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An elaborate theory of predictions of a causal hypothesis consists
of several falsifiable statements derived from the causal hypothesis.
Statistical tests for the various pieces of the elaborate theory help to
clarify how much the causal hypothesis is corroborated. In practice,
the degree of corroboration of the causal hypothesis has been assessed
by a verbal description of which of the several tests provides evidence
for which of the several predictions. This verbal approach can miss
quantitative patterns. In this paper, we develop a quantitative ap-
proach. We first decompose these various tests of the predictions
into independent factors with different sources of potential biases.
Support for the causal hypothesis is enhanced when many of these
evidence factors support the predictions. A sensitivity analysis is
used to assess the potential bias that could make the finding of the
tests spurious. Along with this multi-parameter sensitivity analysis,
we consider the partial conjunctions of the tests. These partial con-
junctions quantify the evidence supporting various fractions of the
collection of predictions. A partial conjunction test involves com-
bining tests of the components in the partial conjunction. We find
the asymptotically optimal combination of tests in the context of a
sensitivity analysis. Our analysis of an elaborate theory of a causal
hypothesis controls for the familywise error rate.
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1. Introduction

1.1. An elaborate theory of a causal effect and evidence fac-
tors

Fisher’s response to the question “what can be done in observational studies
to clarify the step from association to causation[?]” was: “Make your theo-
ries elaborate”(Cochran, 1965). Cochran explains this response by stating
that to clarify the step from association to causation one should envision as
many different consequences as possible of the causal hypothesis under inves-
tigation and design studies which are able to scrutinize these consequences.
In parallel to Cochran’s interpretation of Fisher’s response, Popper (1934,
1972), through arguments of classical logic, emphasizes the importance to
scientific progress for a hypothesis to have a higher ‘degree of testability’.
By degree of testability, Popper means the amount of falsifiable ‘basic state-
ments’ the theory generates. “If we look for confirmations”, Popper (1963)
writes, “It is easy to obtain confirmations . . . for nearly every theory”, while
“[e]very genuine test of a theory is an attempt to falsify it, or to refute it.
Testability is falsifiability[.]”

The motivating example of this paper, discussed in detail in §2, considers
the causal hypothesis that exposure to lead of a parent at the workplace
causes high level of lead in the blood of a child at home. To test this causal
hypothesis, Morton et al. (1982) established the following elaborate theory
(Rosenbaum, 2005): (a) children of parents who were occupationally exposed
to lead will have higher lead levels in the blood than otherwise similar con-
trol children; (b) among children of parents occupationally exposed to lead,
children of parents with higher occupational lead exposure will have higher
lead levels than otherwise similar children of parents with lower occupational
lead exposure; and (c) among children of parents occupationally exposed to
lead, children whose parents practiced poorer hygiene before leaving work
will have higher lead levels than otherwise similar children whose parents
practiced better hygiene. We are interested in the question: what is the
extent of corroboration of this theory provided by the data? Popper (1972),
in the addendum to his final chapter of The Logic of Scientific Discovery,
writes, “I tried to make clear that by the degree of corroboration of a theory I
mean a brief report that summarizes the way in which the theory has stood
up to tests, and how severe these tests were.” In practice, the degree of
corroboration of an elaborate theory has been evaluated by reporting what
fraction of test of predictions of the elaborate theory have p-values < 0.05
(where rejecting the null supports the elaborate theory); see, e.g., Centerwall
(1989) or Wong, Cook and Steiner (2015).
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There are two problems with just counting the fraction of p-values less
than 0.05 for assessing degree of corroboration of an elaborate theory. First,
if the tests are dependent, then multiple tests rejecting may not be providing
much more evidence than one test rejecting. Second, counting the fraction
of p-values less than 0.05 is not an efficient combination of the evidence.
For example, if two independent tests of the same null hypothesis both have
p-values 0.06, this is strong evidence against the null by Fisher’s method of
combining independent tests (Fisher, 1932), the p-value for Fisher’s com-
bined test is 0.02.

An additional problem with the current practice for assessing the degree
of corroboration for an elaborate theory is that the p-value computed for
each test of the elaborate theory assumes no unmeasured confounding. In
most observational studies, unmeasured confounding is a concern, and we
would not find convincing an inference that was valid with no unmeasured
confounding but invalid with a little bit of unmeasured confounding. A
sensitivity analysis examines how much bias from unmeasured confound-
ing could change the conclusions of a study that assumed no unmeasured
confounding (Cornfield et al., 1959; Rosenbaum, 1987; Hosman et al., 2010;
Keele and Minozzi, 2013; Stuart et al., 2013; Ding and Vanderweele, 2016;
Fogarty and Hasegawa, 2018).

We develop a method for assessing the extent of corroboration of an elab-
orate theory that overcomes the three shortcomings we identified above of
the current p-value counting approach. Our method involves three aspects:
(i) we decompose the test of the elaborate theory into evidence factors,
pieces that are affected by different biases and statistically near indepen-
dent (Rosenbaum, 2011, 2017; Zubizarreta et al., 2012) (the additional re-
quirement of different biases in each test increases robustness of the analysis
against multiple potential sources of biases); (ii) we assess the extent of
corroboration in a way that combines the information from different tests
efficiently and furthermore we use partial conjunction tests (Benjamini and
Heller, 2008; Benjamini, Heller, and Yekutieli, 2009); and (iii) we test the
evidence factors using sensitivity analysis methods that allow for specified
amounts of unmeasured confounding. The novel contributions of the paper
are the following: (a) we provide a systematic approach to decomposing an
elaborate theory into evidence factors; (b) as a way to test for partial cor-
roboration of the elaborate theory, we introduce partial conjunction tests
(partial conjunction tests have been previously developed for the purpose
of inference in neuroimaging experiments by Benjamini and Heller, 2008);
(c) we develop a sensitivity analysis method for carrying out (a) and (b)
that allows for a specified degree of unmeasured confounding; (d) we show
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that the method developed for (c) controls for the overall familywise error
rate in the multi-parameter sensitivity analysis; and (e) for the method for
(c), which involves combining sensitivity analyses for each of the evidence
factors, we find the asymptotically optimal such combining method.

1.2. Sir Karl Popper and degree of corroboration

The term ‘degree of corroboration’ was introduced by Popper in response
to an inattentive translation, ‘degree of confirmation’, of his original phrase
‘Grad der Bewährung’. Two decades after Logik der Forschung, in three
Br. J. Philos. Sci. notes (vol. 5, pp. 143–149, 1954; vol. 7, pp. 350–353,
1957; and vol. 8, pp. 294–302, 1958) Popper came up with a definition of
degree of confirmation or degree of corroboration. In these notes, his moti-
vation was rather different. He first attempted to show that, in the sense it
is to be used in science, degree of corroboration or acceptability of a theory
cannot be a probability. After showing this, he suggested a definition of the
degree to which a statement x is confirmed by a statement y which he named
the degree of confirmation of x by y. This definition was based on a list of
desiderata he had put down for such a quantity. This definition may serve
its purpose, but does not serve ours. First, such a definition depends on
a background probability measure appropriately defined on first-order lan-
guages, and computations under this probability measure have not been well
developed for statistical practice (Popper, 1954; Crupi, Chater and Tentori,
2013). Second, it is still an unsettled debate whether such a quantity is an
adequate measure of corroboration (Rowbottom, 2013; Sprenger, 2018). Fi-
nally, this definition attempts to answer a very different question than ours.
We are interested in the investigation of a causal hypothesis in an observa-
tional study and how best to make inferences about it from a frequentist
perspective, whereas Popper attempted to define a quantity which would
replace the p-value in investigation of a scientific theory.

1.3. Outline of the paper

The paper is organized as follows. We discuss our motivating example in
§2. Here we briefly recall the original study. The notation for our method
is introduced in §3.1. Section 3.2 recalls the treatment assignment models
for the observed data. A brief review of the testing procedures and their
sensitivity analysis is given in §3.3. The decomposition of the tests into
evidence factors is established in §4. Our main method is developed in §5. In
particular, Proposition 2 defines the (maximum) p-values for tests of partial
conjunction of the hypotheses. Using these p-values we get tests of all the
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partial conjunctions of the hypotheses for any given value of the sensitivity
parameters. Theorem 3 and its corollaries show that the familywise error
rate is controlled in our multi-parameter sensitivity analysis, with a range
of values of the bias parameter, for the tests of the collection of all the
partial conjunctions of the hypotheses. Section 6 compares the methods
of testing the elaborate theory in their performance in sensitivity analysis.
Section 6.2 finds asymptotically optimal methods in sensitivity analysis for
tests of partial conjunctions of the hypotheses for elaborate theories. In
§6.3, a simulation study is used for comparison of various methods in their
power of sensitivity analysis. The simulation show that methods that pool
evidence from the various evidence factors are favorable over methods that
look at the individual tests who lose power when looking at fractions of the
elaborate theory. Results of the study in §2 are in §7 and the paper ends
with a short conclusion in §8.

2. Lead absorption study of Morton et al.

2.1. The elaborate theory and the analysis

Morton et al. (1982) studied the effect on children of a parent’s occupational
exposure to lead. Does exposure of a parent, who works in a battery man-
ufacturing plant (in Oklahoma), to lead at the workplace cause an increase
in lead level in the blood of a child in the household? The causal hypothesis
is that an employee who is exposed to lead at the workplace carries lead
dust back to the household and causes the child to have a higher lead level.
To study their elaborate theory, given in §1.1, they collected data on 33
matched pairs, with one exposed child and one control child forming a pair.
Data were collected on the lead level in the blood of the children; on the
lead exposure levels, at the workplace, of the parents of the exposed children
— categorized as high, medium, and low; and on hygiene practices of the
parents of the exposed children before leaving work — categorized as good,
moderately good, and poor.

A multitude of tests were carried out to see if the observed data are consis-
tent with various pieces of the elaborate theory. They found a significantly
higher lead level in exposed children compared to their controls. Exposed
children of parents with higher lead exposure seemed to have higher lead
levels, and parent’s better hygiene practices seemed to indicate a lower lead
level in the blood of the children. Focus was not on the separate pieces of
the analyses but on the fact that there was a tendency of the evidence to
converge to the same direction of confirming the elaborate theory. Although
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not all the tests corroborated the elaborate theory, e.g., in comparing the ex-
posed children depending on their parent’s lead exposure level, ‘the medium
exposure group was not significantly different from the low exposure group,’
the concluding remark of the authors was that the study ‘provides additional
confirmation that increased risk of lead absorption occurs in children of em-
ployees in a lead-related industry[.]’ Clearly, the strategy was of a multiplist
(Reynolds and West, 1987) — several pieces of evidence seeming to converge
in favor of the causal hypothesis has been taken as a confirmation of the hy-
pothesis. We will develop a more quantitative approach to summarizing the
evidence about the elaborate theory from the study.

2.2. Is there evidence for a causal effect on children of occu-
pational exposure to lead?

Wilcoxon’s signed rank test for a higher lead level in the blood for exposed
child compared to its control has a p-value P1 = 6.96 · 10−5. Among the
exposed children, the p-value in comparing high or moderate lead exposure
at workplace for the parent versus a low exposure, using Wilcoxon’s rank
sum test, is P2 = 3.81 · 10−3. A comparison of exposed children with high
lead exposure level of the parents to medium lead exposure level of the
parents is P3 = 9.59 · 10−2. Of these three comparisons, the first one tests
part (a) of the elaborate theory, the latter two are tests for part (b) of the
elaborate theory. For part (c), consider exposed children from families with
parent exposed to high level of lead. The p-value is P4 = 9.44 · 10−3 when
comparing poor hygiene practice versus a good or moderately good hygiene
practice, and the p-value is P5 = 0.42 in comparing a moderately good to a
good hygiene practice. Note that for each test, a prediction of a true causal
hypothesis is set up as an alternative hypothesis.

If we ask for evidence that all pieces of the elaborate theory are true,
we would look at the maximum of those five p-values, which is 0.42. How-
ever, if were to pool all the p-values using Fisher’s method — which will
be shown using Theorem 1 gives a valid p-value — the pooled p-value is
1.41 · 10−6, evidence in support of the hypothesis that at least one part
of the elaborate theory is true. These are two drastically different num-
bers — neither suffices for our requirement of representing the extent of
corroboration of the elaborate theory offered by the study. If we use the
Holm-Bonferroni procedure, it would say that, at level 0.05, there is evidence
to reject three out of the five tests, since (5 + 1 − 3)P(3) = 0.02832 < 0.05
and (5 + 1− 4)P(4) = 0.191846 > 0.05 (Holm, 1979). We provide the results
from our method in §7. Our method, which we will now present, looks at the
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partial conjunction of the tests in combination with a sensitivity analysis.

3. Matched pair design with multiple treatments
across pairs

3.1. Notation: K treatments in I pairs

There are I pairs of units matched on their observed covariates. Let ij, for
j = 1, 2, index the units in pair i, i = 1, . . . , I. The observed covariates for

unit ij are xij ; xi1 = xi2 in each pair. Let Z
(1)
ij be the indicator of exposure

to treatment 1 for unit ij. In each pair there is one unit with treatment

1 and the other unit is not exposed to that treatment; so Z
(1)
i1 + Z

(1)
i2 = 1.

Each unit is further exposed to treatments 2, . . . ,K. We denote by Z
(k)
ij the

exposure status to treatment k for ij.
In the lead absorption study of §2, the first treatment, treatment 1, was

employment of a parent in a battery manufacturing plant in Oklahoma. For
an exposed child the subsequent treatments were based on parent’s potential
occupational exposure to lead — high or medium vs. low, treatment 2 and
high vs. medium or low, treatment 3 — and further based on hygiene level
of the parent — good or moderately good vs. poor, and good vs. moderately
good or poor, treatment 4 and treatment 5 respectively. So, I = 33 and
K = 5. Morton et al. collected data on occupation level of lead exposure and
hygiene practice, only for the individuals exposed to treatment 1. Thus, the

data for Z
(2)
ij , . . . , Z

(5)
ij were not available when Z

(1)
ij = 0. This does not hin-

der our analysis. As will become clear in our methodological development,
the effect of treatment 2 will be analyzed only after conditioning on Zij = 1.
Similarly, the effect of treatment 3 will be assessed only for exposed child
with father exposed to high or medium level of occupational lead exposure.

In practice, to create a matched design from two groups with Z
(1)
i = 1 and

Z(0) = 0, on a set of covariates x, one can use algorithms available in the
literature, see Hansen (2004); Pimentel et al. (2015) and Zubizarreta et al.
(2014).

Let Zijk = (Z
(1)
ij , . . . , Z

(k)
ij ) be the k dimensional partial assignment vector

of the first k treatments to unit ij, 1 ≤ k ≤ K. The units are assumed to
be assigned treatments independently — ZijK is independent of Zi′j′K for
two different units ij and i′j′ across pairs, but the different treatments to a

unit need not be assigned independently — Z
(k)
ij need not be independent

of Z
(k′)
ij for any k′. A father of an exposed child may have poor hygiene

because he is accustomed to work in an environment where exposure to lead
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is high, or he may have good hygiene. Since we make no assumption about
the dependence structure of ZijK , either of the above associations is allowed
in this model. Let Zk = (Z11k, Z12k, . . . , ZI2k) be the 2kI vector of first k
treatment assignments on 2I units.

The outcome for unit ij is Rij = rij(ZijK), determined from a set of
2K potential outcomes, rij(zK) where zK ∈ {0, 1}K (Neyman, 1923; Rubin,
1974). Only a single element of this set is observed. If there is a causal
effect, e.g. in §2, an effect of occupational exposure to lead, then the elaborate
theory states that rij(zK) > rij(z

′
K) for zK , z

′
K ∈ {0, 1}K whenever zK � z′K

(� denotes the partial ordering induced by coordinatewise ordering).

3.2. Assignment of treatment ZK

As mentioned above, it is assumed that ZijK is independent of Zi′j′K and
that there is no interference between the units. This section defines the
distribution of treatment exposure ZijK . The treatment assignment model
is determined by the observed pre-treatment variables and the unmeasured
confounders. This section also introduces the sensitivity parameters of our
analysis.

Let uij1, . . . , uijK be K unmeasured variables, 0 ≤ uijk ≤ 1, 1 ≤ k ≤ K
(Rosenbaum, 2002). Set F = {({rij(zK), zK ∈ {0, 1}K},xij , uij1, . . . , uijK); i =
1, . . . ,K, j = 1, 2}. We specify the distribution of ZijK as the product

of conditional distributions, i.e. Pr(ZijK = zijK | F) = Pr(Z
(1)
ij = z

(1)
ij |

F)
∏
k≥2 Pr(Z

(k)
ij = z

(k)
ij | F , Zij(k−1) = zij(k−1)).

For the first treatment, treatment 1, we consider the model

(1) Pr(Z
(1)
ij = 1 | F) =

exp(θ1(xij) + γ1uij1)

1 + exp(θ1(xij) + γ1uij1)
.

Here, θ1() is an arbitrary unknown function and γ1 ≥ 0 is a sensitivity
parameter, also unknown. Under this model, as units are matched so that

Z
(1)
i1 + Z

(1)
i2 = 1, we have

(2) Pr(Z
(1)
i1 = 1 | F , Z(1)

i1 + Z
(1)
i2 = 1) =

exp(γ1uij1)

exp(γ1uij2) + exp(γ1uij1)
.

With Γ1 = exp(γ1), the odds ratio of treatment 1 satisfies Γ−1
1 ≤ Pr(Z

(1)
i1 =

1 | F , Z(1)
i1 + Z

(1)
i2 = 1) Pr(Z

(1)
i2 = 0 | F , Z(1)

i1 + Z
(1)
i2 = 1){Pr(Z

(1)
i1 = 0 |

F , Z(1)
i1 +Z

(1)
i2 = 1) Pr(Z

(1)
i2 = 1 | F , Z(1)

i1 +Z
(1)
i2 = 1)}−1 ≤ Γ1. When Γ1 = 1

(γ1 = 0) the odds ratio is 1 and the probability of unit ij getting treatment
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1 in pair i is a coin flip. Thus, Γ1 is a parameter that measures the deviation
from the random assignment of treatment 1 in the pairs.

Consider the model for Z
(k)
ij as

(3) Pr(Z
(k)
ij = 1 | F , Zij(k−1) = zij(k−1)) =

exp(θk(zij(k−1)) + γkuijk)

1 + exp(θk(zij(k−1)) + γkuijk)
,

for k ≥ 2. As before, θk() is an unknown function and γk ≥ 0 is a sensitivity
parameter.

Upon conditioning on Zk−1 the interpretation of γk becomes clearer when

we consider the distribution of (Z
(k)
11 , Z

(k)
12 , . . . , Z

(k)
I2 ). Let ak−1 ∈ {0, 1}k−1,

consider the set of all units with Zij(k−1) = ak−1; write it as Ik−1(ak−1).
Further write |Ik−1(ak−1)| = nak−1

for the number of these units. Denote by

Z(k)(Ik−1(ak−1)) the vector of length nak−1
of kth treatment of the units in

Ik−1(ak−1) and by uk(Ik−1(ak−1)) the corresponding vector of kth unmea-
sured confounders, uijk’s. For 1 ≤ m ≤ nak−1

, let Znak−1
,m be the binary

vectors of length nak−1
with m ones and nak−1

−m zeros. Then (3) implies

Pr(Z(k)(Ik−1(ak−1)) = z | F ,Zk−1,
∑

ij∈Ik−1(ak−1)

Z
(k)
ij = m)

=
exp(γk z>uk(Ik−1(ak−1)))∑

ζ∈Znak−1
,m

exp(γk ζ>uk(Ik−1(ak−1)))
, for z ∈ Znak−1

,m.(4)

Irrespective of the value of uijk’s, if γk = 0 (Γk := exp(γk) = 1), this proba-

bility is
(nak−1

m

)−1
, which indicates a randomized assignment of m units to

be treated with treatment k among the units in I(ak−1). The larger the
value of Γk is the bias in treatment k is further from this random assignment.

Remark. Models (1) and (3) are our sensitivity analysis models. The pa-
rameters Γ1 and Γk’s are the sensitivity parameters whose values we choose
to constrain the amount of bias in the treatment assignment due to unmea-
sured confounding. Further, these models are also fully nonparametric, in
the following sense. If Γ1 is the bias in treatment 1, so that for any two
units which are similar in their observed covariates, the odds ratio of being
exposed to treatment 1 is at most Γ1, then, there exists θ1 and uij1’s so
that (1) holds. For a proof of this statement see Rosenbaum (2002), §4.2.
Similarly, a specification of Γk is equivalent to model (3).



10

3.3. K tests for the causal hypothesis and their sensitivity to
unmeasured confounding

The causal hypothesis has broad implications. When it is true, an exposure
to the treatment, at any level, increases the outcome. This section reviews
various nonparametric test statistics for the implications of the causal hy-
pothesis and, using the treatment assignment model discussed in §3.2, also
reviews the methods to assess the sensitivity of these tests to unmeasured
confounders. Consider ranking of the responses by a preferred choice of
ranking/scoring method for the K tests. Let qijk be the nonnegative score
of unit ij for test k, k = 1, . . . ,K. The scores are determined from the
observed outcomes (R11, R12, . . . , RI2).

Fix a = (a1, . . . , aK) ∈ {0, 1}K and let ak−1 = (a1, . . . , ak−1), 2 ≤ k ≤ K.
For convenience we further write for k = 1, k− 1 = 0, ak−1 = a0 = ∅. As in
our discussion of §3.2, let Ik−1(ak−1) be the set of units with Zij(k−1) = ak−1.
Set I0(a0) = I0(∅) to be the set of all 2I study units. Then we consider the
following form the test statistics for the paired comparison on treatment 1

T1,a0 =
I∑
i=1

sgn{(Z(1)
i1 − Z

(1)
i2 )(Ri1 −Ri2)}(qi11 + qi21).

The function sgn(x) is −1, 0 or 1 depending on x < 0, x = 0 or x > 0. Our
test statistics for the effect of treatment k ≥ 2 is

Tk,ak−1
=

∑
ij∈Ik−1(ak−1)

Z
(k)
ij qijk.

When k = 1 the test statistics is a pairwise comparison. In particular,
if qi1k = qi2k is the rank of absolute difference |Ri1 − Ri2| in the sorted
list of the pairwise absolute differences, then T1,a0 is twice the Wilcoxon
signed rank test statistics. When k ≥ 2 the test is across pairs. But since it

conditions on ak−1, thus in particular fixes Z
(1)
ij of all the units in Ik−1(ak−1),

at most one unit from each pair is considered. Technically though there is
no harm in scoring ij ∈ Ik−1(ak−1) as qijk by also using outcomes of units
i′j′ 6∈ Ik−1(ak−1).

Let Pk,ak−1
be the p-value assessing the extent to which the test statistics

Tk,ak−1
provides evidence for an effect of treatment k. The null hypoth-

esis, H0, is Fisher’s sharp null so that rij(zijK) = rij(z
′
ijK) for all ij and

zijK , z
′
ijK ∈ {0, 1}K . If T obsk,ak−1

is the observed value of the test statistics in
the data then

(5) Pk,ak−1
= Pr(Tk,ak−1

≥ T obsk,ak−1
| F ,Zk−1,

∑
ij∈Ik−1(ak−1)

Z
(k)
ij , H0).
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The test for the effect of exposure to kth treatment conditions on Zk−1 and∑
ij∈Ik−1(ak−1) Z

(k)
ij as they are irrelevant for the effect (Kalbfleish, 1975; Hel-

land, 1995). Conditioning on H0 does not affect the treatment assignment
distributions (1)–(4). If we could know uijk, we would calculate these p-
values from the first principle using the probability distribution (2) if k = 1
and (4) if k ≥ 2. The same is true if γk = 0. In the former of these two cases
there is potentially bias from confounding variable, but these variables are
known. In the second scenario there is no bias from unmeasured confound-
ing and we use the conditional randomization distribution of the treatment
k for calculating the p-values.

However, the unmeasured confounders, uijk’s are just that — unmeasured.
Thus, Pk,ak−1

cannot be calculated if γk > 0. We calculate the maximum
value of the p-value Pk,ak−1

, after fixing Γk = exp(γk), over the range of uijk;

call this maximum P k,ak−1,Γk
. The calculation is different between P 1,a0,Γ1 ,

the paired comparison for treatment 1, and P k,ak−1,Γk
for k ≥ 2, between

pair comparisons. Consider the paired comparison. Then

P 1,a0,Γ1 = Pr(
I∑
i=1

si(qi11 + qi21) ≥ T obs1,a0
| F),

where si’s are independently distributed taking values 1 with probability
Γ1/(1 + Γ1) and −1 with probability (1 + Γ1)−1 if Ri1 6= Ri2 and si ≡ 0 if
Ri1 = Ri2 (Rosenbaum, 1987; 2002, §4.3).

The finite sample calculation of P k,ak−1,Γk
, k ≥ 2, is cumbersome. Recall

Ik−1(ak−1) is the set of units with Zij(k−1) = ak−1. Let nak−1
= |Ik−1(ak−1)|

and m =
∑

ij∈Ik−1(ak−1) Z
(k)
ij . Temporarily denote the units in Ik−1(ak−1)

by ĩ1, . . . , ĩnak−1
so that the corresponding k scores are sorted in increas-

ing order, qĩ1k ≤ · · · ≤ qĩnak−1
k. There are 2nak−1 values of u(Ik−1(ak−1))

to maximize over. This can immediately be reduced to maximizing over
only ni,ak−1

− 1 of them. These u(Ik−1(ak−1))’s correspond to an l =
1, . . . , ni,ak−1

− 1, so that uĩ1k = · · · = uĩlk = 0 and uĩ(l+1)k = · · · =
uĩnak−1

k = 1. Still, the exact evaluation of the probabilities for these l

instances is less than efficient. We consider the large sample approximation
bound. It requires the following function

(6) Ck(a, b, c) =

min(b,c)∑
l=max(0,b+c−a)

(
c

l

)(
a− c
b− l

)
eγkl · 1(a ≥ b, b > 0, c > 0).

This function was discussed in Rosenbaum and Krieger (1990), equation (8).
Let Σl,ak−1

be a symmetric matrix of size nak−1
defined as follows. The diago-
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nal element of this matrix is Σl,ak−1
(j̃, j̃) = Ck(nak−1

− 1,m− 1, l){Ck(nak−1
,m, l)}−1

if j̃ ≤ l and Σl,ak−1
(j̃, j̃) = ΓkCk(nak−1

− 1,m− 1, l − 1){Ck(nak−1
,m, l)}−1

if j̃ ≥ l + 1. The (j̃, j̃
′
)th off-diagonal element of this symmetric ma-

trix is Ck(nak−1
− 2,m− 2, l){Ck(nak−1

,m, l)}−1 if j̃ ≤ l and j̃
′ ≤ l; it is

ΓkCk(nak−1
− 2,m− 2, l − 1){Ck(nak−1

,m, l)}−1 if j̃ ≤ l and j̃
′ ≥ l+1; and it

is Γ2
kCk(nak−1

− 2,m− 2, l − 2){Ck(nak−1
,m, l)}−1 if j̃ ≥ l+1 and j̃

′ ≥ l+1.
Then the mean of the test statistics for the unmeasured confounder l is

µl,ak−1
=

l∑
j̃=1

Ck(nak−1
− 1,m− 1, l)

Ck(nak−1
,m, l)

qĩj̃k +

nak−1∑
j̃=l+1

Γk
Ck(nak−1

− 1,m− 1, l − 1)

Ck(nak−1
,m, l)

qĩj̃k

=

nak−1∑
j̃=1

Σl,ak−1
(j̃, j̃)qĩj̃k,

and the variance is

ν2
l,ak−1

=

nak−1∑
j̃,j̃
′
=1

Σl,ak−1
(j̃, j̃

′
)qĩj̃kqĩj̃′k −

(
µl,ak−1

)2
.

Then the asymptotically correct value, as I →∞, of the maximum p-value
for the kth test statistics is (Rosenbaum, 2002, §4.6, §4.7)

P k,ak−1,Γk
= 1− min

l=1,...,nak−1
−1

Φ−1((T obsk,ak−1
− µl,ak−1

)/νl,ak−1
).

For each l, the computation of µl,ak−1
is a multiplication of two vectors

of size nak−1
. The computation of νl,ak−1

requires calculation of a quadratic
form for a square matrix of size nak−1

. Thus, when the values of the function
Ck(a, b, c) can be queried in constant time, the calculation of the means and
the variances together has a computational complexity of O(n2

ak−1
). To

implement the proposed methods, it would make sense to have the values of
the function computed beforehand and stored, since they do not require the
data. Also, the computational cost of these functions is at most O(m) =
O(nak−1

) when the coefficients in the summands of (6), the products of the
binomial coefficients, are pre-stored. Each l only requires 6 values of this
function to define Σl,ak−1

. The method for computing the bounds P k,ak−1,Γk

has been implemented in the R package senstrat.
For various methods of sensitivity analysis in observational studies, see

Cornfield et al. (1959), Egleston et al. (2009), Fogarty ans Small (2016),
Fogarty and Hasegawa (2018), Gilbert et al. (2010), Hosman et al. (2010),
Liu et al. (2013), and Yu and Gastwirth (2005). In particular see Rosenbaum
(2018) for a comprehensive discussion and faster computation of P k,ak−1,Γk

.
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4. Evidence factors and pooling evidence

In the lead absorption study of §2, there areK = 5 tests with a = (1, 1, 1, 1, 1)
or a = (1, 1, 1, 1, 0); the last coordinate is irrelevant for the design of the
tests. The K test statistics are Tk,ak−1

, 1 ≤ k ≤ K. The previous section
showed the computation of the maximum p-values for the these test statistics
when the bias from unmeasured confounders is at most Γk. These maximum
p-values are denoted by P k,ak−1,Γk

. Considered separately, for significance

level α, the test using Tk,ak−1
is sensitive at level Γk if P k,ak−1,Γk

≥ α. This
section establishes that these tests form evidence factors — they are biased
by separate confoundings and they are nearly independent when the null is
true.

Proposition 1 Fix a ∈ {0, 1}K . Under H0, when the treatment assignment
model is as (1) and (3), i.e. the bias in treatment k is at most Γk = exp(γk)

Pr(P k,ak−1,Γk
≤ αk ∀k ≥ 1 | F) ≤

K∏
k=1

αk.

Proof. We first note that P k,ak−1,Γk
, which is the maximum value of Pk,ak−1,Γk

in (5) under model, is a function of F , Zk−1 and
∑

ij∈Ik−1(ak−1) Z
(k)
ij . We

write

Pr(P k,ak−1,Γk
≤ αk ∀k ≥ 1 | F)

= Pr(P 1,a0,Γ1 ≤ α1 | F)×
K∏
k=2

Pr(P k,ak−1,Γk
≤ αk | P k′,ak′−1,Γk′

≤ αk′ ∀k′ ≤ k − 1,F).

Under H0 and (1), Pr(P 1,a0,Γ1 ≤ α1 | F) ≤ α1. Further for any k ≥ 2,
Pr(P k,ak−1,Γk

≤ αk | P k′,ak′−1,Γk′
≤ αk′ ∀k′ ≤ k−1,F) = E[E{1(P k,ak−1,Γk

≤
αk) | P k′,ak′−1,Γk′

≤ αk′ ∀k′ ≤ k − 1,F ,Zk−1,
∑

ij∈Ik−1(ak−1) Z
(k)
ij }]. The

outer expectation marginalizes over Zk−1 and
∑

ij∈Ik−1(ak−1) Z
(k)
ij . Under

H0 and (3), by (5), the inner expectation is at most αk. Combining these
facts gives the required result.

Theorem 1 Fix a ∈ {0, 1}K . Let f : [0, 1]K → (−∞,∞) be a func-
tion which is nondecreasing in its coordinates, i.e. f(x1, . . . , xk, . . . , xK) ≥
f(x1, . . . , x

′
k, . . . , xK) for any x′k ≥ xk. Suppose U1, . . . , UK are K i.i.d. ran-

dom variables uniformly distributed on [0, 1]. Under H0, when the treatment
assignment model is as in (1) and (3), for −∞ ≤ x ≤ ∞,

Pr(f(P 1,a0,Γ1 , . . . , PK,aK−1,ΓK
) ≤ x | F) ≤ Pr(f(U1, . . . , UK) ≤ x).
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Proof. The proof of the theorem follows from Proposition 1, along with
Theorem 6.B.4 and Theorem 6.B.16 of Shaked and Shanthikumar (2007).
A more general statement, Theorem 2, is proved in the appendix.

Theorem 1 shows that the joint distribution of the K p-values is stochas-
tically larger than the uniform distribution on K dimensional hyper-cube.
Thus, the tests are nearly independent in the sense of Theorem 1. Thus, in
the lead study, the maximum p-values corresponding to testing the K = 5
pieces of the elaborate theory are nearly independent. The consequence of
Theorem 1 is that usual methods of combining independent p-values can be
used to pool evidence and report a single number for the evidence against the
null that there is no causal effect. In particular, one can use Fisher’s method
(Fisher, 1932) of combining p-values to calculate PFisherK = Pr(χ2

2K >

−2
∑K

k=1 logP k,ak−1,Γk
). The dependence of PFisherK on Γk’s is suppressed

here for convenience of notation. Theorem 1 implies that for any α ∈ [0, 1],
when the biases are at most Γk, under H0, Pr(PFisherK ≤ α) ≤ α. There
are many such methods. Becker (1994) is a convenient reference for such
methods. Zaykin et al. (2002)s’ method deserves special mention. Zaykin
et al. proposed a variant of the Fisher’s method by combining independent
p-values using a truncated product. The test statistics is a product of those
p-values that are smaller than some truncation point, κ. Hsu et al. (2013)
show that the truncated product with κ = 0.20 or κ = 0.10 often has higher
power than Fisher’s method when applied to p-value bounds from a sensi-
tivity analysis. The intuition is: the individual maximum p-values are not
uniform but rather stochastically larger than a uniform distribution on [0, 1],
thus conservative.

5. Evidence from a partial conjunction of the tests:
A quantification of the extent of corroboration

The pooled evidence from all the K tests has the benefit of ease of inter-
pretation, yet it only provide information on whether at least one of the K
tests support the alternative hypothesis, not whether a larger fraction sup-
port the alternative hypothesis. This section considers evidence from partial
conjunctions of the tests. Throughout this section we fix a ∈ {0, 1}K .

Fix k, 1 ≤ k ≤ K. The null hypothesis for the effect of treatment k is the
hypothesis that treatment k does not change the potential outcome of the
units. Written formally H0,k : Rij(zijK) = Rij(z

′
ijK) for zijK , z

′
ijK ∈ {0, 1}K

if zijK
(k′) = z′ijK

(k′) for all k′ ≤ k−1; the alternative, H1,k, states that treat-
ment k increases the response. The test statistics Tk,ak−1

tests for this null
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hypothesis. The global null H0 is equivalent to ∩Kk=1H0,k. Indeed, in (5) we
can replace H0 by H0,k, all arguments of §3.3 and §4 remain unchanged. The
pooled evidence as in §4 is evidence against intersection of K nulls H0,ks.
A small value of the pooled evidence tells us that we have evidence for
at least one of these (one sided) alternatives. Consequently, it preserves
the familywise error rate: “Pr(Reject at least one H0,k; k = 1, . . . ,K) ≤
Pr(Reject ∩Kk=1 H0,k) = Pr(Reject H0)”.

The global null H0 is still false if at least one of the hypotheses is false,
or at least k of them are false. Is there evidence that at least k of the
K hypotheses are false? Is there evidence for the causal hypothesis that
occupational exposure to lead among parents causes childrens’ lead level to
increase based on the k of the K = 5 pieces of the elaborate theory? Write,
for 1 ≤ k ≤ K

H
k|K
0 : ∪Kl=K−k+1 ∩t∈{t1,...,tl},1≤t1<···<tl≤K H0,t,

for the hypothesis that at most k−1 of the K nulls are false. If H
k|K
0 is false

then at least k hypotheses are false. Specifically, H
1|K
0 ≡ H0. The evidence

against H
k|K
0 , i.e. evidence that at least k of the null hypotheses are false,

is found by looking at the largest K − k + 1 p-values. Recall the p-values
bounds were denoted by (P 1,a0,Γ1 , . . . , PK,aK−1,ΓK

). Let Γ = (Γ1, . . . ,ΓK).
We denote by P (1)a,Γ ≤ · · · ≤ P (K)a,Γ, those K values in increasing order.

Consider a function gk : [0, 1]K−k+1 → [0, 1]. Then the evidence against

H
k|K
0 has the form

(7) P
k|K
a,Γ = gk(P (k)a,Γ, . . . , P (K)a,Γ).

Theorem 2 is a general statement of Proposition 1 and Theorem 1 for any
subset of the tests. The proof of Theorem 2 is given in the appendix. This

theorem will be required to study the p-values P
k|K
a,Γ s.

Theorem 2 Fix a ∈ {0, 1}K . Let K = {k1, . . . , k|K|} ⊆ {1, . . . ,K}. Under
∩t∈KH0,t, when treatment assignment model is (1) and (3), but only for
k ∈ K, then for any nondecreasing function fK : [0, 1]|K| → (−∞,∞), for
|K| i.i.d. uniform [0,1] random variables U1, . . . , U|K|, and −∞ < x <∞,

Pr(fK(P k1,ak1−1,Γk1
, . . . , P k|K|,ak|K|−1,Γk|K|

) ≤ x | F) ≤ Pr(fK(U1, . . . , U|K|) ≤ x).

The kth test become sensitive for bias level Γk when P k,ak−1,Γk
≥ α. The

test for the partial conjunction hypothesis, H
k|K
0 , is sensitive at bias level

Γ = (Γ1, . . . ,Γk) if the pooled p-value is more than α, P
k|K
a,Γ ≥ α. Using
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Theorem 2 the following proposition establishes that P
k|K
a,Γ in (7) is a p-value

for testing H
k|K
0 . Proposition 2 is equivalent to Theorem 1 of Benjamini

and Heller (2008). See also Wang and Owen (2017) for related results.

Proposition 2 Fix a ∈ {0, 1}K . Consider model (1) and (3). Let gk :
[0, 1]K−k+1 → [0, 1] be a coordinatewise nondecreasing function in (7). Sup-
pose, Pr(gk(Uk, . . . , UK) ≤ α) ≤ α for some α ∈ [0, 1], where U1, . . . , UK are

i.i.d uniform random variables on [0, 1]. Then, under H
k|K
0

(8) Pr(P
k|K
a,Γ ≤ α | F) ≤ α.

Proof. Recall, H
k|K
0 : ∪Kl=K−k+1 ∩t∈{t1,...,tl},1≤t1<···<tl≤K H0,t. Fix, 1 ≤

t1 < · · · < tl ≤ K for some l ≥ K − k + 1 and set K = {t1, . . . , tK−k+1}.
Then, ∩t∈{t1,...,tl}H0,t implies ∩t∈KH0,k. By (7), with the fact that gk is
coordinatewise nondecreasing and Theorem 2, respectively, we bound the
probability in (8) by

Pr(gk(P t1,at1−1,Γt1
, . . . ,P tK−k+1,atK−k+1−1,ΓtK−k+1

)

≤ α | F) ≤ Pr(gk(U1, . . . , UK−k+1) ≤ α) ≤ α.

Proposition 3 Consider K functions, gk : [0, 1]K−k+1 → [0, 1], 1 ≤ k ≤ K.
Assume the following, for i.i.d. uniform [0,1] random variables U1, . . . , UK ,
for all k = 1, . . . ,K

(a) gk is nondecreasing in its coordinates.
(b) Pr(gk(Uk, . . . , UK) ≤ α) ≤ α, for some α ∈ [0, 1].
(c) gk(xk, xk+1, . . . , xK) ≤ gk+1(xk+1, . . . , xK) for all xk+1, . . . , xK ∈ [0, 1]

and xk ≤ min{xk+1, . . . , xK}.

Condition (c) is void if k = K. Fix a ∈ {0, 1}K . Suppose we reject H
k|K
0

if P
k|K
a,Γ = gk(P (k)a,Γ, . . . , P (K)a,Γ) is less than α. Under model (1) and

(3), the probability of rejecting any true null hypothesis among {Hk|K
0 ; k =

1, . . . ,K} is at most α.

Proof. Since, H
k|K
0 is the hypothesis that at most k − 1 nulls are false,

they satisfy H
1|K
0 ⊆ · · · ⊆ H

K|K
0 . Further, condition (c) implies P

1|K
a,Γ ≤

· · · ≤ P
K|K
a,Γ . This is because, by (c), for k = 1, . . . ,K − 1, P

k|K
a,Γ =

gk(P (k)a,Γ, . . . , P (K)a,Γ) ≤ gk+1(P (k+1)a,Γ, . . . , P (K)a,Γ) = P
k+1|K
a,Γ .

If there is no true null among {Hk|K
0 ; k = 1, . . . ,K} there is nothing

to prove. Otherwise, let k be the smallest number such that H
k|K
0 is
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true. Consequently, H
1|K
0 , . . . ,H

k−1|K
0 are false. Then a false rejection im-

plies rejection of a null hypothesis H
k′|K
0 which is true and k′ ≥ k with

P
k′|K
a,Γ < α. From the ordering of the p-values noted above, it implies

P
k|K
a,Γ < α. Hence the probability of rejecting any true null hypothesis

among {Hk|K
0 ; k = 1, . . . ,K} is bounded by Pr(P

k|K
a,Γ < α | F , Hk|K

0 ). This
is at most α by condition (a) and (b) using Proposition 2.

By the above proposition, for the proposed method, for testing the set
of K hypotheses for the partial conjunctions of the different pieces of the
elaborate theory, the type-I error rate is at most the nominal level α.

Condition (c) of Proposition 3 is satisfied by Simes’ method of com-
bining p-values (Simes, 1986). To see this, consider 0 ≤ xk ≤ xk+1 ≤
· · · ≤ xK ≤ 1. Simes’ method uses the function gk(xk, xk+1, . . . , xK) =

minl=1,...,K−k+1 l
−1(K−k+1)xk+l−1 in calculating P

k|K
a,Γ using (7). Accord-

ingly, gk+1(xk+1, . . . , xK) = minl=1,...,K−k l
−1(K−k)xk+l = minl=2,...,K−k+1(l−

1)−1(K − k)xk+l−1. It follows that

gk(xk, xk+1, . . . , xK) = min
l=1,...,K−k+1

l−1(K − k + 1)xk+l−1

≤ min
l=2,...,K−k+1

l−1(K − k + 1)xk+l−1

= min
l=2,...,K−k+1

{(l − 1)l−1(K − k + 1)(K − k)−1}(l − 1)−1(K − k)xk+l−1

≤ min
l=2,...,K−k+1

(l − 1)−1(K − k)xk+l−1

= gk+1(xk+1, . . . , xK).

Although, this condition may not be satisfied generally by any method of
combining p-values. For example, it is not satisfied by Fisher’s method.
To see this let K = 2, x1 = x2 = 0.5. Then g1(x1, x2) = Pr(χ2

4 >
−2 log x1 · x2) ≈ 0.596 > 0.5 = Pr(χ2

2 > −2 log x2) = g2(x2). The fol-
lowing proposition lists other methods that satisfies the conditions (a)–(c)
of Proposition 3. The first one in this list looks only at the minimum p-

value P (k)a,Γ for testing H
k|K
0 . This ‘minimum p-value’ method is fairly

well known in the statistics literature. The following method is Stouffer’s
method which is popular in the meta-analysis literature (Stouffer et al.,
1949). The last method in this list is a modification of ‘additive p-value
method’ of Edgington (1972).

Proposition 4 Conditions (a)–(c) of Proposition 3 are satisfied by each of
the following specifications of gks.

1. (minimum p-value method) gk(xk, . . . , xK) = 1−(1−min{xk, . . . , xK})K−k+1.
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2. (sum of z’s) gk(xk, . . . , xK) = 1 − Φ( (Φ−1(1 − xk) + · · · + Φ−1(1 −
xK))/

√
(K − k + 1) ).

3. (modified additive p-value method) With Ak = xk+· · ·+xK , gk(xk, . . . , xK) =

(min{ AK−k+1
k

(K−k+1)! , 1})
1(Ak≤ck) where ck = (K − k + 1)(1 − (K − k +

2)−1)K−k+1.

The proof of this proposition is given in the appendix. It might often be
useful to weight the p-values when combining them. However, the validity
of the combined p-value for the partial conjunction hypothesis would usually
require the weights to be predetermined. Also, the optimal choice of the
weights could depend on the specific problem (Chen, 2011; Lancaster, 1961;
Lipák, 1958; Whitlock, 2005; Zaykin, 2011). We do not discuss the various
methods of weighted combinations in this paper.

The rest of this section considers the sensitivity analysis to unmeasured
confounding over the multiple sensitivity parameters. There are K sensi-
tivity parameters, Γ1, . . . ,ΓK . We gradually establish that the proposed
sensitivity analysis for testing of partial conjunction of the hypotheses will
control for the familywise error rate. These results ensure the validity of
our analysis, which is presented in §7, of the elaborate theory of the causal
hypothesis for the effect of occupational lead exposure among parents on
children.

In the sensitivity analysis one first fixes a range of values of the bias
parameters. Let 1 = Γ11 < · · · < Γ1S1 be the range of values for the
bias parameter Γ1 for bias in treatment 1; 1 = Γk1 < · · · < ΓkSk

is the
range of values for the bias parameter Γk for treatment k. Let J = {Γ =
(Γ1s1 , . . . ,ΓKsK ) : 1 ≤ s1 ≤ S1; · · · ; 1 ≤ sK ≤ SK}. The goal is to find
the least amount of bias that could explain an observed association. We

denote by H
k|K
0,Γ the conjunction of the hypothesis H

k|K
0 and that the bias

is at most Γ. The statement that — the bias is at most Γ = (Γ1, . . . ,ΓK)
— means the treatment assignment satisfies (1) and (3) with γk = log Γk
for some set of unmeasured confounders uijk’s. The following theorem says
that the maximum error of the multi-parameter sensitivity analysis using

P
k|K
a,Γ s is bounded by α.

Theorem 3 Fix k, 1 ≤ k ≤ K. Consider the set of sensitivity parameters
J = {Γ = (Γ1s1 , . . . ,ΓKsK ) : 1 ≤ s1 ≤ S1; · · · ; 1 ≤ sK ≤ SK}. Assume the
conditions of Proposition 2. Fix a ∈ {0, 1}K . Consider the procedure that

rejects H
k|K
0,Γ for Γ ∈ J if P

k|K
a,Γ < α. Then the probability of rejecting any

true null hypothesis among the set of hypotheses {Hk|K
0,Γ ; Γ ∈ J} is at most

α.



CORROBORATION OF AN ELABORATE THEORY 19

Proof. Note first that H
k|K
0,Γ ⊆ H

k|K
0,Γ′

for Γ′ � Γ. This is true since a bias

of at most Γk implies bias at most Γ′k for Γk ≤ Γ′k. Let Γ ∈ J be such that

H
k|K
0,Γ

is true and if Γ ∈ J and H
k|K
0,Γ is true then Γ � Γ. Γ might be empty,

in which case there is nothing to prove.

Next, we note that P
k|K
a,Γ is increasing in Γ; P

k|K
a,Γ ≤ P

k|K
a,Γ′

for Γ ≤ Γ′. A
rejection of a true null hypothesis when the corresponding maximum p-value

is less than α, implies P
k|K
a,Γ

< α. Thus, the probability of rejecting any true

null hypothesis is upper bounded by Pr(P
k|K
a,Γ

< α), which is at most α by

Proposition 2.

The following corollary to the theorem considers a sensitivity analysis
with the same bias parameter for all the factors. The proof of the following
two corollaries are given in the appendix.

Corollary 1 Assume the same conditions as in Theorem 3, except let J =
{Γ = Γl(1, . . . , 1) : 1 = Γ1 < Γ2 < · · · < ΓL}. Fix a ∈ {0, 1}K and k,

1 ≤ k ≤ K. Consider the testing procedure that rejects H
k|K
0,Γ for Γ ∈ J if

P
k|K
a,Γ < α. Then the probability of rejecting any true null hypothesis among

the set of hypotheses {Hk|K
0,Γ ; Γ ∈ J} is at most α.

This corollary is relevant to the analyses of the lead example revisited
in §7, which considers Γ1 = 1,Γ2 = 1.2, . . . ,Γ11 = 3,Γ12 = 4,Γ13 = 4.8
and Γ11 = 5, see Table 3. The final corollary combines the situations of
Proposition 3 and Theorem 3.

Corollary 2 Assume that conditions (a)–(c) of Proposition 3 are satisfied
and assume the structure of J either as in Theorem 3 or as in Corollary

1. Fix a ∈ {0, 1}K . Consider the procedure that rejects H
k|K
0,Γ for Γ ∈ J if

P
k|K
a,Γ < α. Then the probability of rejecting any true null hypothesis among

{Hk|K
0,Γ ; 1 ≤ k ≤ K,Γ ∈ J} is at most α.

After rejecting a partial conjunction hypothesis it could be of interest
to test the individual hypotheses, asking, if at least k of the K hypotheses

are false, i.e., if H
k|K
0 is rejected, which of the individual hypotheses are

false? The following proposition states that, in the multiparameter sensi-
tivity analysis, the individual hypotheses can be tested, after rejecting the

partial conjunction hypothesis H
k|K
0,Γ , with a correction factor (K − k).

Proposition 5 Consider the setting of Theorem 3. Consider the testing

procedure that rejects H
k|K
0,Γ for Γ ∈ J if P

k|K
a,Γ < α; and when H

k|K
0,Γ is

rejected, for 1 ≤ t ≤ K the procedure further rejects the hypothesis H0,t
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when the bias is at most Γt if P t,at−1,Γt < α/(K − k). Then the probability
that this testing procedure rejects any true null hypothesis is at most α.

Proof. By Theorem 3, the probability that the procedure rejects any true

hypothesis in {Hk|K
0,Γ ; Γ ∈ J} is at most α. Suppose that a hypothesis H0,t

when the bias is at most Γt is falsely rejected. For this to happen the

procedure must first reject the hypothesis H
k|K
0,Γ . There are two possibilities.

First, H
k|K
0,Γ is true. In which case the probability of the false rejection is

controlled by Theorem 3.

Otherwise, H
k|K
0,Γ is false. Then, by definition, at most K − k individual

hypotheses are true and the tth hypothesis is one of them. This also implies
that the minimum bias in factor t is at least Γt. Suppose Γ̄t is the true bias
in factor t. Then Γ̄t < Γt. Thus, the rejection due to P t,at−1,Γt < α/(K−k),
implies P t,at−1,Γ̄t

< α/(K−k), as the individual sensitivity analysis p-values
are increasing in the sensitivity parameters. Thus, the probability of reject-
ing any true null hypothesis of the K individual hypotheses is bounded
by the probability of rejecting at least one of at most K − k true null
hypotheses H0,t and a bias of at most Γ̄t. This probability is less than
the sum of the probability of rejecting each of them, which is less than
(K − k)× α/(K − k) = α.

Therefore, in our lead example, where K = 5, under the setting of Corol-
lary 2, if we have evidence for at least 3 of 5 pieces of the elaborate theory,
we can test the 5 individual pieces of the theory by comparing the separate
sensitivity analyses p-values to α/2. By comparison, a Bonferroni correction
would have compared the separate sensitivity analyses p-values to α/5.

6. Comparison of combining methods

6.1. Settings under which power of sensitivity analysis is judged

In a sensitivity analysis to unmeasured confounding, there are some situa-
tions in which it is clear what we would like a procedure to do and some
situations in which the desired answer is unclear. An example of one of the
latter situations is when there is large bias from unmeasured confounding
and a treatment effect — we are nearly assured to reject the null for moder-
ate values of the sensitivity parameter, but, such a rejection decision is not
unambiguously sought after as we would also have rejected the null with
moderate bias when the null is indeed true. One of the former situations,
in which we are clear about the desired answer of the sensitivity analysis, is
when there is a treatment effect and no bias from unmeasured confounding.
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In this situation, a sensitivity analysis with a chosen value of the sensitivity
parameter checks whether we are still able to reject the null, allowing for
the level of bias given by the sensitivity parameter. It is desired then that
a method is not fooled by moderate values of the sensitivity parameter and
rejects the null. This situation has been called the “favorable situation” and
is the situation under which power of sensitivity analysis has been evaluated
(Rosenbaum, 2010; Hansen et al., 2014).

One might wonder why we evaluate the power of a sensitivity analysis
under a setting in which there is actually no bias from unmeasured con-
founding when the sensitivity analysis is worried about bias. The reason is
that, in most observational studies, we are worried about bias and cannot
know that there is no bias, but we would like to have high power to say that
we have evidence for a treatment effect that is insensitive to moderate bias
if in fact there is a treatment effect and no bias.

In §6.2, we will analyze the asymptotics of power of sensitivity analysis
when the sample size goes to infinity. There we provide a characterization
of the asymptotically optimal choice of combining method, and find asymp-
totically optimal combining methods. In §6.3, we compare the combining
methods in their power of sensitivity analysis using a simulation study. Since
in practice we only have a finite sample, looking at the power of sensitivity
analysis for finite samples might give us more guidance about the choice of
method for analysis.

6.2. Asymptotically optimal tests

When there is a treatment effect and no unmeasured confounding, a method
is preferred that can withstand larger bias in sensitivity analysis. When
the sample size goes to infinity, this threshold of the sensitivity parameter is
quantified as the design sensitivity of the method (Rosenbaum, 2004; Rosen-
baum, 2010; Hsu et al., 2013; Hansen et al., 2014; Zhao, 2018). However, for
partial conjunction testing from K evidence factors, design sensitivity for the
various combining methods is a crude criterion of comparison. As we will see
in Proposition 6 below, most combining methods have the same design sen-
sitivity. Instead, we look at the rate of rejection for the combining methods
in their sensitivity analysis when there is treatment effect and no unmea-
sured confounding. This rate of rejection is the Bahadur slope of a sensitiv-
ity analysis (Rosenbaum, 2015). The ratio of the slopes of two competing
methods of analysis is called the Bahadur efficiency of sensitivity analysis.
A method with larger slope needs a smaller sample size to make the desired
decision with high probability (Bahadur, 1967; Rosenbaum, 2015; Ertefaie
et al., 2018). In the following, we show that Fisher’s method and the trun-
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cated product method are optimal in this regard. Put differently, Fisher’s
method (Fisher, 1932) and the truncated product method (Zaykin, 2002)
have Bahadur efficiency of sensitivity analysis one, relative to each other,
and have efficiency at least one, relative to any other combining method.

We first introduce some notation to facilitate the discussion. Recall, the
partial conjunction p-values are defined for a set of functions (g1, . . . , gK)
where gk : [0, 1]K−k+1 → [0, 1], k = 1, . . . ,K, as

P
k|K
a,Γ = gk(P (k)a,Γ, . . . , P (K)a,Γ).

Here, P (1)a,Γ ≤ · · · ≤ P (K)a,Γ are the ordered values of P 1,a0,Γ1 , . . . , PK,aK−1,ΓK
.

Now we emphasize the choice of the combining functions by denoting g =

(g1, . . . , gK) and using P
k|K
a,Γ (g) to denote the above quantity. We use the

notation ef = (f1, . . . , fK) to denote Fisher’s combining functions. That is,
the kth function in ef is fk(xk, . . . , xK) = Pr(χ2

2(K−k+1) > −2
∑K

j=k log xj).
The optimality statement made in this section is an asymptotic statement.
We must think of P k,ak−1,Γk

as function of I, the number of pairs. Con-

sequently, P
k|K
a,Γ (g) is also a function of I. These dependencies will not be

made explicit below. The asymptotic here is with K fixed and I going to
infinity.

Consider the situation where there is an effect, i.e., some of the K hy-
potheses H0,k are false. Suppose, there is no unmeasured confounding. We
noted that the desired result of a sensitivity analysis, in this situation, is to
be able to reject the null. Suppose H0,k is false. The maximum p-value for
the kth factor is P k,ak−1,Γk

. For any sample size, as Γk →∞ this maximum

p-value P k,ak−1,Γk
→ 1, a formal statement for the known fact that any

treatment effect, however large, can be explained by large enough bias. The
design sensitivity for this factor is the bias level Γ̃k such that P k,ak−1,Γk

→ 0

for Γk < Γ̃k and P k,ak−1,Γk
→ 1 for Γk > Γ̃k; the limit here is with I →∞.

For example, in the lead study, each test for the 5 pieces of the elaborate
theory has a design sensitivity. When a piece of the theory is true, then
with sufficient sample the test would provide evidence for it as long as, and
only when, the bias level is less than the design sensitivity of the test.

Now we look at the sensitivity analysis for the partial conjunctions of these
evidence factors. The following proposition studies the design sensitivity of
this multi-parameter sensitivity analysis, and concludes that most methods
are indistinguishable in this regard.

Proposition 6 Take any combining method g. Suppose, gk(0, . . .) = 0 and
gk(1, . . . , 1) = 1 and gk is continuous at {0, 1}K−k+1. With the sensitivity
parameter Γ = (Γ1, . . . ,ΓK) for the partial conjunction testing, we have
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P
k|K
a,Γ (g) → 1 if Γ̃l < Γl for K − k + 1 many Γl. Also, P

k|K
a,Γ (g) → 0 if

Γl < Γ̃l for at least k many Γl and Γl 6= Γ̃l for all l.

The following theorem says that, in the class of functions for g considered
in §5, Fisher’s method, ef, has the optimal Bahadur slope.

Assumption: A sequence of numbers c(I) satisfies c(I) → ∞ as I → ∞.
As I increases to infinity, c(I)−1 log P k,ak−1,Γk

→ −rk(Γk) almost surely,
where rk(Γk) ∈ [0,∞], for k = 1, . . . ,K. We call rk(Γk) the slope of test k
at Γk.

Theorem 4 Consider any set of K combining functions g = (g1, . . . , gK)
such that each gk is coordinatewise nondecreasing and satisfies Pr(gk(Uk, . . . , UK) ≤
α) ≤ α, for any α ∈ [0, 1], for i.i.d. uniform(0,1) random variables U1, . . . , UK ;
k = 1, . . . ,K. We have, for Fisher’s combining method ef = (f1, . . . , fK),

lim
I→∞

c(I)−1 log P
k′|K
a,Γ (ef) ≤ lim inf

I→∞
c(I)−1 log P

k|K
a,Γ (g) for k′ ≤ k

almost surely for k, k′ = 1, . . . ,K.

The assumption talks about the Bahadur slope of sensitivity analysis for
the individual factors. Rosenbaum (2015) provides a detailed discussion on
the existence and calculation of the limit. The limit depends on the choice
of the test statistic, the joint distribution of the potential outcomes for the
units, and the distribution of the treatment assignment. The above as-
sumption and the theorem while general also allow us to consolidate several
important implications.

Following Proposition 6, our interest is in the case when we are able to
reject the null in the sensitivity analysis, when in truth there is an effect.
This is the case for a sensitivity parameter Γ with some of the bias levels less
than the design sensitivity. Let k̃ be the number of Γl with Γl < Γ̃l. Any

method in Proposition 6 will reject H
k|K
0 whenever k ≤ k̃, as the sample

size goes to infinity. The rate of rejection is used in Theorem 4 to tell
the combining methods apart. The following Proposition finds the slope of
Fisher’s method. This slope is the same as that of the truncated product
method with a truncation level κ, and is at least as large as any other
method that satisfies the conditions of Theorem 4.

Proposition 7 Suppose there is no unmeasured confounding and H0 is
false. Let the design sensitivity of the test k be Γ̃k. Consider a sensi-
tivity analysis with sensitivity parameter Γ such that Γk 6= Γ̃k for all k. Let
k̃ be the number of Γl with Γl < Γ̃l. Finally, let r(1)Γ ≤ · · · ≤ r(K)Γ are or-

dered values of r1(Γ1), . . . , rK(ΓK). We have limI→∞ c(I)−1 log P
k|K
a,Γ (ef) =
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−1(k ≤ k̃)
∑K−k+1

K−k̃+1
r(l)Γ. The truncated product method with κ ∈ (0, 1] has

the same slope as Fisher’s method.

6.3. Simulation study: Finite sample power of sensitivity anal-
ysis

Section 5 discussed various choices of the function gk, which is used to define

P
k|K
a,Γ . In this section we compare these combining methods in their power

of sensitivity analysis in finite samples using a simulation study.
In the simulation setting we set I = 150 and K = 5. Treatment k

has an additive effect βk and we assume a standard normal variate for the
base response in the absence of any treatment. Thus, when a unit has been
assigned treatment (z1, . . . , zK), a binary vector of length K, the response of
that unit is

∑K
k=1 zkβk+N(0, 1). We simulate a treatment assignment which

is random, thus within each pair, each unit has probability 1/2 of getting the
first treatment. Further, the treatments are simulated to be independent

of each other in a way that Z
(k)
ij

i.i.d∼ Bernoulli(0.6) for 2 ≤ k ≤ 4 and

Z
(5)
ij ∼ Bernoulli(0.5). In the appendix we present more simulation results

exploring other data generating processes, varying I, using different number
of treatments, using correlated treatment assignments, and by varying the
model of the response.

In the power of sensitivity analysis, we look at the simulated power of

of rejecting H
k|K
0 for the various methods when we assume various Γ val-

ues for bias. A method is less sensitive if, in the presence of a treat-
ment effect, it maintains power to detect that treatment effect at higher
values of Γ (Rosenbaum, 2004). We take a = (1, 1, 1, 1, 1) as in the §2.
The basic tests use Wilcoxon’s paired sample and two sample statistics.
These simulation results are presented in Table 1, where each sampling sit-
uation was replicated 15,000 times, so that a binomial proportion has a
standard error less than

√
0.25/15000 ≈ 0.004. The four methods com-

pared in the simulation are Holm-Bonferroni method (henceforth Holm’s),
Simes’ method, the modified additive p-value method (henceforth SumP)
and the truncated product method. Holm’s method ignores the near inde-
pendence of the separate analyses established in Theorem 2. For Holm’s
method gk(xk, . . . , xK) = (K − k + 1)xk (Holm, 1979). Simes’ method and
the SumP method satisfy the desired conditions of Proposition 3, Holm’s
method does not. For the truncated product method we consider the fa-
miliar level of truncation κ = 0.2. This method was further modified to
redefine P

k|K
a,Γ = max{P 1|K

a,Γ , . . . , P
k|K
a,Γ } for k = 1, . . . ,K, so that it provided

monotone p-values, required in Proposition 3. In Table 1, a simulated power
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of 0 is replaced by a blank cell for ease of viewing.
Table 1 does not show the results of a näive method that only counts the

number of hypotheses rejected when each sensitivity analyses is compared to
level 0.05. Because, this method does not provide control of the type-I error
for the testing problem. In the null case, scenario 1, in our simulations, the

probability of rejecting H
1|5
0 is 0.224, while the expected level is 0.05. Holm’s

method, whose simulated power is reported in the table, is the modification
of the näive method that controls the type-I error rate.

There are at least two ways of reading Table 1. First, we look at each
of the methods individually and compare the various scenarios of treatment
effect. Note that, the power for each of the methods decrease as we read
the table from right to left, increasing the value of k, and top to bottom
in each scenario, increasing the value of Γ. The null case of no treatment
effect, scenario 1, is a check that the analysis is performed at level of signif-
icance 0.05 and the methods control the type 1 error. Across the scenarios,
moving from the null scenario to the scenario where each treatment has an
effect of size 0.25 (scenario 3), the simulated power increases for each of the

methods. The power of rejecting at least 3 basic hypotheses out of 5, H
3|5
0 ,

for Γ = 1, is 9% for SumP method in Scenario 2 and 32% in Scenario 3. The
corresponding numbers are 5% and 10% for the Simes’ method, and 7% and
23% for the truncated product method.

Consider a second perspective to Table 1. We compare the methods
within the various scenarios. The power of the SumP method is much

smaller in rejecting H
1|5
0 (k = 1) compared to the other methods. The

power, in scenario 2 with Γ = 1, is 57% for SumP compared to 99% for
Holm’s, Simes’, and the truncated product method. Also, in terms of the
maximum bias level of sensitivity analysis a method can tolerate, (which,
one can read by looking at the level of bias where the numbers in the column
first vanishes) Holm’s and Simes’ method are less sensitive when k = 1 for
both scenario 2 and 3. The story is somewhat reversed for larger k. For

example, consider k = 3 or H
3|5
0 in scenario 3. The simulated power for

Γ = 1 is highest for SumP (32%) and lowest for Holm’s method (8%) and
second lowest for Simes’ method (10%); for the truncated product it is 23%.
Further, SumP is less sensitive (sensitive at Γ = 2) compared to Simes’, and
Holm’s method (sensitive at Γ = 1.6) and the truncated product method
(sensitive at Γ = 1.8).

To summarize, no one method is victorious. But it seems Simes’ or Holm’s
method is a poor choice as they lose their power fast going from right to
left of the table. Holm’s method essentially looks at the individual p-values
and does not pool them, thus it often misses that there is evidence for some
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Table 1
Simulation results for the power of sensitivity analysis evaluated at level 0.05. Numbers
are out of 100. A cell value is the percentage of times the decision that at least k many
H0,ls are false is made, with Γ1 = · · · = Γ5 =: Γ, out of 15000 simulations. Empty cells

represent the value 0. tP = truncated product method with truncation level κ = 0.20;
sP = the modified additive p-value method in Proposition 4; Si = Simes’ method;

HB = Holm-Bonferroni method.

k → 5 4 3 2 1

Γ ↓ tP sP Si HB tP sP Si HB tP sP Si HB tP sP Si HB tP sP Si HB

Scenario 1: (null case) β1 = · · · = β5 = 0

1 0 0 0 0 0 0 0 0 0 0 0 0 1 2 0 0 5 5 5 5

Scenario 2: β1 = β2 = β3 = 0.25, β4 = β5 = 0

1 1 2 7 9 5 5 40 28 33 32 99 57 99 99
1.2 2 3 1 1 18 12 16 16 90 34 94 93
1.4 1 7 4 7 7 66 16 78 77
1.6 2 2 2 2 38 7 55 55
1.8 1 1 1 1 18 3 35 34

2 7 1 19 19
2.2 3 10 10
2.4 1 4 4
2.6 2 2
2.8 1 1

3

Scenario 3: β1 = β2 = β3 = β4 = β5 = 0.25

1 6 10 2 1 23 32 10 8 59 61 42 39 100 84 100 100
1.2 1 3 8 15 3 3 34 37 23 21 100 64 100 100
1.4 1 3 6 1 1 17 19 12 11 99 43 100 100
1.6 1 2 8 9 6 6 95 26 99 99
1.8 1 4 4 3 3 83 14 96 95

2 2 1 2 2 65 7 89 89
2.2 1 1 1 1 46 3 78 78
2.4 1 1 29 1 65 64
2.6 17 1 50 50
2.8 9 37 36

3 5 26 25
3.6 1 8 7

4 3 3

fraction of the nulls not being true when each test does not have sufficient
power. While SumP has a much smaller power in providing evidence that
at least one of the nulls is false, it retains a lot of its power when looking for
more pieces of evidence (going right to left). The truncated product method
seems be a fair compromise based on these simulations.
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Table 2
The p-values, under the assumption of no unmeasured confounding, for testing the

hypothesis that at least k many H0,ls are false in the lead absorption study. K = 5 and
Γ1 = · · · = Γ5 = 1. SumP = the modified additive p-value method in Proposition 4.

method

Truncated
Product

k Simes’ SumP Fisher’s (κ = 0.20)

5 0.420036 0.420036 0.420036 1
4 0.191846 0.133107 0.169691 0.193477
3 0.028322 0.024172 0.015168 0.017172
2 0.015242 0.003268 0.000739 0.000795
1 0.000348 0.000346 1.41·10−6 1.57·10−6

7. Revisiting the lead absorption study

The p-values for the five tests were reported in §2 for the causal hypothesis
that occupational exposure to lead increases the lead level in the blood of the
children. If there is no bias due to unmeasured confounding, i.e., assuming
Γ1 = · · · = Γ5 = 1, these p-values are P1 = 2.69 · 10−5, P2 = 3.81 · 10−3,
P3 = 9.59 · 10−2, P4 = 9.44 · 10−3, and P5 = 0.42. The p-values for the tests
for partial conjunction of the hypotheses are given in Table 2. This table
reports the results from four methods of pooling evidence. Qualitatively, the
results from the four methods are similar. At α = 0.05, we have evidence
for rejecting at least 3 out of 5 basic nulls. The p-values from Fisher’s
method and truncated product method are much smaller when compared to
the other methods.

How sensitive are these tests to unmeasured confounding? The maximum
p-values for the five tests are presented at the top half of Table 3. At
significance level 0.05, of the five tests, the first, second, and the fourth test
rejects the corresponding hypotheses, assuming no bias from unmeasured
confounding. These tests become sensitive at bias levels Γ1 = 4.8, Γ2 = 2.8,
and Γ4 = 3, respectively. But, this is an incorrect interpretation of the
results. The type-I error is at most 0.05 in each column. But, across the
rows the type-I error is not controlled in this top half of Table 3. If we
control for the type-I error using Bonferroni correction, we would compare
the maximum p-values to 0.05/5 = 0.01. Thus, in the top half of the table,
maximum p-values less than 0.01 are highlighted in bold. The first test
becomes sensitive at Γ1 = 2.6, the second test at Γ2 = 1.4 and the fourth
test is sensitive even at Γ4 = 1.2.

The bottom half of Table 3 presents a sensitivity analysis for the partial
conjunctions of the tests. By Corollary 2, this part of the table provides
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Table 3
Evidence factors analysis of the lead absorption study. (1) The first half of the table:

Maximum p-values corresponding to the five tests with Γk = Γ, 1 ≤ k ≤ 5. We dropped
the subscript ak−1 from P k,ak−1,Γ used in Section 3.3–Section 6. (2) The second half of
the table: Maximum p-values for testing at least k of H0,ls are false when the bias is at
most Γ1 = · · · = Γ5 = Γ (using the truncated product method; truncation level κ = 0.20).
The maximum p-values less than 0.05 in the lower half, and less than 0.05/5 = 0.01 in

the upper half are highlighted in bold.

Γ ↓ P 5,Γ P 4,Γ P 3,Γ P 2,Γ P 1,Γ

1 0.420036 0.009441 0.095923 0.00381 0.00007
1.2 0.470253 0.013512 0.128619 0.006773 0.000263
1.4 0.512934 0.017814 0.161157 0.010557 0.000688
1.6 0.549884 0.022219 0.192914 0.015089 0.001425
1.8 0.582428 0.02672 0.223553 0.020268 0.002525
2 0.611224 0.031257 0.252909 0.025994 0.004007

2.2 0.636902 0.035769 0.280914 0.032177 0.005867
2.4 0.659949 0.040228 0.307565 0.038738 0.008085
2.6 0.680756 0.044615 0.332889 0.045607 0.010632
2.8 0.699635 0.048916 0.356935 0.052721 0.013472
3 0.716841 0.053123 0.379764 0.060029 0.016569
4 0.784073 0.072632 0.477894 0.098608 0.034756

4.8 0.822295 0.08707 0.541509 0.130282 0.051015
5 0.830333 0.090589 0.555832 0.138152 0.055166

Γ ↓ P
5|5
Γ P

4|5
Γ P

3|5
Γ P

2|5
Γ P

1|5
Γ

1 1 0.193477 0.017172 0.000795 0.000002
1.2 1 0.24579 0.027005 0.001965 0.000012
1.4 1 0.297852 0.037873 0.003864 0.000052
1.6 1 0.348663 0.049288 0.006544 0.00016
1.8 1 1 0.149304 0.026378 0.001114
2 1 1 0.161532 0.033879 0.002024

2.2 1 1 0.17212 0.041805 0.003305
2.4 1 1 0.181238 0.050012 0.004979
2.6 1 1 0.191565 0.05838 0.007052
2.8 1 1 0.205224 0.066817 0.009511
3 1 1 0.219255 0.075254 0.012336
4 1 1 0.293328 0.116672 0.030932

4.8 1 1 0.354142 0.148886 0.049496
5 1 1 0.369251 0.156729 0.054454

an adaptive analysis, in the sense that the total type-I error is at most
0.05. Learning from the results of the simulation study in §6 we chose
the truncated product method with truncation level 0.20 in computing the
partial conjunction p-values. When the bias is at most Γ = 1.6 we have
evidence to reject at least 3 of the 5 basic nulls. When the bias is at most
Γ = 2 we no longer have evidence to reject 3, but the evidence allows us to
reject 2 of the 5 basic nulls.
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We can also look at the individual tests after observing that at Γ = 1.6 we
reject at least 3 out of the 5 nulls, by comparing them to 0.05/2 = 0.025, see
Proposition 5. Three basic nulls, the first, second and fourth, are rejected
by this procedure with maximum p-values 0.001425, 0.015089 and 0.022219
respectively.

8. Conclusion

Study of a causal hypothesis is enhanced when directed tests are considered
for the various predictions of the hypothesis. Of course, these testable pre-
dictions of a causal hypothesis would be based on acknowledged theories at
the time when the causal hypothesis is being investigated. Inherent to these
predictions are requirements of simplicity and falsifiability.

On the other spectrum of etiology, a statistical analysis of a causal or eti-
ologic hypothesis should focus on comprehensive reports that help explicate
the step from an observed data to corroboration of the hypothesis. With
this aim, this paper presents a method of analysis of an elaborate theory
of predictions of a causal hypothesis. We consider such elaborate theories
whose falsifiable statements can be set up as alternative hypotheses in statis-
tical hypothesis testing problems. An etiologic hypothesis can still be false
because some other prediction of the hypothesis is not true. But the focus of
this paper has been to assess the extent to which the observed data supports
the predictions in the elaborate theory. Our analysis suggests decomposing
the tests of the elaborate theory into nearly independent factors. Partial
conjunctions of these tests tell us about fractions of the elaborate theory. As
the tests might themselves be biased by unmeasured confounding, we also
consider a multi-parameter sensitivity analysis. We are thus able to quan-
tify the bias levels at which the observed data supports a certain fraction
of the elaborate theory. When the tools of this analysis are appropriately
chosen, the overall type-I error of this analysis is controlled without having
to pay a price for having considered multiple tests, thus, without losing any
power.

Appendix

Proof of Theorem 2. LetK = {k1, . . . , k|K|} ⊆ {1, . . . ,K} and U1, . . . , U|K|
be |K| i.i.d. random variables uniform on [0, 1]. Since P k1,ak1−1,Γk1

is the

maximum of P k1,ak1−1
over the unmeasured confounders uijk1 ’s. For α1 ∈
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[0, 1] we have

Pr(P k1,ak1−1,Γk1
≤ α1 | F , H0,k1)

≤ Pr(Pk1,ak1−1
≤ α1 | F , H0,k1)

≤ E[Pr(Pk1,ak1−1
≤ α1 | Zk1−1,

∑
ij∈Ik1−1(ak1−1)

Z
(k1)
ij ,F , H0,k1)] ≤ E[α1] = Pr(U1 ≤ α1).

The expectation in the previous calculation is over the joint distribution of

Zk1−1,
∑

ij∈Ik1−1(ak1−1) Z
(k1)
ij conditional on F , H0,k1 . We borrow the nota-

tion of Shaked and Shanthikumar (2007). Then U1 ≤st P k1,ak1−1,Γk1
.

Now let 2 ≤ l ≤ |K|. Note that for any kl the maximum p-value
P kl,akl−1,Γkl

is a function of Zl and F . Hence, for αl ∈ [0, 1],

Pr(P kl,akl−1,Γkl
≤ αl | P k1,ak1−1,Γk1

, . . . , P kl−1,akl−1−1,Γkl−1
,F , H0,kl)

≤ Pr(Pkl,akl−1,Γkl
≤ αl | P k1,ak1−1,Γk1

, . . . , P kl−1,akl−1−1,Γkl−1
,F , H0,kl)

≤ E
[

Pr(Pkl,akl−1,Γkl
≤ αl | Zl−1,

∑
ij∈Ikl−1(akl−1)

Z
(kl)
ij , P k1,ak1−1,Γk1

,

. . . , P kl−1,akl−1−1,Γkl−1
,F , H0,kl)

]
≤ E

[
Pr(Pkl,akl−1,Γkl

≤ αl | Zl−1,
∑

ij∈Ikl−1(akl−1)

Z
(kl)
ij ,F , H0,kl) |

P k1,ak1−1,Γk1
, . . . , P kl−1,akl−1−1,Γkl−1

,F , H0,kl

]
≤ E[αl | P k1,ak1−1,Γk1

, . . . , P kl−1,akl−1−1,Γkl−1
,F , H0,kl ]

≤ αl = Pr(Ul ≤ αl).

Thus under ∩t∈KH0,t and conditional on F ,

Ul ≤st [P kl,akl−1,Γkl
≤ αl | P k1,ak1−1,Γk1

, . . . , P kl−1,akl−1−1,Γkl−1
]

for all 2 ≤ l ≤ |K|.
Also, (U1, . . . , U|K|) is a conditionally increasing in sequence (CIS) (see,

eq 6.B.11 of Shaked and Shanthikumar (2007)). Thus, by Theorem 6.B.4
of Shaked and Shanthikumar (2007) under ∩t∈KH0,t and conditional on F ,
(U1, . . . , U|K|) ≤st (P k1,ak1−1,Γk1

, . . . , P k|K|,ak|K|−1,Γk|K|
).

Let U ⊂ R|K| be called an upper set if, x ∈ U and y % x implies y ∈ U .
Then, we have for any upper set of the |K| dimensional euclidean space
Pr((U1, . . . , U|K|) ∈ U) ≤ Pr((P k1,ak1−1,Γk1

, . . . , P k|K|,ak|K|−1,Γk|K|
) ∈ U).
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Now to complete the proof set U = {(x1, . . . , x|K|) : fK(x1, . . . , x|K|) > x}
and note that U is an upper set since fK is coordinatewise nondecreasing.

Proof of Proposition 4. 1. Consider first the ‘minimum p-value’ method.
Condition (a) is obviously true. Next, note that Pr(min{Uk, . . . , UK} ≤ p) =
1−(1−p)K−k+1. Thus condition (b) is satisfied. Since, Pr(gk(Uk, . . . , UK) ≤
α) = Pr(min{Uk, . . . , UK} ≤ 1 − (1 − α)1/(K−k+1)) = 1 − (1 − (1 − (1 −
α)1/(K−k+1)))(K−k+1) = α. Finally, to check condition (c) fix xk ≤ xk+1 ≤
· · · ≤ xK . To check gk(xk, . . . , xK) ≤ gk+1(xk+1, . . . , xK), it is enough to
show that (1−xk)K−k−(1−xk+1)K−k+1 ≥ 0. This is true since, (1−xk)K−k−
(1−xk+1)K−k+1 ≥ (1−xk+1)K−k−(1−xk+1)K−k+1 = (1−xk+1)K−kxk+1 ≥
0.

2. Proofs of condition (a) and (b) are straightforward for Stouffer’s
method. To check condition (c) consider xk ≤ xk+1 ≤ · · · ≤ xK . Then, after
some rearranging gk(xk, . . . , xK) ≤ gk+1(xk+1, . . . , xK) is equivalent to the
inequality, (

√
(K − k + 1)/(K − k)−1)(Φ−1(1−xk+1)+· · ·+Φ−1(1−xK)) ≤

Φ−1(1−xk). Since xk ≤ min{xk+1, . . . , xK}, it is enough to check that this
condition holds with xk = 1−Φ( (Φ−1(1−xk+1)+· · ·+Φ−1(1−xK))/(K−k) ).
Then the check reduces to checking (

√
(K − k + 1)/(K − k) − 1)(Φ−1(1 −

xk+1) + · · ·+ Φ−1(1−xK)) ≤ (Φ−1(1−xk+1) + · · ·+ Φ−1(1−xK))/(K− k),
or (

√
(K − k + 1)/(K − k) − 1) ≤ 1/(K − k), or

√
1 + 1/(K − k) ≤ 1 +

1/(K − k); which is true.
3. Finally, consider the ‘modified additive p-value’ method. Condition

(a) is obvious since gk is an increasing function of Ak = xk + · · · + xK .
For condition (b) note from Edgington (1972), Pr(Uk + · · · + UK ≤ x) ≤
xK−k+1/(K − k + 1)!. Let F (x) := Pr(Uk + · · · + UK ≤ x). Then F (x) ≤
min{1, xK−k+1/(K− k+ 1)!} ≤ min{1, xK−k+1/(K− k+ 1)!}1(x≤ck). Thus,
Pr(min{1, (Uk + · · · + UK)K−k+1/(K − k + 1)!}1((Uk+···+UK)≤ck) ≤ α) ≤
Pr(F (Uk + · · ·+ UK) ≤ α) ≤ α.

For condition (c) fix xk ≤ xk+1 ≤ · · · ≤ xK . If Ak+1 = xk+1 + · · ·+xK >
ck+1, gk+1(xk+1, . . . , xK) = 1, thus the condition is satisfied. Suppose now
xk+1+· · ·+xK ≤ ck+1. Clearly, xk ≤ (xk+1+· · ·+xK)/(K−k) = Ak+1/(K−
k); thus gk(xk, . . . , xK) ≤ gk(Ak+1/(K − k), xk+1, . . . , xK). Hence, it is
enough to show that gk(Ak+1/(K−k), xk+1, . . . , xK) ≤ gk+1(xk+1, . . . , xK).
Note that, Ak+1/(K−k)+xk+1+· · ·+xK = Ak+1(K−k+1)/(K−k). Since,
Ak+1 ≤ ck+1, we get, Ak+1(K − k + 1)/(K − k) ≤ ck. Hence, by simple
reduction gk(Ak+1/(K − k), xk+1, . . . , xK) ≤ gk+1(xk+1, . . . , xK) is equiv-
alent to AK−k+1

k+1 (K − k + 1)K−k/(K − k)K−k+1 ≤ AK−kk+1 ; which simplifies

to Ak+1 ≤ (K−k)(1−1/(K−k+1))K−k = ck+1. Thus proving condition (c).
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Sketch of proof of Corollary 1. The proof is in line of the proof of Theo-
rem 3 given in the main text. The main observation is that the thresholding
level of the sensitivity parameter, Γ̄ exists even when J is not a grid but a
one dimensional hyper-plane J = {Γ = Γl(1, . . . , 1) : 1 = Γ1 < · · · < ΓL}.
Thus, probability of rejecting any of the true null among {Hk|K

0,Γ ; Γ ∈ J} is

at most Pr(P
k|K
a,Γ̄
≤ α) ≤ α.

Sketch of proof of Corollary 2. If there is no null among {Hk|K
0 ; 1 ≤ k ≤

K} is true, there is nothing to prove. Otherwise, supposeH
t|K
0 is the first one

in the list which is true. Recall that, under conditions (a)–(c) of Proposition

3, which is assumed in this corollary, for any Γ we have P
1|K
a,Γ ≤ · · · ≤ P

K|K
a,Γ .

Thus, rejection of any true null in {Hk|K
0,Γ ; Γ ∈ J, 1 ≤ k ≤ K} will mean

that a true null in {Ht|K
0,Γ ; Γ ∈ J} is rejected. Define Γ̄ as in the proof of

Theorem 3 or Corollary 1. Since P
t|K
a,Γ is nondecreasing in Γ, rejecting any

true null among {Hk|K
0,Γ ; Γ ∈ J, 1 ≤ k ≤ K} means rejecting H

t|K
0,Γ̄

, which has

probability at most α.

Proof of Proposition 6. Recall that P
k|K
a,Γ (g) = gk(P (k)a,Γ, . . . , P (K)a,Γ).

Consider the first case, Γl > Γ̃l for at most k many l. It follows from the
definition of design sensitivity that the largest K − k + 1 p-values converge

to 1. Thus, P
k|K
a,Γ (g)→ gk(1, . . . , 1) = 1. In the second case, Γl < Γ̃l for k or

more l’s. By the definition of design sensitivity P (l)a,Γ → 0 for l = 1, . . . , k

and the rest goes to 1. Thus P
k|K
a,Γ (g)→ gk(0, . . .) = 0.

Proof of Theorem 4. By the assumption, c(I)−1 logP k,ak−1,Γk
→ −rk(Γk)

almost surely for k = 1, . . . ,K. Let r(1)Γ ≤ · · · ≤ r(K)Γ be the ordered

values of r1(Γ1), . . . , rK(ΓK). As I increases to infinity c(I)−1 logP (l)a,Γ →
−r(K−l+1)Γ for 1 ≤ l ≤ K almost surely.

Fix k. From the above we note that c(I)−1
∑K

l=k logP (l),al−1,Γ → −
∑K−k+1

l=1 r(l)Γ

almost surely. Choose a < −
∑K−k+1

l=1 r(l)Γ < b. We allow a = −∞ and
−∞ < −∞. Consequently, for any ε > 0 there exists Iε such that for I ≥ Iε,
as c(I)→∞ when I increases to infinity, with probability at least 1− ε we
get a < c(I)−1

∑K
j=k logP (j)a,Γ < b. For I ≥ Iε with probability at least
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1− ε

Pr(χ2
2(K−k+1) > −2c(I)a) ≤ Pr(χ2

2(K−k+1) >− 2
K∑
j=k

log P (j)a,Γ)

≤ Pr(χ2
2(K−k+1) > −2c(I)b).

Noting that, limn→∞ n
−1 log Pr(χ2

d > nx) = −x/2 for any x ≥ 0 and
d > 0 we get

a ≤ lim inf
I→∞

c(I)−1 log Pr(χ2
2(K−k+1) > −2

K∑
l=k

log P (l)a,Γ)

≤ lim sup
I→∞

c(I)−1 log Pr(χ2
2(K−k+1) > −2

K∑
l=k

log P (l)a,Γ) ≤ b.

This is true for arbitrary ε > 0 and arbitrary numbers a and b such that
a < −

∑K−k+1
l=1 r(l)Γ < b. Thus we conclude that

lim
I→∞

c(I)−1 log P
k|K
a,Γ (ef) = lim

I→∞
c(I)−1 log Pr(χ2

2(K−k+1) > −2
K∑
l=k

log P (l)a,Γ)

= −
K−k+1∑
l=1

r(l)Γ.

This limit might be negative infinity.

Now consider log P
k|K
a,Γ (g) = log gk(P (k)a,Γ, . . . , P (K)a,Γ) for any g. From

the assumption of the theorem we have Pr(gk(Uk, . . . , UK) ≤ α) ≤ α, for
any α ∈ [0, 1]. Thus for any 0 ≤ xk ≤ · · · ≤ xK

g(xk, . . . , xK) ≥ Pr(gk(U1, . . . , UK−k+1) ≤ gk(xk, . . . , xK)).

By the nondecreasing property of the function gk

Pr(gk(U1, . . . , UK−k+1) ≤ gk(xk, . . . , xK)) ≥ Pr(U1 ≤ xk, . . . , UK ≤ xK)

=

K−k+1∏
l=1

Pr(Ul ≤ xj+k−1) =

K∏
l=k

xl.

Thus, g(xk, . . . , xK) ≥
∏K
l=k xl. This implies

log P
k|K
a,Γ (g) ≥

K∑
l=k

log P (l)a,Γ.
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We get by dividing by c(I) and taking the limit, for 1 ≤ k′ ≤ k

lim inf
I→∞

c(I)−1 log P
k|K
a,Γ (g) ≥ lim

I→∞
c(I)−1

K∑
l=k

log P (l)a,Γ

= −
K−k+1∑
l=1

r(l)Γ ≥ −
K−k′+1∑
l=1

r(l)Γ = lim
I→∞

c(I)−1 log P
k′|K
a,Γ (ef).

Proof of Proposition 7. Following the proof of Theorem 4 we have, for

any k = 1, . . . ,K, limI→∞ c(I)−1 log P
k|K
a,Γ = −

∑K−k+1
l=1 r(l)Γ. Consider k

such that Γk > Γ̃k. Since, Γ̃k is the design sensitivity of the kth factor, by
definition of the design sensitivity, P k,ak−1,Γk

→ 1. Further, since c(I)→∞
as I → ∞, it implies rk(Γk) = 0. The number of l with Γl < Γ̃l is called
k̃. Hence, in the ordered values r(1)Γ ≤ · · · ≤ r(K)Γ the first K − k̃ are zero.
Thus the proof of the first part follows.

To prove of the final statement, consider the truncated product method.
Let κ be the truncation level. For a number a let aκ be the truncated
version defined as a if a < κ, otherwise it is 1. The combining method is
gk(xk, . . . , xK) = Pr(

∏K
l=k U

κ
l <

∏K
l=k x

κ
l ), where U1, . . . , UK are i.i.d. uni-

form(0,1) random variables. For 0 ≤ x1, . . . , xK ≤ 1, let y = −c(I)−12 log
∏K
l=k x

κ
l .

We write with I →∞ in mind (and K fixed)

gk(xk, . . . , xK)

= Pr(
K∏
l=k

Uκ
l < exp(−c(I)y/2))

= Pr(−2

K∑
l=k

log Uκ
l > c(I)y)

=
∑

K⊆{k,...,K}

Pr(−2
K∑
l=k

log Uκ
l > c(I)y | Uj ≥ κ,∀j ∈ Kc) Pr(Uj ≥ κ,∀j ∈ Kc)

=
∑

K⊆{k,...,K}

Pr(−2
∑
l∈K

log Ul > c(I)y | Uj ≥ κ, ∀j ∈ Kc) Pr(Uj ≥ κ, ∀j ∈ Kc)

=
∑

K⊆{k,...,K}

Pr(−2
∑
l∈K

log Ul > c(I)y) Pr(Uj ≥ κ, ∀j ∈ Kc)

=
∑

K⊆{k,...,K},K6=∅

Pr(χ2
2|K| > c(I)y)× (1− κ)|K

c|
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=
∑

K⊆{k,...,K},K6=∅

exp{−c(I)y/2 + o(c(I))} × (1− κ)|K
c|

= exp{−c(I)y/2 + o(c(I))}
∑

K⊆{k,...,K},K6=∅

(1− κ)|K
c|

= exp{−c(I)y/2 + o(c(I))} × {1− (1− κ)K−k+1}.

We used the fact that limn→∞ n
−1 log Pr(χ2

d > nx) = −x/2 for any x ≥ 0
and d > 0. Using the truncated product method (call it tp)

P
k|K
a,Γ (tp) = exp{− log

K∏
l=k

P
κ
(l)a,Γ + o(c(I))} × {1− (1− κ)K−k+1}.

Thus, c(I)−1 log P
k|K
a,Γ (tp) = {−

∑K
l=k c(I)−1 log P

κ
(l)a,Γ + o(1)}+ o(1). Fi-

nally, for large I, P
κ
(l)a,Γ = P (l)a,Γ for all l since P (l)a,Γ converges to 0 or 1,

in this setting. We get, from our proof of Theorem 4, c(I)−1 log P
k|K
a,Γ (tp)−

c(I)−1 log P
k|K
a,Γ (ef) = o(1). This completes the proof.

More simulation results.

The following discussion supplements the simulation results of Section
6.3. The simulation settings are different from the ones reported in §6.3
in many ways. (1) We consider different sample sizes, I = 200 and I =
500. (2) K = 4. (3) We allow correlated treatments: for each unit, we
simulated latent variables x1, . . . , x4 from a multivariate normal with zero
mean vector, with variance of the variables 1 and correlation of any two of
them is 0.2; from that we defined zk = 1 when xk < 0.1. (4) The outcomes
are simulated from χ2

2/2 +
∑

k zkθk. (5) We consider two treatment effect
scenarios: Scenario 1: θk = 0 for all k and Scenario 2: βk ∼ Unif [0.1, 0.2].

The results of the simulation are reported in Table 4 for sample size
I = 200 and in Table 5 for sample size I = 500. The comparative simula-
tion results between the methods are similar to ones reported in §6.3. We
make a few more observations based on these simulation results. In scenario
1, as the theory suggests, the family wise error rate is controlled at level 0.05
(5%). Increasing the sample size increases the power of the tests. Although,
increasing the sample size does not increase the level of sensitivity to un-
measured confounding. As the sample size increases to infinity, there is a
threshold of Γ, called the design sensitivity of the test, below that threshold
the power goes to 1 and above it the power goes to 0.
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Table 4
Simulation results for the power of sensitivity analysis evaluated at level 0.05. Numbers
are out of 100. A cell value is the percentage of times the decision that at least k many
H0,ls are false is made, with Γ1 = · · · = Γ4 =: Γ, out of 10000 simulations. Empty cells

represent the value 0. tP = truncated product method with truncation level κ = 0.20;
sP = the modified additive p-value method in Proposition 4; Si = Simes’ method;

HB = Holm-Bonferroni method. I= 200, K=4

k → 4 3 2 1

Γ ↓ tP sP Si HB tP sP Si HB tP sP Si HB tP sP Si HB

Scenario 1: (null case) β1 = · · · = β4 = 0

1 0 0 0 0 0 0 0 0 0 1 0 0 5 5 5 5

Scenario 2: βk ∼ Unif(0.1, 0.2) for all k

1 4 4 4 3 29 34 20 18 74 68 62 60 99 92 97 97
1.2 1 1 1 0 10 15 6 5 43 43 31 29 89 74 82 80
1.4 3 5 1 1 18 20 11 10 64 49 53 52
1.6 1 1 5 8 3 3 34 25 28 27
1.8 1 2 1 1 14 10 13 13

2 5 3 6 6
2.5 1 1

3

Table 5
Simulation results for the power of sensitivity analysis evaluated at level 0.05. Numbers
are out of 100. A cell value is the percentage of times the decision that at least k many
H0,ls are false is made, with Γ1 = · · · = Γ4 =: Γ, out of 10000 simulations. Empty cells

represent the value 0. tP = truncated product method with truncation level κ = 0.20;
sP = the modified additive p-value method in Proposition 4; Si = Simes’ method;

HB = Holm-Bonferroni method. I= 500, K=4

k → 4 3 2 1

Γ ↓ tP sP Si HB tP sP Si HB tP sP Si HB tP sP Si HB

Scenario 1: (null case) β1 = · · · = β4 = 0

1 0 0 0 0 0 0 0 0 0 1 0 0 5 5 5 5

Scenario 2: βk ∼ Unif(0.1, 0.2) for all k

1 24 24 24 22 72 70 64 61 98 92 95 94 100 99 100 100
1.2 7 7 7 5 36 39 27 26 83 73 74 72 100 94 99 99
1.4 1 1 1 1 12 15 7 7 48 42 39 37 93 74 89 88
1.6 2 4 1 1 16 16 12 12 64 42 60 58
1.8 3 4 2 2 28 14 28 28

2 8 3 10 10
2.5

3

References

Bahadur, R. R. (1967). Rates of convergence of estimates and test statistics. Annals of
Mathematical Statistics, 38 303–324.



CORROBORATION OF AN ELABORATE THEORY 37

Becker, B. J. (1994). Combining significance levels. In Cooper, H and Hedges, L V, editors
A handbook of research synthesis, chapter 15, pages 215–230, Russell Sage, New York,
1994.

Benjamini, Y. and Heller, R. (2008). Screening for partial conjunction hypotheses. Bio-
metrics, 64(4) 1215–1222.

Benjamini, Y., Heller, R. and Yekutieli, D. (2009). Selective inference in complex research.
Philosophical Transaction of the Royal Society A, 367, 4255–4271.

Centerwall, B. S. (1989). Exposure to television as a risk factor for violence. American
Journal of Epidemiology, 129(4), 643–652.

Chen, Z. (2011). Is the weighted z-test the best method for combining probabilities from
independent tests? Journal of Evolutionary Biology 24 926–930.

Cochran, W. G. (1965). The planning of observational studies in human population (with
Discussion). Journal of the Royal Statistical Society A, 234–266.

Cornfield, J., Haenszel, W., Hammond, E. C., Lilienfeld, A. M., Shimkin, M. B. and
Wynder, E. L. (1959). Smoking and lung cancer: recent evidence and a discussion of
some questions. Journal of the National Cancer Institute, 22 173-203.

Crupi, V., Charter, N. and Tentori, K. (2013). New axioms for probability and likelihood
ratio measures. The British Journal of Philosophy of Science, 64 189–204.

Ding, P. and Vanderweele, T. J. (2016). Sensitivity analysis without assumptions. Epi-
demiology, 27 368–377.

Edgington, E. S. (1972). An additive method for combining probability values from inde-
pendent experiments. The Journal of Psychology, 80 351–363.

Egleston, B. L., Scharfstein, D. O. and MacKenzie, E. (2009). On estimation of the survivor
average causal effect in observational studies when important confounders are missing
due to death. Biometrics, 65 497–504.

Ertefaie, A., Small, D. S. and Rosenbaum, P. R. (2018). Quantitative evaluation of the
trade-off of strengthened instruments and sample size in observational studies. Journal
of the American Statistical Association, 113(523) 1122–1134.

Fisher, R. A. (1932). Statistical Methods for Research Workers, Edinburgh: Oliver & Boyd.
Fisher, R. A. (1935), The Design of Experiments, Edinburgh: Oliver & Boyd.
Fogarty, C. B. and Hasegawa, R. B. (2018). Extended sensitivity analysis for heterogeneous

unmeasured confounding with an application to sibling studies of returns to education.
Annals of Applied Statistics, to appear.

Fogarty, C. B. and Small, D. S. (2016). Sensitivity analysis for multiple comparisons in
matched observational studies through quadratically constrained linear programming.
Journal of the American Statistical Association, 111 1820–1830.

Gilbert, P., Bosch, R., Hudgens, M. (2003). Sensitivity analysis for the assessment of the
causal vaccine effects on viral load in HIV vaccine trials. Biometrics, 59 531–541.

Hansen, B. B. (2004). Full matching in an observational study of coaching for the SAT.
Journal of the American Statistical Association, 99 609–618.

Hansen, B. B., Rosenbaum, P. R. and Small, D. S. (2014). Clustering treatment assign-
ments and sensitivity to unmeasured biases in observational studies. Journal of the
American Statistical Association, 109 133–144.

Helland, I. S. (1995). Simple counterexamples against the conditionality principle. The
American Statistician 49 351–356.

Holm, S. (1979). A simple sequentially rejective multiple test procedure. Scandinavian
Journal of Statistics, 6(2), 65–70.

Hosman, C. A., Hansen, B. B. and Holland, P. W. H. (2010). The sensitivity of linear
regression coefficients’ confidence limits to the omission of a confounder. Annals of
Applied Statistics, 4 849–870.



38

Hsu, J. Y., Small, D. S. and Rosenbaum, P. R. (2013). Effect modification and design
sensitivity in observational studies. Journal of the American Statistical Association,
108(501) 135–148.

Kalbfleisch, J. D. (1975). Sufficiency and conditionality. Biometrika, 62 251–259.
Keele, L. and Minozzi, W. (2013). How much is Minnesota like Wisconsin? Assumptions

and conterfactuals in causal inference with observational data. Political Analysis, 21
193–216.

Lancaster, H. (1961). The combination of probabilities: an application of orthonormal
functions. Australian & New Zealand Journal of Statistics, 3 20–33.

Lipták, T. (1958). On the combination of independent tests. Magyar Tud Akad Mat Kutato
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