
Using Evidence Factors to Clarify Exposure Biomarkers
Abstract. A study has two evidence factors if it permits two statistically independent

inferences about one treatment effect such that each factor is immune to some bias that

would invalidate the other factor. Because the two factors are statistically independent,

the evidence they provide may be combined using methods associated with meta-analysis

for independent studies, despite using the same data twice in different ways. We illustrate

evidence factors, applying them in a new way in investigations that have both an exposure

biomarker and a coarse external measure of exposure to a treatment. To illustrate,

we consider the possible effects of cigarette smoking on homocysteine levels, with self-

reported smoking and a cotinine biomarker. We examine joint sensitivity of two factors

to bias from confounding, a central aspect of any observational study.

Keywords: Biomarkers; evidence factors; reactive doses; sensitivity to confounding.

Doses of exposure are commonly conceived, along experimental lines, as versions

or levels of a treatment that an external environment inflicts upon an individual, but

many doses are not that simple. Observing that “exposure biomarkers indicate more

than just exposure,”Savitz and Wellenius [29] write: “many physiological processes

that might affect biomarker levels . . . may also influence or be influenced by disease

processes related to the health outcome of interest, potentially leading to confounding

bias.” Perera and Weinstein [16, p. 518] write: “Biomarkers of internal dose take

into account individual differences in absorption, metabolism, bioaccumulation or

excretion of the compound in question,” so they are more complex than a direct

measure of the intensity of an environmental assault; see also [27].

A dose that is determined by the external environment is called “nonreactive,”
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whereas a dose that may incorporate an individual’s reaction to the environment,

or the environment’s reaction to the individual, is “reactive” [22]. A nonreactive

dose is a treatment, a shot in the arm; whereas, a reactive dose is an outcome of

treatment, say an immune response to a vaccine, partly indicative of the intensity of

treatment, but perhaps incorporating heterogenious reactions of different individuals

to the same shot in the arm. The level of a toxin in the air is nonreactive, but two

people exposed to the same level of that toxin in the air may have different levels of

that toxin’s metabolites in their blood because their kidneys differ in their ability to

filter the toxin; then, blood levels of the toxin are reactive, that is, an outcome related

to the intensity of treatment. Issues of this sort led Weisskopf and Webster [32] to

argue for coarser, less personal, nonreactive measures of treatment or dose that are

unambiguously part of the external environment.

Evidence of causality would be more compelling if there were two independent

studies of different data by different investigators, one using a coarse nonreactive

dose, the other using a precise but potentially reactive dose, and if these two studies

with different limitations concurred. Susser [31, p. 148] argued replication is not

repetition: replication occurs only if “diverse approaches produce similar results.”

Statistical independence is a precise technical concept meaning that the outcome

of one study cannot be used to predict the outcome of the other, but under common

circumstances two studies of different data by different investigators would yield

statistical independence. These independent studies might be combined using meta-

analytic tools to provide stronger evidence than either study provides on its own,

with each study providing a check on the limitations of the other study.
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Less obviously, with suffi cient knowledge and care in design, a single investigator

can analyze the same data twice in such a way that two statistically independent

inferences are drawn, a method known as “evidence factors”; see [11,12,20,21,23,25]

and [26, pp. 136—141]. Care in design is required to produce the needed statistical

independence, because the same data are used twice. For the simplest example,

see [23, §3.2]. With insuffi cient care, two analyses of the same data are far from

independent, greatly exaggerating the data’s strength, as if the investigator had

duplicated the data set in a misguided effort to increase the sample size.

Here, we propose the use of two evidence factors, one based on a nonreactive

treatment, the other based on a potentially reactive dose. Each analysis provides a

check on the other, again with the possibility of combining statistically independent

results using meta-analytic tools.

STUDY DESIGNS WITH EVIDENCE FACTORS

A study design has two evidence factors if treatment assignment splits into two

aspects exhibiting certain symmetries. In the current paper, the study design is the

dose-control design: it consists of treated-control matched pairs, where the treated

subjects in different pairs received different doses of treatment. One factor is the

treated-control comparison within pairs, ignoring doses. The other factor relates the

treated-minus-control pair differences in outcomes to the variation in doses among

pairs. It is possible to show that this design yields two evidence factors when

analyzed in certain ways [20]. Here, we focus on a dose-control design in which

the treatment/control distinction is known to be nonreactive, but the doses may be
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reactive. Do the two factors concur?

Besides the dose-control design, there are many other designs with two or more

evidence factors. Stated informally, these designs have factors with certain sym-

metries, in some ways analogous to the symmetries in the theory of experimental

design [3], and the associated statistical procedures react to these symmetries in a

specific way; however, a general yet precise description requires some mathematical

tools not developed here [25]. Instead, consider a few specific designs.

In occupational epidemiology, it is common to have exposed subjects in, say, a

factory that exposes individuals to a potential toxin, and controls from some en-

tirely different place without known exposure to toxins. Among those exposed in

the factory, some individuals have occupations that entail direct, intense exposure

to the toxin, while others have occupations that are remote from direct exposures.

The biases that lead people to work in the factory may differ from the biases that

lead to specific occupations inside the factory. In this case, using suitable statisti-

cal methods, factory-versus-control constitutes one evidence factor, and within the

factory, direct-versus-indirect exposure constitutes a second factor. For the analysis

of an example, see [21, Table 1] and the help-files for mtm and truncatedP in the

sensitivitymv package in R. In parallel, an observational study of prenatal mor-

tality built a first evidence factor from babies born before exposure began, and a

second factor from babies born during the period of exposure though geographically

separated from exposure [35]. This study also contains a “placebo”test for bias [17],

comparing the two geographic regions before exposure began.

Some treatments are given by institutions, say hospitals or prisons. Some insti-
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Table 1: Distribution of covariates in matched pairs. Values are percentages.
Never-smoker Daily smoker

Female 43 43
Age ≥ 50 63 63

Black 25 24
Hispanic 17 15

Neither Black nor Hispanic 58 62

tutions typically give treatment A, others typically give B, others selectively give A

or B. One factor compares similar patients receiving A or B in the same hospital,

the other factor compares similar patients receiving A or B at different hospitals that

strongly prefer one treatment to the other [36].

AN EXAMPLE OF TWO EVIDENCE FACTORS

Bazano et al. [1] asked whether cigarette smoking increases homocysteine levels by

studying the association between homocysteine and cotinine, a biomarker for expo-

sure to tobacco. To illustrate evidence factors, we reexamine this using more recent

data from the 2003-2004 and 2005-2006 National Health and Nutrition Examination

Surveys, the most recent to measure homocysteine levels. Daily smokers are com-

pared to never smokers. In total, 1645 daily smokers were individually matched to

1645 never smokers, matching for sex, age, race and education. Figure 1 and Table

1 show the covariates in 1645 matched pairs. Matching was done in a conventional

way, using a covariate distance and propensity score [10], exact matching for sex and

ten-year age categories, minimizing the total distance within pairs [6].

Figure 2 exhibits the data that enter into the two evidence factors. One coarse
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comparison makes no use of the cotinine biomarker, along the lines suggested by

Weisskopf and Webster [32], while the other acts as if the biomarker were a nonre-

active dose, as in the original investigation [1]. Do these analyses concur? If they

do concur, to what quantitative degree is the evidence strengthened?

To the left in Figure 2(i), there is a boxplot of the smoker-minus-control pair

differences in logs of homocysteine levels. Despite taking logs to limit extreme ob-

servations, the differences in homocysteine levels are not Normally distributed, so

nonparametric methods are used throughout [7]. In Figure 2(iii), there is a boxplot

of smoker-control differences in cotinine. A few of the 1645 cotinine differences are

negative, indicating substantial exposure to tobacco by individuals who described

themselves as never-smokers. Finally, in Figure 2(ii), there is the “crosscut plot”

in which pair differences in logs of homocysteine levels are plotted against pair dif-

ferences in cotinine levels. Each pair difference compares two individuals who are

similar on covariates. The crosscut plot cuts a cross from the scatter-plot, with

points inside the quartiles appearing in gray, points outside appearing in black.

Our first analysis uses conventional methods that assume, somewhat naively,

that there is no unmeasured confounding. Using methods derived from Wilcoxon’s

signed rank statistic [7, §3.1-§3.3], the median difference in logs of homocysteine

levels is estimated to be 0.0963 with 95% confidence interval [0.0775, 0.1151], or a

multiplicative effect of e0.0963 = 1.101 or a 10.1% increase for smokers, with 95%

confidence interval [8.1%, 12.2%]. The two-sided P -value testing no effect is ≤

2.2 × 10−16. For several definitions of “no effect”that permutation tests correctly

do not distinguish, see [13, §5.8-§5.12].
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The crosscut statistic [24] forms the 2 × 2 table of counts of black points in

Figure 2(ii). Like the corner test [15], the crosscut test compares the 2× 2 table to

a hypergeometric distribution, but it focuses on outer corners with the consequence

that it performs well in sensitivity analyses: specifically, it has high design sensitivity,

even with modest correlations between dose and response [24]; see [30, 37] and [26,

§10] for general discussion of design sensitivity. Intuitively, large effects tend to

be insensitive to large biases, and the crosscut statistic focuses on large differences

in dose and response. The crosscut odds ratio is 1.89 = (122× 117) / (90× 84)

and the two sided P-value testing independence is 0.0019: larger smoker-control pair

differences in cotinine predict larger smoker-control differences in homocysteine.

The two tests just performed have several remarkable properties; they are two

evidence factors [20]. First, the two tests, the two P -values, are statistically inde-

pendent when their null hypotheses are true: it is as if they came from two unrelated

studies using different data sets. This first property does not hold for most pairs of

two statistics, but it does hold for the signed-rank and crosscut statistics and some

others [25]. Second, bias, no matter how strong, in who reports smoking does not

affect the crosscut test, and bias, no matter how strong, in the potentially reactive

nature of the cotinine biomarker does not affect the signed-rank test. This second

property will be made clearer in the sensitivity analysis to follow later. The two

tests in Figure 2 are not infallible – no scientific data are infallible – but the two

tests are two entirely separate pieces of information, fallible in different ways, yet

supporting the same conclusion.

Because the P -values are independent when testing their null hypotheses, they
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may be combined into a single P -value using techniques for meta-analysis, as if they

came from unrelated studies. Again, this is valid only because they are evidence fac-

tors. A traditional method for combining independent P -values is Fisher’s method,

which derives a new P -value from the distribution of the product of the two P -values.

One generalization, the truncated product P -value [34] is derived from the distrib-

ution of the product of P -values that are at most ι, conventionally ι = 0.2; it is

implemented as truncatedP in the sensitivitymv package in R, becoming Fisher’s

method when ι = 1. The truncated product has higher power than Fisher’s method

in sensitivity analyses in observational studies [9].

For instance, with ι = 0.2, a pair of independent P -values of 0.05 and 0.1 combine

via the truncated product method to a single P -value of 0.023, the pair 0.05 and 0.05

combine to 0.013, but the pair 0.05 and 0.5 combine to 0.12. When the two factors

concur, the reported evidence of an effect is strengthened, but when one factor finds

nothing the reported evidence is weakened. In Figure 2, each factor has a small

P -value, so the P -value derived from the truncated product is vanishingly small.

Closed testing is one method for testing several hypotheses. Using the truncated

product, closed testing terminates if the combined P -value is > α, conventionally

α = 0.05; otherwise, if the combined P -value is ≤ α, the two separate factors are

each tested at level α. Alternatively, the two hypotheses may be tested in order,

testing the first factor at level α, continuing on to test the second factor at level α

only if the first factor’s P -value is ≤ α. Both closed testing and testing in order

falsely reject at least one true hypothesis with probability ≤ α despite testing several

hypotheses at level α [5]. Testing in order is appropriate when the second factor has

8



no prospect of being credible without support from the first factor. Our analysis

uses closed testing, thereby giving equal emphasis to the two factors. In Figure 2,

closed testing rejects using the combined P -value, then rejects using each P -value

separately, so the two factors concur in finding two independent pieces of information

linking smoking with increased homocysteine.

COULD THE ASSOCIATIONS REFLECT CONFOUNDING RATHER

THAN A CAUSAL EFFECT?

In a randomized trial, random numbers assign treatments, ensuring the treatment an

individual receives is statistically independent of every attribute of that individual,

observed or not, thereby justifying the randomization inferences reported in a clinical

trial [3, §2]. In an observational study, treatments are not randomly assigned:

adjustments or matching may remove confounding due to observed covariates [26, §5],

but confounding due to unmeasured covariates is possible [26, §9]. Write θi for the

probability that the first individual in matched pair i receives treatment, with the

second assigned to control, so θi = 1
2
in a paired randomized trial.

A sensitivity analysis in an observational study asks about the magnitude of bias

from unmeasured covariates that would need to be present to alter the qualitative

conclusions of an observational study. What magnitude of bias from nonrandom-

ized treatment assignment would need to be present to accept a null hypothesis of

no treatment effect that was rejected when assuming there is no unmeasured con-

founding? Stated differently: What magnitude of bias would need to be present

for the confidence interval for the size of the effect to include zero effect? A simple
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approach [18, 19, 26] builds upon the familiar Cornfield inequality [2], quantifying

the departure from random treatment assignment by a number Γ ≥ 1; for other

approaches, see [4, 8, 14, 28, 33]. Here, Γ = 1 signifies no unmeasured confounding,

with each matched pair have probability θi = 1
2
. If Γ = 1.25, then the treatment

assignment probabilities θi are unknown, but the magnitude of their departure from

randomized assignment is limited to 0.44 ≤ θi ≤ 0.56, and such a bias could be

produced by an unobserved covariate that doubled the odds of treatment and dou-

bled the odds of a positive pair difference in the absence of an actual treatment

effect [26, Table 9.1]. If Γ = 1.5, then the departure from randomized assignment

is limited to 0.4 ≤ θi ≤ 0.6, and such a bias could be produced by an unobserved

covariate that doubled the odds of treatment and increased the odds of a positive

pair difference by four-fold. In general, a bias of Γ in treatment assignment means

that two individuals matched for observed covariates may differ in their odds of

treatment by a factor of Γ, so that 1/ (1 + Γ) ≤ θi ≤ Γ/ (1 + Γ), and this bias may

be produced by an unobserved covariate that increases the odds of treatment by a

factor of Λ and the odds of a positive pair difference in outcomes by a factor of ∆

where Γ = (Λ∆ + 1) / (Λ + ∆).

Table 2 displays three sensitivity analyses, one for the analysis of Figure 2(i),

another for the analysis of Figure 2(ii), and a third for their combination using the

truncated product method. The values in Table 2 are the maximum possible P -

value that a bias of Γ can produce in the absence of a treatment effect, so if this

value is less than α, conventionally α = 0.05, then a bias of Γ is too small to explain

away rejection of the null hypothesis of no treatment effect. Considered alone,
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Table 2: Sensitivity analysis for Wilcoxon’s test alone, for the cross-cut test alone,
and for their combination using the truncated product of P -values. The tabulated
values are upper bounds on one-sided P -values testing no treatment effect; double
these for two-sided P -values.

Γ for Wilcoxon’s Test
1 1.25 1.5 1.6 1.75 ∞

Wilcoxon P -value → 0.000000 0.000000 0.002143 0.038751 0.400004 1.000000
Cross-cut P -value ↓ Combining Wilcoxon and cross-cut P -values

Γ for 1 0.000942 0.000000 0.000000 0.000025 0.000350 0.005981 0.005981
Cross 1.15 0.008249 0.000000 0.000000 0.000182 0.002375 0.034469 0.034469
Cut 1.25 0.024162 0.000000 0.000000 0.000479 0.005950 0.075001 0.075001
Test 1.35 0.056563 0.000000 0.000000 0.001018 0.012064 0.130500 0.130500

∞ 1.000000 0.000000 0.000000 0.011842 0.101982 1.000000 1.000000

the Wilcoxon test in Figure 1(i) is insensitive to a bias of Γ = 1.5 with maximum

possible P -value 0.00214. Taken alone, the crosscut test in Figure 1(ii) is insensitive

to a bias of Γ = 1.25 with maximum possible P -value of 0.024. Moreover, these

two analyses are entirely separate pieces of information, so they provide mutually

reinforcing information. Combining the P -value of 0.0388 for Wilcoxon’s test at

Γ = 1.6 and the P -value of 0.024 for the crosscut test at Γ = 1.25 yields a combined

P -value of 0.00595. Even Γ = ∞ for either factor is insuffi cient to accept the

hypothesis of no effect, provided the bias affecting the other factor is not too large,

Γ = 1.5 for Wilcoxon’s test, Γ = 1.15 for the crosscut test.

ALTERNATIVE ANALYSES OF TWO EVIDENCE FACTORS AND

CONFIDENCE INTERVALS

An on-line supplement presents alternative analyses. In Figure 2(ii), the crosscut

analysis controlled for age and sex indirectly, using the fact that pairs are matched
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for age and sex. An alternative analysis stratifies pairs matched for age and sex,

adjusting twice for age and sex. Wilcoxon’s statistic is known to exaggerate sensi-

tivity to bias, and the supplement finds greater insensitivity when a better statistic

is used. As always, confidence intervals are obtained by inverting hypothesis tests;

e.g., [13, §3.5] and [7, §3.1-§3.3]. The supplement obtains shorter, more informative

confidence intervals in sensitivity analyses by replacing Wilcoxon’s statistic.

SIMULATED ILLUSTRATION OF TWO EVIDENCE FACTORS

To illustrate, a simulation was conducted. Let yi be the ith pair difference in

homocysteine levels as depicted in Figure 2(i) and let xi be the ith pair difference

in cotinine levels, as depicted in Figure 2(iii), for i = 1, . . . , I where I is the number

of pairs. The simulation oversimplifies some of the mathematics of about evidence

factors, but it illustrates key ideas.

The simulation model is: yi = λτ+(1− λ)xi+εi where (i) the εi are Normal with

expectation zero and variance ν, (ii) the xi are Normal with expectation τ ≥ 0 and

variance κ, (iii) εi and the xi are independent, (iv) 0 ≤ λ ≤ 1; so, yi has expectation

τ and variance (1− λ)2 κ+ ν. Setting (1− λ)2 κ+ ν = 1 makes τ the average effect

of smoking in units of the standard deviation of a pair difference,
√

var (yi). The

correlation of (yi, xi) is (1− λ)
√
κ.

If λ = 1, the average effect of smoking is τ but xi is irrelevant, independent of yi.

If λ = 0, then the average effect is still τ , with the effect on yi proportional to its

effect on xi. If τ = 0, there is no effect on yi, but if λ < 1, then xi is misleadingly

correlated with yi. Will the evidence factor analysis help to distinguish these very
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different situations? Indeed, it will.

Figure 3 simulates two evidence factors in four situations, plotting the P -value

from the crosscut test against the P -value from Wilcoxon’s test. The simulation

creates 5000 studies, each with I = 500 matched differences (yi, xi), similar to Figure

2. Each point in Figure 3 is one study. In Figure 3(i), there is no effect of smoking

(τ = 0) and cotinine is independent of homocysteine (λ = 1), and in this case the

two P -values are independent and uniform on the unit square. In Figure 3(ii), there

is a treatment effect (τ = .15) but the size of the effect does not track the level of

cotinine (λ = 1), so P -values from Wilcoxon’s test are small but the P -values from

the crosscut test are uniform on [0, 1], and again the P -values from the two tests are

independent. In Figure 3(iii), there is no treatment effect (τ = 0) but cotinine and

homocysteine are related (λ = .8) with correlation (1− λ)
√
κ = 0.141, so the P -

values from Wilcoxon’s test are uniform on [0, 1] but the P -values from the crosscut

test are small, and the two P -values are independent. In Figure 3(iv), there is an

average treatment effect (τ = .15) and it is larger when the difference in cotinine is

larger, so both P -values are typically small.

The two factors concur if closed testing terminates with rejection at α = 0.05 for

both factors. A concurrence is false if the null hypothesis is true for either factor.

The concurrence rate, ρ, is the probability of concurrence. We would like ρ to be

low when at least one null hypothesis is true and high when both are false. The

simulation estimates ρ by ρ̂ in Figure 3. In Figure 3(i)-(iii), ρ̂ is less than α = 0.05.

In Figure 3(iv), there is an association to be found in both factors, and the estimated

concurrence rate is ρ̂ = 0.74. So the method is performing as theory says it should,
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protecting against a false report of concurrence.

DISCUSSION

Biomarkers of exposure reflect both the dose of an environmental assault and an

organism’s reaction to that assault, and in that sense a biomarker is unlike a dose of

treatment manipulated in a laboratory experiment. A biomarker and an outcome

may be associated even when the environmental exposure has no effect [29], leading

some investigators to prefer coarser but unambiguously nonreactive doses of treat-

ment [32]. Evidence factors offer an investigator the opportunity to perform two or

more statistically independent studies at the same time, one using the potentially

reactive biomarker, the other using a nonreactive dose. Because the two studies pro-

vide two statistically independent tests of the treatment effect, their P -values may

be combined by meta-analytic techniques used to combine independent studies by

different investigators. Because the two studies have different limitations, they may

resolve the ambiguity introduced by the reactive nature of biomarkers. If the two

studies concur in finding a treatment effect, they formally provide stronger evidence

than either study would provide on its own.
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Figure 1: Boxplots of age and education in 1645 matched pairs of one daily smoker (S) and one
never-smoking control (C). Education is in five categories, where 1 is ≤ 9th grade, 3 is a high school
degree or equivalent, and 5 is a BA degree or more.
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Figure 2: Smoker-minus-control matched pair differences in logs of homocysteine levels, in cotinine
levels, and their relationship. Points between the quartiles are in gray, points outside the quartiles
are in black. The black points define the cross-cut test.
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(iii) No treatment effect, biomarker association
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(iv) Treatment effect, biomarker association
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Figure 3: Five thousand simulated pairs of P-values from two evidence factors, one from the
Wilcoxon signed rank test, the other from the cross-cut test. The concurrence rate ρ is estimated
by the simulation as ρ̂ with standard error ≤ 0.01.


	figs.pdf
	figs.pdf
	idef24
	figs





