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Abstract. Absent randomization, inference about the effects caused by treatments depends

upon assumptions that can be diffi cult or impossible to verify. Causal conclusions gain strength

from a demonstration that they are insensitive to small or moderate violations of those assump-

tions, especially if that happens in each of several statistically independent analyses that depend

upon very different assumptions; that is, if several evidence factors concur. These issues arise

with several instruments, together with the option of a direct comparison of treated and control

subjects. Does each purported instrument actually satisfy the stringent assumptions required of

an instrument? Is a direct comparison without instruments biased by self-selection into treated

and control groups? We develop a method for constructing evidence factors, and evaluate its

performance in terms of design sensitivity and simulation. In the application, we consider the

effectiveness of Catholic versus public high schools, constructing three evidence factors from

three past strategies for studying this question, namely: (i) having nearby access to a Catholic

school as an instrument, (ii) being Catholic as an instrument for attending Catholic school, and

(iii) a direct comparison of students in Catholic and public high schools. Although these three

analyses use the same data, we: (i) construct three essentially independent statistical tests of

no effect that require very different assumptions, (ii) study the sensitivity of each test to the

assumptions underlying that test, (iii) examine the degree to which independent tests depen-

dent upon different assumptions concur, (iv) pool evidence across independent factors. In the

application, we conclude that the ostensible benefit of Catholic education depends critically on

the validity of one instrument, and is therefore quite fragile.
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1 Introduction: Addressing unmeasured bias in observational studies

Absent random assignment, an association between treatment received and outcome ex-

hibited may not reflect an effect caused by the treatment, but rather some bias in the way

people were selected for treatment. How can unmeasured bias be addressed?

A sensitivity analysis asks about the magnitude of bias in treatment assignment that

would need to be present to materially alter the causal conclusions. See Cornfield et al.

(1959) for the first sensitivity analysis in an observational study, and for related methods,

see, for instance, Hosman et al. (2010), Gilbert et al. (2003), Rosenbaum (2002, §4),

Rudolph and Stuart (2017), Schwartz et al. (2012) and Yu and Gastwirth (2005).

An instrument is a bit of randomized or haphazard encouragement to accept a treatment

in a context in which treatment assignment is often deliberate, hence potentially biased; see

Angrist, Imbens and Rubin (1996). In their example, the Vietnam War draft lottery was

randomized, and it pushed some men into military service who would not otherwise have

served. Typical instruments are less compelling, because they are not actually randomized,

so they make assumptions no less speculative than the assumption that unmeasured biases

are absent. As a single treatment might be encouraged by various instruments, it is

not a foregone conclusion that analyses with different instruments will concur; so, it is

informative if they do concur (Imbens and Rosenbaum 2005, §1.1). For discussion of

instruments, see Angrist et al. (1996), Baiocchi, Cheng and Small (2014), Brookhart et al.

(2010), Hogan and Lancaster (2004), Kang (2016), Keele and Morgan (2016), Larcker and

Rusticus (2010), Li et al. (2015), Lu and Marcus (2012) and Small (2007).

Multiple analyses provide evidence about unmeasured biases if: (i) certain biases that

would invalidate one analysis do not bias another analysis, (ii) each analysis is insensitive

to small or moderate biases of the type that might invalidate that analysis, and (iii) these

several analyses would be nearly statistically independent if the treatment had no effect.
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Analyses of this type are called evidence factors (Rosenbaum 2010, 2011, 2017a). Because

these analyses are affected by different types of unmeasured biases and are nearly indepen-

dent despite using the same data, it is far from a forgone conclusion that the analyses will

concur. See Zubizarreta et al. (2012) for an example in which two evidence factors do

not concur, thereby providing evidence that at least some associations are spurious, not

causal. See Zhang et al. (2011) for an example in which two evidence factors concur.

Our goal is to design observational studies to use several instruments plus direct com-

parisons of treated and control groups as evidence factors. Typically, when several instru-

ments are available, investigators employ them in a joint analysis, such as two-stage least

squares, so if any of the instruments fails to satisfy the many assumptions required of an

instrument, then the joint analysis is compromised. However, see Kang et al. (2016) for an

approach that tolerates some invalid instruments. In contrast, we use several instruments

one at a time in such a way that failure of the assumptions for one instrument does not,

by itself, invalidate analyses with other instruments.

A final evidence factor directly compares treated and control groups. Some scientific

fields presume that direct comparisons are more easily dismissed as bias than are compar-

isons using instruments, but this presumption is not true in general. In a single sampling

situation, a direct comparison may be insensitive to large biases, while the analysis with an

instrument may be sensitive to small biases, so the direct comparison may provide the most

compelling evidence. We demonstrate this theoretically by calculating design sensitivities.

Section 2 introduces the application, to which we return in §6. Section 3 defines

notation. Key results in §4 demonstrate that the several subanalyses are, indeed, evidence

factors. The method is evaluated in §5 in terms of design sensitivity, with some surprises

about the relative safety of instruments and direct comparisons.
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2 How effective are Catholic schools compared to public school?

A central question today about education in the US is whether traditional public schools are

less effective than other options that offer more choice to parents and more competition

among schools for students; see, for instance, Card, Dooley and Payne (2010), Garcia

(2018), and Hoxby (2000). The earliest studies of this issue compared public high schools

to private Catholic high schools, but the conclusions and implications of these studies

remain controversial, in part for methodological reasons. Private education is typically

expensive, beyond the means of most middle-class families in the US, but private Catholic

education is subsidized by the Catholic Church and so is more affordable. Students with

similar economic backgrounds may attend either public or Catholic high schools.

Are private Catholic high schools more effective than public high schools? Though

important to the contemporary debate about school choice, this is not an easy question to

answer. Paying more to attend Catholic school may signify a parent’s concern or com-

mitment to education, which may affect outcomes in many ways. Even after adjustment

for educational and socioeconomic covariates, a direct comparison of students in public

and Catholic school may, therefore, be biased. The empirical literature contains: (i) at-

tempts to use the geographic accessibility of Catholic schools as an instrument for attending

Catholic schools, (ii) attempts to use “being a Catholic”as an instrument, (iii) direct com-

parisons of students in Catholic and public high schools, (iv) sharp conflict about which, if

any, of these approaches yields valid inferences about the effects caused by Catholic schools.

See Altonji, et al. (2005), Coleman (1982), Goldberger and Cain (1982), Kim (2011), and

Neal (1997) for several perspectives and analyses.

Rather than select one analysis and assert that it is valid, we develop three evidence

factors, three (nearly) statistically independent analyses of the same data, each dependent

upon very different assumptions for its validity. Because these analyses are independent,
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they do not repeat one another, and concurrence among the analyses is far from a foregone

conclusion. Because certain biases that would invalidate one analysis have no effect on

another analysis, concurrence would weaken some claims that biases produced the osten-

sible treatment effects. To the extent that each analysis, each factor, is insensitive to the

type of bias that could invalidate that factor, there is further weakening of claims that bias

accounts for ostensible effects. Conversely, the absence of concurrence and sensitivity to

small biases are warnings that bias could readily explain ostensible effects.

Using data from the Wisconsin Longitudinal Study, we will examine income from wages

and salary in 1974 for 4450 male students who completed high school in Wisconsin in 1957.

Table 1 depicts the structure of the three factors, essentially (i)-(iii) above. The 4450

students divide into 1501 students from urban Wisconsin and 2949 from rural Wisconsin,

and presumably because Catholic schools are more accessible in urban areas, 22% of ur-

ban students attended Catholic school, while only 6% of rural students attended Catholic

school. So the first analysis uses urban/rural as an instrument for Catholic education.

The second analysis compares children in urban areas to other children in urban areas,

and children in rural areas to other children in rural areas, so the second analysis views

urban/rural as a covariate, not an instrument. In urban areas, roughly half the students

were Catholic, and 44% of Catholics attended Catholic high schools, while none of the

non-Catholics attended Catholic high schools. In rural areas, Catholic students were in

the minority, and 17% of Catholics attended Catholic high schools, while only 2 of the

non-Catholics, or less than half a percent, attended Catholic high schools. The second

analysis views Catholic religion as an instrument, and urban/rural as a covariate. The

third analysis has no instrument: it directly compares students attending Catholic and

public schools, viewing both urban/rural and Catholic/non-Catholic as covariates.
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3 Notation and background: several instruments plus a direct comparison

3.1 Notation: strata, covariates, outcomes, treatment and instruments

There are I strata, i = 1, . . . , I, with ni individuals ij in stratum i, j = 1, . . . , ni, and N =∑I
i=1 ni individuals in total. There are K binary, 1 or 0, indicators, Zijk, k = 1, . . . ,K.

The first K − 1 indicators are possible instruments for indicator K which is the active

treatment. In §2: (i) Zij1 = 1 for urban residence, Zij1 = 0 for rural residence; (ii) Zij2

distinguishes Catholics, Zij2 = 1, from others, Zij2 = 0; (iii) Zij3 distinguishes attending a

Catholic high school, Zij3 = 1, from attending a public school, Zij3 = 0.

Individual ij has an observed covariate xij controlled by stratification, so xij = xij′

for 1 ≤ j < j′ ≤ ni. There is concern about an unobserved covariate uijk, k = 1, . . . ,K,

not controlled by stratifying on xij . The notation permits a different unobserved uijk for

each Zijk, but there is no requirement that they be distinct; that is, the situation with

uij1 = · · · = uijK = uij , say, is simply a special case.

If the exclusion restriction of Angrist et al. (1996) held for all of the first K − 1

indicators, then individual ij would exhibit response rT ij if ZijK = 1 or response rCij if

ZijK = 0. In fact, our K analyses do not assume that the exclusion restriction holds for all

K−1 potential instruments, but rather assume much less. The analysis that uses Zijk as if

it were an instrument assumes that the exclusion restriction holds for Zijk,. . . ,ZijK−1 when

we compare individuals who are the same in terms of Zij1, . . . , Zijk−1, so the exclusion

restriction may not hold for Zij1, . . . , Zijk−1. The direct comparison of treated and control

individuals, ZijK = 1 versus ZijK = 0, does not assume any exclusion restriction, simply

adjusting for Zij1, . . . , ZijK−1.

There are K partial assignment vectors, Aijk = (Zij1, . . . , Zijk) for k = 1, . . . ,K, and

a matrix Ak whose N rows are the Aijk, so Ak records assignments up to step k for all
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N individuals. It is notationally convenient to define Aij0 = ∅, so that Aij,k−1 is well

defined for k = 1, but conditioning on Aij0 means that no part of Aij = (Zij1, . . . , ZijK) is

actually being conditioned upon. Let Ak be the set containing the 2k vectors of dimension

k with 1 or 0 coordinates. The vector, Aijk = (Zij1, . . . , Zijk), can take on 2k possible

values a ∈ Ak. The entire study amalgamates K partial studies, where study k fixes

the 2k−1 values a ∈ Ak−1 of Aij,k−1, studies the effects of variations in Zijk, and lets

(Zij,k+1, . . . , ZijK) fluctuate as it will. In Table 1, there are K = 3 partial studies. At

assignment k, individual ij has 2k potential outcomes, rija with a ∈ Ak, so each step is an

instance of the Neyman (1923) - Rubin (1974) notation for causal effects. However, at step

k, we are interested in comparing rija and rija′ for each pair (a,a′) with a, a′ ∈ Ak such

that a = (a1, . . . , ak−1, 1) and a′= (a1, . . . , ak−1, 0), so a and a′ differ only in the last, kth,

coordinate; moreover, the kth partial study is focused on this comparison. At assignment

k, Fisher’s hypothesis Hk of no effect of assignment k asserts that rija = rija′ for each

pair (a,a′) with a, a′ ∈ Ak such that a = (a1, . . . , ak−1, 1) and a′= (a1, . . . , ak−1, 0). In

total, individual ij has
∑K

k=1 2k = 2K+1 − 2 potential outcomes rija for Aijk = a ∈ Ak,

for k = 1, . . . ,K, which we collect in a vector rij of dimension 2K+1 − 2. Later, in §3.3,

when we impose a “partial exclusion condition”on rij , the potential complexity of rij will

be greatly restricted. In effect, the partial exclusion restriction will say that for people

who are the same in terms of (Zij1, . . . , Zij,k−1), the vector (Zijk, . . . , Zij,K−1) affects rij

only indirectly by altering ZijK ; see, again, Table 1. Ultimately, we observe only one

coordinate of rij , namely Rij = rija for AijK = a for a ∈ AK , so much of rij is inaccessible

to us. Write R = (R11, . . . , RI,nI )
T for the N -dimensional vector of observed responses.

Concerning notation, note that a vector a ∈ Ak has dimension k, so the notation rija,

a ∈ Ak, is well defined without mentioning k.

Write F = {rij ,xij , uijk, i = 1, . . . , I, j = 1, . . . , ni, k = 1, . . . ,K}. Conditionally given
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F , distinct individuals, say ij and i′j′, are assumed to have independent values of the K-

dimensional assignment vector,Aij = (Zij1, . . . , ZijK) andAi′j′ . Write Zk = (Z11k, . . . , ZI,nI ,k)
T

for the N -dimensional vector of assignments at step k, for k = 1, . . . ,K.

3.2 Treatment assignment in K steps

Consider the model for treatment assignment

Pr (Zijk = 1 | F , Aij,k−1) =
exp {κk (xij ,Aij,k−1) + γk uijk}

1 + exp {κk (xij ,Aij,k−1) + γk uijk}
, with 0 ≤ uijk ≤ 1, (1)

where κk (·) is an unknown function and γk ≥ 0 is an unknown sensitivity parameter. This

model says that Zijk depends in an entirely arbitrary way on the observable (xij ,Aij,k−1),

but otherwise depends upon F only through uijk. Model (1) says that two individuals, j

and j′, with the same (xij ,Aij,k−1) differ in their conditional odds of treatment at step k

by at most Γk = exp (γk) ≥ 1; that is, if (xij ,Aij,k−1) =
(
xij′ ,Aij′,k−1

)
then

1

Γk
≤

Pr (Zijk = 1 | F , Aij,k−1) Pr
(
Zij′k = 0

∣∣ F , Aij′,k−1

)
Pr
(
Zij′k = 1

∣∣ F , Aij′,k−1

)
Pr (Zijk = 0 | F , Aij,k−1)

≤ Γk.

If γk = 0, then there is no bias in assignment at step k, in the sense that everyone with

the same observed (xij ,Aij,k−1) has the same probability of Zijk = 1, so assignment is

ignorable at step k. Write uk = (u11k, . . . , uI,nI ,k)
T and U = [0, 1]N for the N -dimensional

unit cube. If S is a finite set, write |S| for the number of elements of S.

If a ∈ Ak−1 is a (k − 1)-dimensional vector of 0s and 1s, let Ti,a ⊆ {1, . . . , ni} be the

subset of individuals in stratum i withAij,k−1 = a, let ni,a = |Ti,a| andmi,a =
∑

j∈Ti,a Zijk.

Write mik for the vector of dimension 2k−1 whose coordinates are the mi,a for the 2k−1

possible values of a ∈ Ak−1. Again, it is convenient to use the same notation for k = 1,

where k − 1 = 0, a = ∅, Ti,a = {1, . . . , ni}, ni,a = ni, mi,a =
∑ni

j=1 Zij1. For a ∈ Ak−1,
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let Zi,a,` be the value of Zi`k for individual ` ∈ Ti,a, let Zi,a be the corresponding column

vector of dimension ni,a with mi,a ones and ni,a −mi,a zeros, and let ui,a be the column

vector of dimension ni,a with the uijk for individuals ij with j ∈ Ti,a. Let Zi,a be the set

containing
(
ni,a
mi,a

)
vectors such that z ∈ Zi,a if z is of dimension ni,a with mi,a ones and

ni,a−mi,a zeros. All of these quantities and sets – ni,a, Ti,a, etc. – are random variables

because Aij = (Zij1, . . . , ZijK) is a random variable, but they are functions of Ak−1 and

mi,a, so they are fixed by conditioning on Ak−1 and mik. Then from (1),

Pr (Zi,a = z | F , Ak−1,mik) =
exp

(
γk z

Tui,a
)∑

b∈Zi,a exp (γk bTui,a)
for z ∈ Zi,a, uk ∈ U , (2)

because κk (xij ,Aij,k−1), though unknown, takes the same value for all individuals ij with

j ∈ Ti,a. Moreover, the 2k−1 distinct Zi,a for the 2k−1 values of a are conditionally in-

dependent of each other given F , Ak−1,mik. For fixed k, as a ∈ Ak−1 varies over its

2k−1 possible values, model (2) is a conventional model for stratified, treatment/control

sensitivity analyses with I × 2k−1 strata; see Rosenbaum (2002, §4), Rosenbaum and

Small (2017) and Rosenbaum (2018). If γk = 0, then (2) becomes random assignment,

Pr (Zi,a = z | F , Ak−1,mik) = |Zi,a|−1 for each z ∈ Zi,a, so model (2) permits one of the

K steps to be free of bias from uijk while the other K − 1 steps are biased.

3.3 The partial exclusion restriction

As there is typically uncertainty and contention about whether the exclusion restriction

actually holds for possible instruments, we introduce a partial exclusion restriction. In

effect, this condition says that some of the Zijk satisfy an exclusion restriction, others do

not, consistent with some Zijk being instruments, while other Zijk require adjustments,

similar to the adjustments for covariates.

If (Zij1, . . . , ZijK) were K two-level treatments in a 2K factorial experiment, then each
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individual would have 2K potential outcomes depending upon the 2K ways that theK treat-

ments (Zij1, . . . , ZijK) might be set. In contrast, the assumption that (Zij1, . . . , ZijK−1)

are K − 1 valid instruments for an active treatment ZijK entails, among other things, an

exclusion restriction which says there are only two potential outcomes, rT ij if ZijK = 1 or

rCij if ZijK = 0. In words, the exclusion restriction says (Zij1, . . . , ZijK−1) may push an

individual ij towards treatment, ZijK = 1, or towards control, ZijK = 0, but it is only the

active treatment, ZijK , that affects outcomes. In §2, the exclusion restriction says that

being Catholic or being in an urban area affects your educational outcomes only indirectly

to the extent to which it shifts you from a public to a Catholic high school, from ZijK = 0

to ZijK = 1. This may or may not be true. It is common to criticize conclusions based

on a purported instrument by claiming that the exclusion restriction does not hold, for

instance that Catholics should be compared to other Catholics because being Catholic is

directly relevant to educational outcomes quite apart from attending Catholic school. To

address such concerns, Definition 1 entertains the possibility that the exclusion restriction

holds for parts of (Zij1, . . . , ZijK) but not all of it.

Definition 1 Let K ⊆ {1, 2, . . . ,K}, and let k be the smallest element in K. The partial

exclusion restriction holds for K if, with Aij,k−1 = (Zij1, . . . , Zij,k−1) fixed by condi-

tioning, each individual ij has two potential outcomes depending upon the value of ZijK ,

namely rT ij if ZijK = 1 or rCij if ZijK = 0.

A partial exclusion restriction places a restriction on rij , saying that rija for a =

(a1, . . . , aK) may vary with (a1, . . . , ak−1) and aK , but not with (ak, . . . , aK−1). More

specifically, this restriction says: if a, a′ ∈ AK with a = (a1, . . . , ak−1, ak, . . . , aK−1, aK)

and
(
a1, . . . , ak−1, a

′
k, . . . , a

′
K−1, aK

)
, then rija = rija′ , and we write rija = rCij if aK = 0

or rija = rT ij if aK = 1 in an analysis that fixes Aij,k−1 = (Zij1, . . . , Zij,k−1) by condi-

tioning; however, rija may vary with (a1, . . . , ak−1), so this notation is meaningful only
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with Aij,k−1 = (Zij1, . . . , Zij,k−1) fixed, as it would be fixed if it were a covariate rather

than an instrument. If a partial exclusion restriction holds for K and K′ ⊂ K, then a

partial exclusion restriction holds for K′. If the partial exclusion restriction holds for

K ⊆ {1, 2, . . . ,K}, then Fisher’s hypothesis Hk of no effect at assignment k is the same

null hypothesis for each k ∈ K, namely H0 : rT ij = rCij , ∀i, j.

To clarify Definition 1, consider a few special cases. If K = {1, 2, . . . ,K}, then partial

exclusion is no different from the usual exclusion restriction for the K − 1 instruments

jointly. If K = {K}, then partial exclusion is simply the Neyman-Rubin notation for causal

effects, with Aij,K−1 = (Zij1, . . . , Zij,K−1) fixed as covariates rather than instruments, that

is, with I × 2K−1 strata defined by (xij ,Aij,K−1). In §2, partial exclusion for K = {2, 3}

would be the usual exclusion restriction for ‘being Catholic,’Zij2, if ‘being urban or rural,’

Zij1, were controlled as a covariate, that is, with I × 2 strata. In §2, passing from

K = {1, 2, 3} to K = {2, 3} entails two changes: first, ‘being urban or rural,’ Zij1, is

no longer assumed to satisfy the exclusion restriction; second, ‘being Catholic,’Zij2, is

assumed to satisfy the exclusion restriction only after adjustment for ‘being urban or rural.’

Definition 1 mentions a set K but makes use only of the smallest k ∈ K: whether the

partial exclusion restriction holds for the set K depends only on its smallest element. This

will be convenient later, in particular in Definitions 2 and 3. There is more to a valid

instrument than the exclusion restriction; the instrument must be randomized in a certain

sense. An analysis might omit a potential instrument, Zij`, because of concern that Zij`

is not randomized. The analysis for K = {1, 2, 3} and K′ = {1, 3} will entail the same

partial exclusion restriction because the minimal element is k = 1 in both K and K′, but

the analysis for K′ = {1, 3} will not use Zij2, so it will not require that Zij2 be randomized.

If the analyses for K and K′ concur, then we are less worried that a doubtful assumption

about Zij2 is critical to the study’s conclusions.
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Suppose that the partial exclusion restriction holds for K, and let k be the smallest

element in K. Then, by definition, an analysis that fixes Aij,k−1 = (Zij1, . . . , Zij,k−1)

by conditioning, by stratifying on Aij,k−1, has two potential outcomes, (rT ij , rCij), for

individual ij depending upon the value of ZijK . In this case, we may entertain the null

hypothesis of a shift effect, Hβ
k : rT ij = rCij + β, so that Rij − βZijK = rCij satisfies the

null hypothesis of no effect. In the conventional way, we may invert a test of no effect to

obtain a 1− α confidence interval for β, testing every possible β and retaining for interval

the values of β not rejected at level α. If the partial exclusion restriction holds for K, then

the hypothesis Hβ
` : rT ij = rCij +β is the same hypothesis for every ` ≥ k and in particular

for every ` ∈ K. As a consequence, we can ask whether several analyses concur in their

assessment of the evidence against a specific value of β; that is, we are not restricted to

asking about whether analyses concur in testing no effect.

3.4 Test statistics and sensitivity analyses

For each k, there is a stratified comparison of individuals with Zijk = 1 or Zijk = 0 within

I × 2k−1 strata defined by the I original strata based on xij , together with the 2k−1 strata

defined by Aij,k−1 = (Zij1, . . . , Zij,k−1). A statistic testing H0, say Tk = tk (Zk,R), at

step k is a function of the observed responses, R, and the treatment assignments, Zk, at

step k. In principle, Tk may depend also on the xij , the Aij,k−1, and the mik, but the

notation does not indicate this explicitly. In the current paper, Tk is van Elteren (1960)’s

weighted combination of Wilcoxon rank sum statistics, but the Hodges-Lehmann aligned

rank test or tests based on M-statistics are alternatives.

Consider the K steps one at a time, delaying consideration of their interdependence

to §4. At step k, assume the partial exclusion restriction holds for K ⊆ {k, k + 1, . . . ,K}

with k ∈ K. Then the sensitivity analysis at each step k has a conventional form, and
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can be analyzed in a conventional way, as in Rosenbaum and Small (2017) and Rosenbaum

(2018). If (2) were true at step k, and if γk = 0, then Fisher’s hypothesis H0 of no effect

would be tested by comparing Tk = tk (Zk,R) to its stratified randomization distribution.

For γk = log (Γk) > 0, there is a P -value testing H0 at the true value of uk obtained, from

elementary principles, by multiplying I×2k−1 expressions of the form (2) over the I×2k−1

strata to obtain the probability of a single possible value zk of Zk, then summing such

terms over all zk such that tk (zk,R) ≥ tk (Zk,R). This true P -value is not available to us

because uk is not observed, so we find the maximum such P -value over uk ∈ U , say P k,Γk .

To make the computations practical, a large sample approximation is used in place of the

exact distribution in (2). If γk = 0, this maximum P -value is the randomization P -value,

but as γk → ∞ the bound P k,Γk → 1, reflecting the familiar fact that an association,

no matter how strong, does not logically entail causation – suffi ciently large biases can

explain away an association. The practical question is quantitative, not logical: How much

bias, measured by Γk = exp (γk), would need to be present to render H0 plausible?

4 Evidence factors: Combining the K steps

4.1 Valid or biased assignment

Perhaps some of the K comparisons are valid and others are not.

Definition 2 Let K ⊆ {1, 2, . . . ,K}. The instrumental and direct comparisons in K are

valid if: (i) partial exclusion holds for K, and (ii) treatment assignment is governed by (2)

with γk = 0 for each k ∈ K.

If the instrumental and direct comparisons in K were valid, then we could perform |K|

separate valid tests of H0 using stratified randomization inference, one for each k ∈ K.

For instance, in §2, if the instrumental comparisons in K = {1, 2} were valid, then: (i)
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using “urban/rural”, Zij1, alone as an instrument would yield a valid randomization test

of H0, (ii) using “being Catholic”, Zij2, as an instrument within 2×I strata that controlled

for “urban/rural”, Zij1, would yield a valid randomization test of H0, but (iii) the direct

comparison, Zij3, of students in Catholic and public school, adjusting for Zij1 and Zij2,

may be biased by uij3.

In the absence of actual randomization, we cannot be sure a comparison is valid. Def-

inition 3 refers to a measured degree of bias in some comparisons, with the possibility that

other comparisons are severely biased.

Definition 3 Let K ⊆ {1, 2, . . . ,K}. The comparisons in K are biased by at most Γk ≥ 1,

k ∈ K if: (i) partial exclusion holds for K, and (ii) for each k ∈ K, treatment assignment

is governed by (2) with γk = log (Γk) for some unknown uk ∈ U .

If the instrumental and direct comparisons in K are biased by at most Γk ≥ 1, k ∈ K,

then we could perform |K| separate stratified sensitivity analyses for |K| tests of H0, with

one upper bound P k,Γk on the P -value for test k ∈ K. This bound says: if H0 is true and

if the bias in treatment assignment in comparison k ∈ K is at most exp (γk) = Γk, then the

chance that P k,Γk ≤ α is at most α. Moreover, each bound P k,Γk is sharp, being attained

for some uk ∈ U for γk = log (Γk). Definition 2 is Definition 3 with Γk = 1.

4.2 Evidence factors

If the comparisons in K are biased by at most Γk ≥ 1, k ∈ K, then we may obtain |K| upper

bounds P k,Γk on valid P -values testingH0, where these |K| tests make different assumptions

about which instruments and comparisons are valid or biased to a limited degree. How

are these |K| analyses related? Are they strongly dependent, merely repeating the same

evidence in different forms? Is it nearly a foregone conclusion that the |K| comparisons will

concur? Or are |K| comparisons nearly statistically independent, so that each comparison
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provides new evidence? Proposition 4 shows that the |K| random variables P k,Γk may be

treated as if they were statistically independent P -values under H0 if the comparisons in

K are biased by at most Γk ≥ 1, k ∈ K.

Proposition 4 If H0 is true and the comparisons in K are biased by at most Γk ≥ 1,

k ∈ K, then the |K| bounds P k,Γk on P -values testing H0 are stochastically larger than the

uniform distribution of the |K|-dimensional unit cube.

Proof. The proof uses Lemma 4 in Rosenbaum (2011) and runs parallel to the proof of

Proposition 3 of that paper. The stratified structure with instruments in (1) is different

from the structure in Rosenbaum (2011), but these differences do not affect the proof.

Being larger than the uniform distribution on the cube is not the same as being inde-

pendent, but it suffi ces for hypothesis testing. Various methods combine |K| independent

P -values, resulting in a single P -value. The combined statistic is a monotone function

of the component P -values. Lemma 1 of Rosenbaum (2011) shows that such a combina-

tion yields a valid combined P -value when the components are stochastically larger than

the uniform. Zaykin et al. (2002) combined independent P -values using the product of

those P -values smaller than some truncation point, κ, resulting in Fisher’s method for

κ = 1. Hsu et al. (2013) show that the truncated product with κ = 0.1 or κ = 0.2

often has higher power than Fisher’s method when applied to P -value bounds P k,Γk from a

sensitivity analysis, because the individual bounds are often larger than uniform on [0, 1].

5 Evaluating the performance of the proposed analysis

5.1 A model for evaluating performance

The method in §4 considers assumptions that might identify causal effects, but it makes

few other assumptions. To evaluate the performance of that method in comparison to
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other methods, such as two-stage least squares, we consider a specific model for response

R in terms of possibly invalid binary instruments Z1 and Z2 and treatment Z3:

R = α+ λ1Z1 + λ2Z2 + βZ3 + ε (3)

ζ = ν + ψ1 Z1 + ψ2 Z2 + η with E(ε, η |Z1, Z2) = (0, 0) , (4)

Pr (Z3 = 1 | Z1, Z2, η) = max {0, min (1, ζ)} (5)

where the bivariate (ε, η) are independent and identically distributed given Z1, Z2 with

finite variances; see Small (2007) for a related model. We follow A. P. Dawid and write

A | | B
∣∣∣ C for A is conditionally independent of B given C.

If ε and η are unrelated, then we do not need instruments. More precisely, if ε | | η
∣∣∣ (Z1, Z2),

then ε | | Z3

∣∣∣ (Z1, Z2), and we can draw inferences about β using (3) alone, adjusting for

(Z1, Z2), comparing the treated Z3 = 1 and control Z3 = 0 groups directly. Inference

about β could be based on a least squares regression in (3), ignoring (4) and (5), or it

could be based on the direct comparison of treated and control groups stratified for Z1 and

Z2; that is, (iii) with γ3 = 0 in §2 or step k = 3 in §3.

If ε and η were dependent given (Z1, Z2), but λ1 = λ2 = 0 with ψ1 6= 0 and ψ2 6= 0,

then Z1, Z2 would be instruments for Z3, so inference about β could be based on two-stage

least squares. Factors k = 1 and k = 2 in §3 would each provide valid inferences about β

with γ1 = 0 and γ2 = 0. If ε and η were dependent but either λ1 6= 0 or λ2 6= 0, then both

least squares and two-stage least squares would not yield valid inferences for β.

If ε and η were dependent given (Z1, Z2), but λ2 = 0 with ψ2 6= 0, then Z2 would be

a valid instrument for Z3 after adjustment for Z1. For instance, after stratifying for Z1,

factor k = 2 in §3 would provide valid inferences about β with γ2 = 0. However, even

factor k = 2 would be invalid if ε and η were dependent but λ2 6= 0.

16



5.2 Details of the model for numerical results

For numerical results, we specified the distributions in (3)-(5). Parameters were either

fixed or variable, with some fixed parameters chosen to resemble actual distributions in

the example in §2. In particular, we set Pr (Z1 = 1) = 0.33, Pr (Z2 = 1) = 0.40 as fixed

parameters, but we measured dependence between Z1 and Z2 by a variable parameter

δ = Pr (Z2 = 1|Z1 = 1) − Pr (Z2 = 1|Z1 = 0), with either δ = 0 for independence or

δ = 0.14 for dependence. Given (Z1, Z2), the two errors (ε, η) were bivariate Normal with

zero expectations, variable correlation ρ, and fixed variances 1 and 0.06. In the simulation,

to resemble §2, we set ψ1 = 0.20 and ψ1 = 0.25, but in later calculations we varied these

parameters to include weak instruments. We set ν = 0, varying λ1 and λ2. In the

simulation, the sample size is N = 4450, with I = 178 strata, i = 1, . . . , I, of size ni = 25,

as in the example, whereas calculations of design sensitivity let I →∞ with ni = 25. An

on-line supplement expands the scope of the simulation.

5.3 Simulation of the probability of finding an effect when there is none

The simulation concerns the validity of various tests of a true hypothesis that H0 : β = β0.

The simulation evaluates the size of a test that aspires to have level 0.05, so the test fails

if it rejects a true null hypothesis at a rate above 0.05. Theory tells us whether a test

is valid (V), with size at most equal to level, or biased (B), with size sometimes above

level, and the judgement of theory is indicated by a B or V in Table 2. The simulated

sizes agree with theory, but they add a quantitative assessment. Table 2 compares four

methods: two-stage least squares using both (Z1, Z2), and the three evidence factors that

use Zj adjusting for Zj−1, . . . , Z1.

Table 2 shows the results. Each situation was replicated 10,000 times, so that a

proportion has a standard error of at most
√

0.25/10000 = 0.005. Table 2 has sixteen
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sampling situations. In case 5, for example, all three tests of H0 based on instruments

have the correct level, but the direct comparison is all but certain to falsely reject H0.

All four tests are valid only in cases 1 and 9, in which both instruments and the direct

comparison are valid. In total, two-stage least squares is valid in only four cases, 1, 5, 9,

and 13, in which both instruments are valid.

Suppose that an investigator rejected H0 only if all three evidence factors concur in

rejectingH0. Used in this way, the evidence factor analysis fails to provide a warning about

biased comparisons only in cases 8, 15 and 16; it is valid in 13/16 cases. More formally,

suppose at least one of the three factors is valid. Under this supposition, following Berger’s

(1982) reasoning about intersection-union tests, if we reject H0 only when all three factors

reject H0, then we would falsely reject H0 with probability at most 0.05.

A weaker standard in §6.4 uses the idea of partial conjunction from Benjamini and

Heller (2008), saying that the evidence factors partially concur if at least two of them

reject H0. This weaker standard would fail, for instance, in case 4 where two factors are

likely to falsely reject H0; however, it provides protection whenever there is a single B in

columns (i)-(iii). It provides protection in cases 2 and 3 with one invalid instrument, and

in case 5 where both instruments are valid but the direct comparison is not.

To require evidence factors to concur is to require agreement among several nearly

independent analyses that are valid under different assumptions. Table 2 shows this

approach is not infallible, but it does offer substantially more protection than opting for

any single analysis, say two-stage least squares or the direct treatment-control comparison.

5.4 Design sensitivity

Section 5.3 examined the protection afforded by evidence factors against falsely rejecting

a true H0. We now consider testing a false null hypothesis, one that we hope to reject
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for valid reasons, that is, in the subset of valid analyses. Specifically, we test H0 : β = 0

when in fact β = 0.5. So, we delete the biased analyses that may reject because of bias,

and consider our prospects for rejecting H0 in valid analyses.

Fix a sampling situation and let the sample size increase, I → ∞. For each fixed Γ,

the power of a sensitivity analysis tends either to 1 or to 0 as I →∞, depending upon the

value of Γ. The transition point, Γ̃, is called the design sensitivity: the power tends to 1

if Γ < Γ̃ or to 0 if Γ > Γ̃. In that sense, Γ̃ is the limiting sensitivity to unmeasured bias

when sampling variability has been eliminated by a suffi cient increase in sample size.

Table 3 shows design sensitivities. In Table 3, instruments are sometimes weak, some-

times strong, and sometimes one is weak when the other is strong. It is known from

theory that an analysis that uses a weak instrument is invariably sensitive to small biases,

its design sensitivity Γ̃ being barely larger than 1; see Small and Rosenbaum (2008).

Table 3 reminds us of a couple of basic quantitative facts. First, when there is a

substantial treatment effect and no unmeasured bias, a direct comparison of treated and

control groups may be insensitive to quite large biases. In a matched pair, a bias of Γ = 2.5

could be produced by an unobserved covariate u that increases the odds of treatment by

a factor of 4 and increases the odds of a positive pair difference in outcomes by a factor of

6; see Rosenbaum and Silber (2009) and Rosenbaum (2017b, Table 9.1). Even if there is

reason to worry that a direct comparison might be slightly biased, we may discover that it

would have to be very biased to change the study’s qualitative conclusion.

In contrast, the instrumental variable analyses in Table 3 are all sensitive to smaller

biases. A bias of Γ = 1.25 is not trivially small: in a matched pair, it could be produced

by an unobserved covariate that doubled the odds of treatment and doubled the odds of

a positive pair difference in responses. In Table 3, design sensitivities of Γ̃ ≈ 1.2 occur

with strong instruments or Γ̃ ≈ 1.06 with weak instruments. A weak instrument has to
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be almost flawless to be convincing.

6 Effects of Catholic versus public high schools

6.1 Adjustments for observed covariates

In our examination of income from wages and salary for men in 1974, a preliminary step is to

adjust for observed covariates. A simple analysis uses 178 strata defined by covariates, and

a second analysis combines these 178 strata with a robust covariance adjustment. Following

Kim (2011), we adjust for an IQ score prior to high school, father’s and mother’s education,

parent’s income, father’s occupation score and occupational prestige score. Missing values

in covariates were handled using the tactic in Rosenbaum and Rubin (1984, Appendix) in

which treated subjects are compared to controls with a similar pattern of missing data.

Strata were built using the blockingChallenge package in R, where details may be

found. The method samples 178 students, uses optimal matching to match 24 other

students to each of the initial 178 students, making 178 blocks of size 25. The matching

minimizes a robust covariate distance. The student in each block most distant from the

remaining 24 is separated, and optimal matching is used again to pair these 178 individual

students with 178 blocks of size 24. This process is repeated until no further changes

are produced. The process was done 250 times, and we used the best stratification, that

is, the one with the smallest total within-block distance. The name blockingChallenge

invites efforts to build a better algorithms for minimum distance stratification.

For each covariate, there is an F-ratio in a one-way anova defined by the 178 strata,

comparing variation between strata relative to within strata. There is substantial variation

in the covariates between strata: F = 225.6 for IQ, F = 61.2 for the log of parental income,

F = 80.1 and F = 113.4 for education of mother and father, respectively, F = 44.3 and

F = 41.4 for occupation score and occupational prestige score, respectively. Although the
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covariates do vary inside strata, they vary much less than a random sample.

The covariance adjustment used the method in Rosenbaum (2002b). The outcome,

income from wages and salary in 1974, was regressed using M-estimation on indicators for

the 178 strata plus the covariates themselves, and the residuals became the outcome to be

analyzed by the method in §4. Importantly, this regression used the strata and covariates,

but not the treatment variables in Table 1. Use of this form of covariance adjustment with

an instrument is discussed and illustrated in Rosenbaum (2002b).

6.2 Naive analysis: each comparison is either flawless or useless

Table 4 performs the analyses from §4 on the wage data, testing three hypotheses, namely

that Catholic schooling does not increase wages, H0 : β ≤ 0, that it increases wages by at

most $500, H0 : β ≤ 500, and that it increases wages by at most $1000, H0 : β ≤ 1000.

As the median annual wage in 1974 for these men was $14000, an increase of $500 is about

3.6%. Two analyses are performed for H0 : β ≤ 0, namely a stratified analysis, and a

stratified analysis on residuals from covariance adjustment. Because there is no reason to

prefer the merely stratified analysis, the latter analysis is presented in greater detail.

The current section assumes that each of the three comparisons is essentially a ran-

domized experiment, once adjustments have been made for observed covariates. This is

the situation with Γ = 1 in Table 4. The case of Γ > 1 is discussed in §6.3.

With or without covariance adjustment, each of the three comparisons rejects the null

hypothesis of no effect of Catholic schools on wages, so the three evidence factors concur.

These three factors depend upon very different assumptions, and they would be nearly

statistically independent were the null hypothesis true, so it is news that the three analyses

concur. When the three analyses are pooled using the truncated product of P -values, with

the default truncation of 0.2, the resulting P -value is extremely small.
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When testing the hypothesis that the effect is at most $500, the situation is quite

different. Two analyses reject $500 as too small, but the remaining factor does not

concur. The pooled analysis is significant because of the urban/rural comparison; remove

that, and the pooled P -value from the two remaining factors is 0.103. A similar pattern

is seen when testing that the effect is at most $1000.

6.3 Sensitivity analysis: allowing for small or moderate imperfections in each analysis

How might small unmeasured biases alter the analyses in §6.2? Table 4 considers biases

of Γ = 1.1, 1.2, and 1.25. The parameter Γ has the same meaning in matched pairs and

in strata, but it is easiest to understand the paired case; see Rosenbaum and Silber (2009)

and Rosenbaum (2017b, Table 9.1) for detailed discussion of the issues discussed in this

paragraph. If we paired people based on covariates and flipped a fair coin to assign one

person in the pair to live in an urban area, or to be Catholic, or to attend Catholic school,

then each person in the pair would have probability 1/2 of each of these assignments. If

Γ = 1.25, then the same probability is somewhere in the interval [0.444, 0.556] rather than

1/2. This way of describing Γ focuses upon the impact of the unobserved covariate on

treatment assignment, but Γ may be understood, equivalently, in terms of an unobserved

covariate affecting both treatment assignment and outcome. Specifically, Γ may be given

a two-parameter interpretation, Γ = (Λ∆ + 1) / (Λ + ∆), called an amplification, where

∆ controls the association between the unobserved covariate and the outcome, while Λ

controls the association between the unobserved covariate and the treatment. As Γ =

1.25 = (2× 2 + 1) / (2 + 2) = (Λ∆ + 1) / (Λ + ∆), in a matched pair, a bias of Γ = 1.25

is the same as an unobserved covariate that doubles the odds of treatment, Λ = 2, and

doubles the odds, ∆ = 2, of a positive pair difference in wages, so a bias of Γ = 1.25 is

neither extremely large nor trivially small. A bias of Γ = 1.05 is small, and would be hard
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to rule out based on a priori considerations in most observational studies.

In Table 4, the pooled test of no effect of Catholic school using stratification and

covariance is insensitive to a bias Γ = 1.2; however, this is entirely due to the contribution

of the urban/rural instrument. Without the urban/rural instrument, the pooled test of

no effect using the other two factors is sensitive at Γ = 1.2.

So, the analysis depends rather heavily on the validity of urban/rural as an instrument.

The instrumental variable analysis notes higher wages for students from urban areas, and

attributes that difference in wages to a higher frequency of Catholic schooling in urban

areas. That attribution is suspect here. Among non-Catholics attending public school,

median wages were higher in urban areas, a median of $15000 in urban areas versus $13000

in rural areas. Among Catholics attending public schools, median wages were higher in

urban areas, a median of $14000 in urban areas versus $13400 in rural areas. It is a concern

that the analysis depends so heavily on the urban/rural instrument, as it is plausible that

wages are higher for students from urban areas for reasons other than Catholic schooling.

6.4 Partial conjunction

As just noted, the combined analyses in Table 4 lean heavily on the validity of urban/rural

as an instrument. Is it possible to quantify the degree to which a combined analysis

depends upon one of its components? How large can Γ be while still securing concurrence

in rejecting H0 by at least two components?

Partial conjunction hypotheses ask for concurrence among at least K of K sources of

evidence, 1 < K < K, without specifying in advance which K sources will concur. In

Table 4, K = 3 so the only possible value ofK is 2. The partial conjunction null hypothesis

asserts that at mostK−1 null hypotheses are false, so rejection of that hypothesis entails at

least K null hypotheses are false. In Table 4, we seek strong evidence that at least K = 2
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factors concur in rejecting H0. Benjamini and Heller (2008) and Wang and Owen (2019)

propose methods for partial conjunction hypotheses. Applying their results to Proposition

4, we may reject at level α the K partial conjunction hypothesis in the presence of biases

of at most Γk , k = 1, . . . ,K, if the P -value determined by the truncated product is ≤ α

when computed from K −K + 1 = 3 − 2 + 1 = 2 largest P k,Γk . In Table 4, the smallest

K − 1 = 1 smallest P k,Γk is always from k = 1 for the urban/rural comparison; however,

this method acknowledges that we did not know that prior to examining the data.

Consider partial conjunction testing of H0 : β = 0 using both stratification and covari-

ance adjustment in Table 4. In randomization tests, Γ1 = Γ2 = Γ3 = 1, applying the

truncated product to P 2,Γ2 = 0.0065 and P 3,Γ3 = 0.0149 yields a P -value of 0.00084, so

at least two factors concur in rejecting H0. At Γ1 = Γ2 = Γ3 = 1.1, the two bounds,

P 2,Γ2 = 0.1115 and P 3,Γ3 = 0.0667, combine to yield a P -value of 0.0319; however, at

Γ1 = Γ2 = Γ3 = 1.2, the combined P -value is 0.34. In short, at least two factors concur

in rejecting H0 if the unmeasured bias is quite small, Γ1 = Γ2 = Γ3 = 1.1, but for larger

biases, rejection depends entirely on the validity of the urban/rural instrument.

7 Discussion

Conventional analyses with two or more instruments, such as two-stage least squares,

assume all instruments are jointly flawless, and ignore the direct comparison of treated and

control groups. In contrast, our proposed analysis assumes less and reveals more. With

K−1 instruments, we produce K essentially independent comparisons that each make very

different assumptions for the validity of different comparisons, successively changing the

role of each instrument from instrument to covariate. To a considerable extent, neither

identical assumptions nor chance can explain concurrence among theseK analyses, whereas

an actual causal effect could explain concurrence. Each analysis is subjected to a sensitivity
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analysis that quantitatively evaluates the gradual failure of the assumptions upon which

that one analysis depends. A partial conjunction analysis asks about the evidence that

remains when the quantitatively most compelling analyses are set aside.

In their formulation, with a binary instrument and a binary treatment, Angrist, Im-

bens and Rubin (1996) show that a valid instrument yields a consistent estimate of the

average effect of a treatment on compliers, that is, on the subpopulation that accepts the

treatment if and only if the instrument encourages them to do so. Deaton (2009) argued

that an effect on the subpopulation of compliers to a particular instrument is unlikely to

be of interest unless similar effects, or understandably different effects, are produced in

other subpopulations. Imbens (2010) countered that it is best to be candid about what

instruments estimate, even if this candid description is less than we might prefer. Our

sense is that a comparison of several analyses with different instruments, as in §6, speaks

to Deaton’s concerns while meeting Imbens’standard for candor. If an evidence factor

analysis produces similar inferences about effects using very different instruments, then

this is not incompatible with an effect that does not vary greatly with the subpopulation

of compliers moved by a particular instrument. Conversely, if inferences about effect

vary from one factor to the next, then this raises concerns either about the validity of the

instrument or about the impact of the changing subpopulation of compliers.

Because instruments, particularly weak instruments, are greatly unsettled by the slight-

est flaw, theory suggests that the least sensitive finding – more precisely, the finding with

the largest design sensitivity Γ̃ – is expected to come from the direct comparison of treated

and control groups when, indeed, there is a causal effect without bias. This suggests, the

direct comparison should be one of the K factors considered and displayed. True, the

direct comparison may be the most biased comparison, so we might tolerate sensitivity to

smaller biases in an instrument than in a direct comparison.
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In the study of the effects of Catholic high schools, only one of the three evidence

factors points to an effect of Catholic schools that is insensitive to moderately small biases,

namely the factor that attributes higher incomes in urban areas to greater attendance of

Catholic schools in those areas. The other two evidence factors do not concur, neither

the comparison of Catholics and non-Catholics, nor the comparison of students attending

Catholic schools and students attending traditional public schools. As it is not implausible

that the urban/rural distinction acts on income in multiple ways, not just in virtue of

attendance in Catholic schools, in violation of the exclusion restriction, doubts are raised

about the strength of the evidence that Catholic schools are more effective than traditional

public schools, a conclusion compatible with the concerns raised by Altonji et al. (2005).
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Table 1: Counts and percents attending Catholic school for two potential instruments and
a direct comparison of Catholic and public schools.

Group Count % Attending Catholic School
Urban Religion School Urban Religion School Urban Religion School
Urban Catholic Catholic 1501 741 327 22 44 100

Public 414 0
Other Catholic 760 0 0 0/0

Public 760 0
Rural Catholic Catholic 2949 1045 177 6 17 100

Public 868 0
Other Catholic 1904 2 0 100

Public 1902 0
Total 4450 4450 4450

Table 2: Simulated probability of falsely rejecting, at the 0.05 level, the true null hypothesis
H0 : β = β0 using two-stage least squares (TSLS), (i) using the first binary instrument
alone, (ii) using the second binary instrument stratifying for the first instrument, (iii) using
a direct comparison of treated and control groups stratifying for both instruments.

Valid (V) or Probability of rejecting
Parameters asymptotically biased (B) H0 : β = β0

Our method Our method
Case λ1 λ2 ρ δ TSLS (i) (ii) (iii) TSLS (i) (ii) (iii)
1 0 0 0 0 V V V V 0.05 0.05 0.05 0.05
2 0.10 0 0 0 B B V V 0.48 0.91 0.05 0.05
3 0 0.10 0 0 B V B V 0.73 0.05 0.90 0.05
4 0.10 0.10 0 0 B B B V 1.00 0.91 0.90 0.05
5 0 0 0.82 0 V V V B 0.05 0.04 0.05 1.00
6 0.10 0 0.82 0 B B V B 0.52 0.91 0.05 1.00
7 0 0.10 0.82 0 B V B B 0.75 0.05 0.91 1.00
8 0.10 0.10 0.82 0 B B B B 1.00 0.91 0.91 1.00
9 0 0 0 0.14 V V V V 0.05 0.05 0.05 0.05
10 0.10 0 0 0.14 B B V V 0.57 0.91 0.05 0.05
11 0 0.10 0 0.14 B B B V 0.76 0.10 0.90 0.05
12 0.10 0.10 0 0.14 B B B V 1.00 0.96 0.90 0.05
13 0 0 0.82 0.14 V V V B 0.05 0.05 0.05 1.00
14 0.10 0 0.82 0.14 B B V B 0.60 0.91 0.05 1.00
15 0 0.10 0.82 0.14 B B B B 0.78 0.11 0.89 1.00
16 0.10 0.10 0.82 0.14 B B B B 1.00 0.96 0.90 1.00
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Table 3: Design sensitivities Γ̃ for valid analyses. For biased analyses, a “B” is given in
place of a design sensitivity.

Two strong instruments Two weak instruments
Parameters ψ1 = 0.20, ψ2 = 0.25 ψ1 = 0.09, ψ2 = 0.09

λ1 λ2 ρ δ (i) (ii) (iii) (i) (ii) (iii)
0 0 0 0 1.18 1.21 2.58 1.06 1.06 2.59
0.10 0 0 0 B 1.21 2.58 B 1.06 2.60
0 0.10 0 0 1.17 B 2.57 1.06 B 2.60
0.10 0.10 0 0 B B 2.57 B B 2.60
0 0 0.82 0 1.17 1.21 B 1.06 1.06 B
0.10 0 0.82 0 B 1.20 B B 1.05 B
0 0.10 0.82 0 1.17 B B 1.06 B B
0.10 0.10 0.82 0 B B B B B B
0 0 0 0.14 1.21 1.21 2.56 1.07 1.06 2.59
0.10 0 0 0.14 B 1.21 2.56 B 1.06 2.59
0 0.10 0 0.14 B B 2.56 B B 2.60
0.10 0.10 0 0.14 B B 2.56 B B 2.59
0 0 0.82 0.14 1.21 1.21 B 1.07 1.06 B
0.10 0 0.82 0.14 B 1.21 B B 1.06 B
0 0.10 0.82 0.14 B B B B B B
0.10 0.10 0.82 0.14 B B B B B B

Z1 weak, Z2 strong Z1 strong, Z2 weak
Parameters ψ1 = 0.09, ψ2 = 0.25 ψ1 = 0.20, ψ2 = .09

λ1 λ2 ρ δ (i) (ii) (iii) (i) (ii) (iii)
0 0 0 0 1.07 1.21 2.58 1.16 1.06 2.58
0.10 0 0 0 B 1.20 2.58 B 1.06 2.57
0 0.10 0 0 1.07 B 2.58 1.16 B 2.58
0.10 0.10 0 0 B B 2.59 B B 2.59
0 0 0.82 0 1.07 1.19 B 1.15 1.06 B
0.10 0 0.82 0 B 1.19 B B 1.06 B
0 0.10 0.82 0 1.07 B B 1.16 B B
0.10 0.10 0.82 0 B B B B B B
0 0 0 0.14 1.10 1.20 2.58 1.17 1.06 2.57
0.10 0 0 0.14 B 1.20 2.58 B 1.06 2.58
0 0.10 0 0.14 B B 2.58 B B 2.57
0.10 0.10 0 0.14 B B 2.57 B B 2.57
0 0 0.82 0.14 1.10 1.20 B 1.17 1.06 B
0.10 0 0.82 0.14 B 1.19 B B 1.06 B
0 0.10 0.82 0.14 B B B B B B
0.10 0.10 0.82 0.14 B B B B B B
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Table 4: Three evidence factors and their combination using the truncated product, with
and without covariance adjustment. The case Γ = 1 assumes comparisons are flawless,
three stratified randomized experiments. The table shows one equivalent amplification
of each Γ > 1. The table displays upper bounds on one-sided P -values testing the null
hypothesis that Catholic schooling raises wages by at most β dollars in the presence of a
bias of at most Γ. As the median annual wage was $14000, a $500 increase is about 3.6%.

Sensitivity Equivalent 3 Independent Factors
Parameter Amplification Urban/Rural Religion Direct Combined

Γ (Λ,∆) Stratifed analysis
H0 : β ≤ $0

1 (1, 1) 0.0000 0.0041 0.0082 0.0000
1.1 (1.4, 1.8) 0.0000 0.0835 0.0422 0.0000
1.2 (1.75, 2) 0.0004 0.4095 0.1331 0.0022
1.25 (2, 2) 0.0023 0.6225 0.2049 0.0330

Γ (Λ,∆) Stratifed + covariance adjustment
H0 : β ≤ $0

1 (1, 1) 0.0000 0.0065 0.0149 0.0000
1.1 (1.4, 1.8) 0.0001 0.1115 0.0667 0.0001
1.2 (1.75, 2) 0.0048 0.4738 0.1876 0.0170
1.25 (2, 2) 0.0182 0.6827 0.2747 0.1211

H0 : β ≤ $500

1 (1, 1) 0.0000 0.0394 0.2013 0.0000
1.1 (1.4, 1.8) 0.0005 0.3105 0.4345 0.0110
1.2 (1.75, 2) 0.0128 0.7451 0.6735 0.0982

H0 : β ≤ $1000

1 (1, 1) 0.0000 0.1304 0.6975 0.0002
1.1 (1.4, 1.8) 0.0016 0.5550 0.8826 0.0258
1.2 (1.75, 2) 0.0303 0.9018 0.9643 0.1592
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