zero is as fast as possible. For
the graphs of panel (A), the higher the value, the faster, i.e. with less number of strata, we fail
to reject the null on average. In plot A1, where Γ1 = Γ2 = 1.1, we see that as the number of
strata increases the combined evidence narrowly beats both the factors. In plots A2 and A3 one
of the two Γj values is large. The comparison with larger Γj always makes the correct decision;375

at least in the simulations. This is shown as a horizontal line at infinity. The plots show that the
combined evidence dominates.

Panels (B) and (C) consider two scenarios under the alternative hypothesis: only high-dose
has an effect, βl = 0, βh = 0.5, and both low-dose and high-dose has an effect, βl = 0.5, βh =
1, respectively. Here, in both the factors, as the number of strata increases the probability of380

acceptance will go to zero for bias below the design sensitivity. In these plots, the larger the
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Fig. 2. Graphs for combined evidence (solid), high to low dose (dashes) and exposed versus unexposed (dots).
Panel (A) plots the negative of the rate of rejection of the hypothesis, − log(probability of rejection)/S, in the
null scenario, against the number of strata (S). Panels (B) and (C) plot the negative of the rate of acceptance
of the hypothesis, − log(probability of acceptance)/S against S. Along the rows Γ1 and Γ2 are varied.

Results are based on average over 2000 simulations and over a grid of S values in gaps of 20.

graph is on the vertical axis plotting the rate of acceptance, the faster the null is rejected and the
smaller the number of strata required to attain a certain power.

In panel (B), the average (attributable) treatment effect in the comparison of exposed to un-
exposed units is considerably smaller. Consequently, the design sensitivity is smaller for the 385

exposed versus unexposed comparison than that of the high versus low-dose comparison. Plot
B1 considers bias levels Γ1 = 1·2 and Γ2 = 1. These Γ values are chosen so that the power is
not close to 0 or 1; otherwise we would not be able to compare methods clearly and get a sense
of the rate based on the simulations. Correspondingly, as the effect in the comparison of high
to low-dose is larger than that of exposed to unexposed comparison, Γ1 is chosen to be larger 390

than Γ2. In this plot, the combined evidence dominates both the factors. For the next two plots,
one of the two bias parameters are large so that the corresponding analysis is no longer able to
detect the treatment effect with high power. Thus in these two scenarios the combined evidence
borrows its strength mostly from only one factor. These plots show that as the number of strata
increases, the rate for the combined evidence catches up with the better of the two factors. 395
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Fig. 3. Result for testing radiation effect on solid cancer.
In decreasing order of gradient the colors represent the de-
cision - reject for both comparisons, for high to low dose
comparison, for city to not-in-city comparison, without any
attribution and do not reject. Bonferroni method rejects the

null if Γ1 <1·16 and Γ2 <1·11 (dashed lines).

Finally, in panel (C), the design sensitivity is smaller for the high versus low-dose comparison.
The plots have similar behavior as in the plots of panel (B). Plot C1 of this panel considers the
bias levels Γ1 = 1 and Γ2 = 1·5. The combined evidence has better performance compared to
either of the factors. For the last two plots, as in panel (B), one of the bias parameters is taken
to be large enough so that the corresponding analysis is no longer able to detect the treatment400

effect with high power. In both these scenarios we see the combined evidence has comparable
performance to the better of the two factors.

7. ANALYSIS OF THE LIFE SPAN STUDY DATA

The analysis to assess whether radiation has any carcinogenic effect consists of two compar-
isons, one based on comparing all proximal survivors with low and high doses and a second405

one comparing proximal survivors to not-in-city residents, giving us two evidence factors with
E1 = 0·0021 and E2 = 2·35×10−10, see §2. The fact that these two comparisons form evidence
factors is proved explicitly in the supplement.

In the Life Span Study data, the observed confounders are age at exposure and sex. Then the
bias levels Γ1 and Γ2 measure deviation from the assumptions that there is no unmeasured con-410

founding for the comparisons of high-dose versus low-dose proximal survivors and all proximal
survivors versus not-in-city residents, respectively, among individuals in the same strata of age
at exposure and sex. The conclusion from the first comparison is sensitive at bias level Γ1 =
1·25, i.e. we first fail to reject the hypothesis when Γ1 = 1·25, whereas the conclusion from
the second comparison is sensitive at bias level Γ2 = 1·12. Therefore, to explain the observed415

associations, an unmeasured confounder, as in §2, would need to have a relatively weaker as-
sociation with exposure to radiation in comparing all proximal survivors to not-in-city residents
than in comparing high-dose to low-dose survivors. Figure 3 presents the results based on evi-
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dence factors. The factors are combined using the truncated product method with α̃ = 0·20 (see
§4). The results show that the joint evidence is statistically significant for a carcinogenic effect 420

for (Γ1,Γ2) = (1·35,1·12). However this decision cannot be attributed to either of the compar-
isons; at (Γ1,Γ2) = (1·35,1·12) each of the evidences considered separately are sensitive. At
(Γ1,Γ2) = (1·1,1·3) the null hypothesis is rejected based on the evidence from comparison of
proximal survivors with low and high doses. Another method to control for familywise error rate
would be to use the Bonferroni correction. This leads to failing to reject the null for Γ1 ≥ 1·16 425

and Γ2 ≥ 1·11. Clearly, the Bonferroni method is conservative for small bias levels. For instance,
at bias levels (Γ1,Γ2) = (1·2,1·13), we fail to reject the null after applying Bonferroni correc-
tion, but reject the null based on the joint evidence.

The sensitivity parameters, Γ1 and Γ2, models the biases in treatment assignment due to imbal-
ance in unmeasured confounders. When calculating the evidence using this model, a near-perfect 430

relationship is assumed between the unmeasured confounders and the response. It is not neces-
sary to assume this near-perfect relationship – the one-parameter model with sensitivity param-
eter Γ is equivalent to a set of models where with two sensitivity parameters: one that relates the
unmeasured confounder to the response, ∆; and one that relates the unmeasured confounder to
the treatment, Λ. Rosenbaum and Silber (2009) show that for each Γ in the one-parameter model, 435

there is a curve of Λ and ∆ in this two-parameter model that gives equivalent inferences. For ex-
ample, it follows that Γ =1·25 is equivalent to an unobserved covariate that doubles the odds of
treatment (Λ = 2) and doubles the odds of a positive treated-minus-control response difference
(∆ = 2). In the supplement, we provide the technical discussion of this correspondence.

8. DISCUSSION 440

Unmeasured confounding is a challenge in observational studies. Evidence factors, by con-
structing multiple independent sources of evidence that are potentially vulnerable to separate
sources of unmeasured confounding, help us to either detect potential unmeasured confounding
or make our findings more robust to unmeasured confounding. A practitioner might be concerned
with loss of power from multiple comparisons when using evidence factors; this paper establishes 445

that if one constructs evidence factors and uses them carefully, as described in Theorem 1, there
is no loss in power.

An alternative strategy in the Life Span Study could have been to select one of the two refer-
ence groups, distal survivors or non-in-city residents, and present a single analysis (French et al.,
2017). We showed that both reference groups can be used to build evidence factors. The com- 450

bination of the factors provided evidence against the null hypothesis of no carcinogenic effect,
which was robust to multiple sources of unmeasured confounding.

Our analysis was limited in the sense that it addressed whether there was a carcinogenic effect
of radiation, but did not address the dose-response relationship. Currently, there is strong scien-
tific interest in the shape of the dose-response curve, particularly at lower radiation doses, as well 455

as differences in radiation risk by various demographic and lifestyle factors. The Life Span Study
data contain rich individual level information that can be used to model these associations. Future
research might seek to build evidence factors, perhaps by comparing survivors across multiple
reasons of radiation exposure, to infer about the radiation dose-response and effect modification.
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SUPPLEMENTARY MATERIAL

Supplementary material available at Biometrika online includes proofs of Corollary 1 and470

Theorem 2, simulation comparison of two combining methods discussed in §4, and pseudo code
for an algorithm discussed in §5·1.
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