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As in any observational study, in a case-control study a primary
concern is potential unmeasured confounders. Bias due to unmea-
sured confounders can result in a false discovery of an apparent treat-
ment effect when there is none. Replication of an observational study,
which tries to provide multiple analyses of the data where the bi-
ases affecting each analysis are thought to be different, is one way
to strengthen the evidence from an observational study. Evidence
factors allow for internal replication by testing a hypothesis using
multiple comparisons in a way that the comparisons yield indepen-
dent evidence and differ in the sources of potential bias. We construct
evidence factors in a case-control study in which there are two types
of cases, “narrow” cases which are thought to be potentially more
affected by the exposure and “marginal” cases which are thought to
have more heterogeneous causes. We develop and study an inference
procedure for using such evidence factors and apply it to a study of
the effect of sigmoidoscopy screening on colorectal cancer.

1. Introduction.

1.1. Distal and proximal colon cancer and sigmoidoscopy screening. The
U.S. Preventive Services Task Force (USPSTF) recommendations for col-
orectal cancer screening include flexible sigmoidoscopy every 5 years for men
and women above 50 at average risk (U.S. Preventive Services Task Force,
2016). Yet, only 58% of adults aged 50–75 were up to date with the screen-
ing recommendations (Joseph et al., 2016). Is screening with sigmoidoscopy
effective? Using a case-control study we aim to answer this question; more
specifically we study the effect of screening by flexible sigmoidoscopy as per
USPSTF recommendations on reducing mortality from colorectal cancer.

In case-control studies, patients with (cases) or without (controls) an out-
come of interest are compared in terms of their exposure to treatment. Case-
control studies are particularly useful for assessing treatment or exposure
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effects for rare outcomes. In a case-control study there is often a choice of
how to define a case. In many setting, there are two (or more) ways to define
a case, one being more “narrow” in that it is more likely to be caused by
the exposure of interest if that exposure in fact has an effect and the other
being “broad” in that it may have more heterogeneous causes. A case unit
according to a narrow case definition is also a case unit in a broad case
definition. A marginal case unit is not a case in a narrow case definition but
is a case in broad case definition.

Sigmoidoscopy can evaluate the lower or distal one-third of the colon
for lesions; if abnormal, then a full colon evaluation with a colonoscopy is
typically done for confirming the presence of cancer or precancerous polyps.
The distal colon is the lower one-third part of the colon on the left side of the
body, consisting of the descending colon, the sigmoid colon and the rectum;
the proximal colon is the higher two-third of the colon. We consider broad
cases to be all cases of colorectal cancer, and following Doubeni et al. (2018)
and Selby et al. (1992), we consider narrow cases to be cases where there are
malignant polyps on the left side of the colon and rectum that are within
the reach of the sigmoidoscope. We expect that sigmoidoscopy screening, if
it is effective, would only directly reduce the risk of diagnosis or death from
cancers in the distal colon (narrow cases) but would also indirectly find or
prevent some colorectal cancers in the proximal colon because abnormal
findings in the distal colon could trigger a colonoscopy. Is it possible to
learn separate evidence about the treatment effect when we have two or
more definitions for a case? Before answering this question in Section 1.3 we
consider why one might want to construct separate evidence and what we
mean by separate evidence.

1.2. Evidence factors in an observational study. Unlike in a randomized
trial, in a case-control study, as in any observational study, treatment is
not assigned to the subjects randomly. Therefore, a primary concern in a
case-control study is the potential for unmeasured confounders. In an ob-
servational study bias due to unmeasured confounders can result in a false
discovery of an apparent treatment effect when there is none. In such a
situation, we should consider if it possible to replicate the study without
repeating the bias (Cochran, 1965, Section 4.1).

Consider the effect of exposure to radiation on leukemia incidence. Radi-
ologists, who are occupationally exposed to radiation, have been found to
have a high incidence of leukemia (Lewis, 1963). A replication of this ob-
servational study is a comparison of the leukemia risk in people living in
Japan near epicenters of the atomic bomb drops at the end of World War II
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to people living further from them (Bizzozero, Johnson, and Ciocco, 1966).
Radiologists may have higher rates of leukemia because they are more likely
to diagnose it and people living near the atomic bomb might have higher
rates of leukemia because living in an urban area may be a confounder for
leukemia, but these are two different sources of potential bias. Concurring
finding of higher rates of leukemia incidence in each exposed group relative
to its control group strengthens the evidence for a causal effect since two
sources of bias, rather than just one, would be needed to refute the evidence
(Rosenbaum, 2001).

While the above the two comparisons are from separate studies, in some
studies, there may be two comparisons we can make within the same study
that have different sources of bias, offering an opportunity for internal repli-
cation. When these comparisons are statistically independent or “nearly” in-
dependent, the comparisons are called evidence factors (Rosenbaum, 2010).
A general perspective on evidence factors in an observational study is pro-
vided in Karmakar, French, and Small (2019), which we briefly review here,
and the formal definition is given in Section 5. Suppose two analyses are
performed to test for the null hypothesis; the first analysis requires a set of
assumptions A1 and the second analysis requires a second set of assump-
tions A2. Let P1 and P2 be the corresponding p-values. Then, to be evidence
factors, we require that under the null hypothesis, when both assumptions
A1 and A2 hold, for (p1, p2) ∈ [0,1]2

(1.1) Pr(P1 ≤ p1, P2 ≤ p2) ≤ p1p2.

The inequality in (1.1)—which would be an equality if P1 and P2 were
independent—means that the joint distribution of the p-values under the
null hypothesis is stochastically bigger than that of two independent p-values
under the null hypothesis. So, treating them as independent when combining
them would be conservative—this is the “near independence” we spoke of
above. By asking for independence or near independence we ensure that
we are learning two separate pieces of evidence rather than essentially one
piece which would be the case if one uses two highly correlated tests, such
as a t-test and a Wilcoxon rank sum test (Rosenbaum, 2010, 2011). We
wish to avoid the mistake of the man who bought ‘several copies of the
morning paper to assure himself that what it said was true’ (Wittgenstein,
1958, #265, quoted in Rosenbaum, 2010). If both analyses from the evidence
factors are significant, both assumptions, A1 and A2, would have to be
violated in order for there not to be evidence of a treatment effect.

An example of the use of evidence factors is discussed in Karmakar, Small,
and Rosenbaum (2020), which follows up on the question raised by Baz-
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zano et al. (2003), does smoking increases homocysteine levels? Bazzano
et al. (2003) looked at the association between homocysteine and cotinine,
a biomarker for exposure to tobacco. Cotinine level is a personal measure
of a dose for exposure to tobacco. An association between homocysteine
and cotinine can be confounded by a physiological process that affects both
homocysteine levels and the way the exposure is internalized into cotinine
levels. Karmakar et al. (2020) pair smokers with nonsmokers on their age,
gender, race and education levels. Two tests are considered. The first test is
a Wilcoxon’s signed-rank test of the differences in the homocysteine levels
between the smoker and the nonsmoker in each pair. The second test is a
cross-cut test statistic that looks at the association between differences in
biomarker levels and differences in the homocysteine levels of the pairs. Pairs
of test statistics that use the same data are typically dependent, but these
two test statistic are independent when there is no effect of smoking and
there is no effect of an increase in the cotinine biomarker on homocysteine
levels. Further, a bias in who reports smoking does not affect the cross-cut
test, and a confounding in the cotinine biomarker does not affect the signed-
rank test. Because the two tests are independent when there is no treatment
effect and affected by different biases, they are evidence factors. Their anal-
ysis found that the two factors concur in finding two independent pieces
of information linking smoking with increased homocysteine. For other ex-
amples of evidence factors see Zhang et al. (2011) and Zubizarreta et al.
(2012).

Rosenbaum (2017) provides a general formulation for building evidence
factors based on multiple treatment assignment mechanisms. Starting with
a set of n units Rosenbaum (2017) showed how to construct evidence factors
under using the knit product of two subgroups of the symmetric group of size
n. This and other previous work has only considered constructing evidence
factors based on different ways of assigning treatment.

In this paper, we develop novel evidence factors for case-control studies
that use different definitions of a case. To the best of our knowledge, our is
the first demonstration of using differences in outcomes to develop evidence
factors. In previous presentations of evidence factors, evidence factors are
constructed from a study design in which treatment assignment splits into
multiple aspects that exhibit certain symmetries (Rosenbaum, 2010, 2017).
A case-control study differs in this view. The retrospective measure of an
exposure to the treatment does not split into multiple aspects. The implicit
symmetries that create the evidence factors in a case-control study come
from multiple case definitions. The following subsection elaborates on this
point.
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This paper further demonstrates the usefulness of evidence factors when
there are overlapping but not completely overlapping potential sources of
bias for the analyses. This differs from previous discussions of evidence fac-
tors in the literature where separate sources of bias would affect the factors.
Our quantitative demonstration of how evidence factors can work with over-
lapping biases widens the applicability of evidence factors. Expansion of the
scope of evidence factors to incorporate the design aspects of case-control
studies and overlapping biases is crucial for our sigmoidoscopy study.

1.3. Evidence factors in a case-control study with narrow and marginal
cases. In a case-control study with narrow and broad cases, we expect
that if the exposure has an effect and our theory that the narrow cases
are more likely to be caused by the exposure than the more heterogeneous
broad cases is correct and also there is no unmeasured confounding, then
(a) the exposure should have a larger association with narrow cases than
marginal cases, i.e. cases that are broad but not narrow and (b) the exposure
should have an association with broad cases compared to controls. This
is an elaborate theory of what a treatment effect, if there is an effect, is
expected to look like. Elaborate theories, advocated by Sir Karl Popper and
Sir Ronald Fisher, are an integral part of drawing causal conclusions from
observational data (see Popper, 1959; Cochran, 1965, Section 5). For related
discussion on considerations for deducing causality from observational data,
see Hill (1965).

We compare the narrow cases to marginal cases to appraise association
of pattern (a) in the elaborate theory and compare broad cases to controls
to appraise association of pattern (b). To test for patterns (a) and (b), we
would like to use nearly independent test statistics in the sense of (1.1). In
other words, we would like to develop evidence factors associated with the
patterns. These two comparisons could be biased differently. Continuing our
discussion of Section 1.1, in the sigmoidoscopy study, unmeasured variables
such as healthy lifestyle or greater compliance with medical treatment could
be associated with screening. Some of these variables may be more associated
with whether a person dies from any colorectal cancer or not (broad case
vs. control) and some may be more associated with, among people who
die from colorectal cancer, does the person die from a colorectal cancer on
the distal colon or proximal colon (narrow case vs. marginal case). If we
find evidence for both patterns (a) and (b), this would require a skeptic to
explain more types of bias than if we found one pattern alone; this point is
developed formally in Section 6.

Using the notation in Section 3 we develop a method for building the
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evidence factors in Section 4 and Section 5 proves that the test statistics de-
veloped are evidence factors. The data from the study is analyzed in Section
7, and in Section 8 a few other examples of case-control studies are discussed
where multiple case definitions are used. Before developing our method, we
discuss the data for the sigmoidoscopy study in Section 2.

2. Sigmoidoscopy and colorectal cancer. Based on the reasoning of
Section 1 we consider the effectiveness of screening sigmoidoscopy in relation
to mortality from distal and proximal colon cancer. In relation to sigmoi-
doscopy screening, distal cancer cases are narrow cases and proximal cancer
cases are marginal cases. Throughout the paper by sigmoidoscopy screening
we mean specifically flexible sigmoidoscopy screening.

2.1. SCOLAR data. In a nested case-control study on members of Kaiser
Permanente Northern California and Kaiser Permanente Southern California
health-care systems study subjects were selected who were 55–90 years old
between 2006 and 2012. Details of the study design are given in Goodman
et al. (2015); Doubeni et al. (2018). A selected case unit would be a man
or a woman who was 55–90 years old on the date of death with colorectal
adenocarcinoma as the underlying cause of death. Using cancer diagnosis
data and tumor characteristics 822 proximal and 886 distal cancer cases
were identified. Each case patient was individually matched to controls on
the reference date (which was the diagnosis date for each patient who died
of colorectal cancer), gender, the duration of health plan prior to diagnosis
and the health-care site. In this process 3635 controls were included.

Thus in our design, there are 822 narrow cases and 886 marginal cases. To
facilitate the comparison of narrow cases to marginal cases we pair matched
narrow (distal cancer) cases to marginal (proximal cancer) cases using the
optmatch package in R which uses methods of Hansen and Klopfer (2006).
The matching algorithm used a weighted sum of rank based Mahalanobis
distance and absolute distance of estimated logit propensity scores. It also
near fine balanced on gender (Rosenbaum et al., 2007). By pair matching
the narrow and marginal cases, we obtained 822 matched sets consisting of
one narrow case, one marginal cases and the controls associated with these
cases and 886−822 = 64 matched sets consisting of one marginal case and the
controls associated with this case. Table 1 shows the covariate balance of the
matched sets. Figure 1 further shows the distribution of the diagnosis year of
the colorectal cancer patients. Gender, reference date and enrollment source
are well balanced between the narrow cases, marginal cases and controls
over the matched sets.

Although the match controls well for the above covariates, there could be
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Table 1
Balance on the covariates in the matched sets. Distal cancer cases are those who have
been diagnosed to have died from cancer on the left colon or rectum, proximal cancer
cases are from right colon cancer. For each covariate the mean is calculated within a

matched set, then averaged over sets.
Controls Distal cancer cases Proximal cancer cases

Number of years enrolled 12 12 12
before reference date
% from Center 1 83 83 84
% of female 47 46 47

unmeasured confounders. For example, lack of physical activity is a known
risk factor of colorectal cancer incidence and people who are less active
also may be less likely to get screened (Eldridge et al., 2013). Because we
are not able to match on or adjust for physical activity in our analysis,
the comparison of all colorectal cancer cases to controls may be biased.
Family history of cancer screening is another likely unmeasured confounder
in this analysis. The comparison of sigmoidoscopy screening in proximal
vs. distal cancers may also be biased by unmeasured confounding. There are
potential biological differences between proximal and distal colon cancers

Fig 1. Reference date of the colorectal cancer cases and controls in the matched sets.
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such that variables such as diet (e.g., use of the Mediterranean diet) may be
differentially associated with proximal and distal colon cancer (Doubeni et
al., 2012; Missiaglia et al., 2014). Such diet choices may be associated with
screening. If we find that sigmoidoscopy screening is associated with reduced
morality from colorectal cancer when comparing all cases to controls and
with reduced mortality from proximal vs. distal cancer cases when comparing
proximal to distal cases, then, in order for these associations to arise purely
from bias and not at all from a causal effect of sigmoidoscopy screening on
reducing cancer, there would need to be unmeasured confounders in both
comparisons rather than just one comparison. In Section 6, we show that
even if the unmeasured confounders for the two comparisons overlap but
have different relative magnitudes, the evidence is strengthened by finding
significant associations in both comparisons.

As suggested earlier we shall assess the effect of sigmoidoscopy screening
by comparing the prevalence of screening between all colorectal cancer cases
and controls and also by comparing the prevalence between the distal cancer
cases and proximal cancer cases. Results of this analysis will be discussed in
Section 7. We first present the methodology.

3. Notation and review: case-control studies. Let observational
units be denoted by indices l = 1, . . . , L. We use the binary variable Zl to
denote whether unit l was exposed to treatment (Zl = 1) or spared from
being exposed (Zl = 0). Under the potential response model suppose unit
l if exposed would have response rT l and if spared exposure would have
response rCl. The observed response for unit l is Rl = ZlrT l + (1 − Zl)rCl.
Consequently, we cannot observe rT l and rCl simultaneously for one unit
(Neyman, 1923; Rubin, 1974). Now let xl denote the observed pre-treatment
covariates, i.e., covariates recorded in the study that can potentially affect
the treatment assignment and the response. The unobserved confounders
are summarized by an unobserved number ul for unit l scaled to be valued
in [0,1] (Rosenbaum, 1991). Write F = {(rT l, rCl,xl, ul) ∶ l = 1, . . . , L}. The
hypothesis we are interested in studying is Fisher’s sharp null hypothesis of
no treatment effect

H0 ∶ rT l = rCl, l = 1, . . . , L.

A case definition is a function k(⋅) which labels each unit as a case or a
control or neither based on the observed response. A case definition would
identify a subset of the units as cases and a separate subset as controls.

For a given case definition, a test for the hypothesis H0 can be carried
out by matching as follows. Create S strata labeled s = 1, . . . , S where each
stratum consists of a total of ts units with some case units and the rest con-
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trol units (say cs) which are similar with respect to the observed covariates
(xl’s). Now let Ys denote the total number of exposed case units in stratum
s. A positive linear combination T = ∑Ss=1 dsYs can be taken as a test statistic
for testing the hypothesis H0. When all ds = 1 the statistic T is exactly the
total number of exposed cases, which is the Mantel-Haenszel test statistic.

We assume that the treatment assignments for distinct units are indepen-
dent. We consider the following model for treatment assignment

(3.1) Pr(Zl = 1 ∣ F) =
exp{λ(xl) + γ ul}

1 + exp{λ(xl) + γ ul}
,

where λ(⋅) is an unknown function and γ ≥ 0 is an unknown parameter. Since
0 ≤ ul ≤ 1, for two units l and l′ (l ≠ l′) with the same observed covariates,
xl = xl′ , under this model, their odds of exposure can vary at most by a
factor of Γ ∶= log(γ). Model (3.1) is equivalent to writing

(3.2) max
1≤l,l′≤L

{ Pr(Zl = 1 ∣ F)/Pr(Zl = 0 ∣ F)
Pr(Zl′ = 1 ∣ F)/Pr(Zl′ = 0 ∣ F)

∶ xl = xl′} ≤ Γ.

The fact that (3.1) implies (3.2) is obvious, the proof of the reverse impli-
cation constructs a set of ul from the odds of exposure (Rosenbaum, 2002,
Section 4.4.4). The parameter Γ(≥ 1) is the hidden bias level. Thus, when
Γ = 1, there is no unmeasured confounder and there is no bias in treatment
assignment after controlling for observed covariates. As Γ increases, this
model allows more and more bias in treatment assignment. For example,
when Γ = 2, due to the presence of unmeasured confounders, it might be
possible that for individuals who are the same in their observed covariates,
one has twice the odds of getting assigned treatment as the other.

Let es be the number of exposed units in stratum s. Then, under model
(3.2), we can bound the tail probability of T under H0 asymptotically

(3.3) Pr(T ≥ k ∣ {ts},{cs},{es},F) ≤ 1 −Φ
⎛
⎝

k −∑ds(ts − cs)p̄s√
∑d2s(ts − cs)p̄s(1 − p̄s)

⎞
⎠
,

where Φ(⋅) is the cumulative distribution function of the standard normal
distribution and p̄s = Γes/(Γes + (ts − es)) (Small et al., 2013). This tail
bound is sharp in that it is attained for a particular vector of unobserved
confounders (Rosenbaum, 1991, 2002, Section 4.4.4).

Therefore, given a case-control study, after constructing a satisfactory
stratum structure, when the hidden bias level is at most Γ, i.e., (3.2) holds,
(3.3) can be used to get an upper bound for the p-value of testing the
hypothesis H0. If this value is less than α, the significance level, then we have
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evidence to reject the null hypothesis as long as the hidden bias is at most
Γ. A sensitivity analysis asks how much bias in the treatment assignment
must be present so that the observed association can be explained just from
bias under H0.

4. Two case definitions and two comparisons. Following our dis-
cussion in Section 1.3, consider a design with availability of two case defi-
nitions, one narrow and one broad. A case unit according to a narrow case
definition is also a case unit in a broad case definition. We label a unit as
marginal case unit if it is not a case in a narrow case definition but is a
case in broad case definition. The study units which are non-cases in broad
case definition are thus also non-cases in the narrow case definition, and are
labeled as controls. Matching argument similar to Section 3 can still be used
with appropriate modifications.

4.1. Matched strata for the comparisons. Suppose the matching proce-
dure creates S strata of all three types of units: narrow cases, marginal cases
and controls where units in a stratum are similar in their observed covari-
ates. Let a generic stratum labeled s have ns narrow cases, ms marginal
cases, thus a total of bs = ns +ms broad cases and cs controls. In a cohort
of L units a narrow case definition might have a much smaller number of
cases than a broad case definition. In such situations some of the stratum
(s) may only have marginal cases and controls, resulting in ns = 0, which
is allowed in our notation. But each stratum must consist of at least two
different labels of units. Let the letters n, m, b or c for denoting that the
unit is a narrow case, a marginal case, a broad case or a control respectively.
For example, Zn{si} denotes the exposure (0 or 1) for the ith narrow case
in the stratum s (s in 1,2, . . . , S). The index i runs in [ns] (we use the no-
tation [k] to denote the set {1, . . . , k} if k is a positive integer or empty set
{} otherwise). Similarly xc{si} denotes the observed covariate for the i-th
control in stratum s. Rm{si}, rCn{si}, uc{si} etc. have similar meanings.

At this point we can quantify the evidence against H0 by calculating the
p-values from the two comparisons of narrow cases versus marginal cases
and broad cases versus controls. We focus on the linear statistics of the
number of exposed narrow cases and broad cases respectively for these two
comparisons. Let Yn{s} and Yb{s} for stratum labeled s denote the number of
exposed narrow cases and the number of exposed broad cases. Notice that,
Yn{s} = ∑i∈[ns]Zn{si} and Yb{s} = ∑i∈[bs]Zb{si}. Since broad cases encompass
narrow cases in fact

Yb{s} = ∑
i∈[ns]

Zn{si} + ∑
i∈[ms]

Zm{si} = Yn{s} + Ym{s}.
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Two test statistics for these two comparisons can be written as Tnm =
∑Ss=1 dnm{s}Yn{s} and Tbc = ∑Ss=1 dbc{s}Yb{s}, where dnm{s} and dbc{s} are
non-negative constants given F . Under assumption (3.2) about treatment
assignment distribution, we can get bounds on the p-values for Tnm and Tbc.
But there are a few subtleties here that are important to point out.

First, a p-value for Tnm should only be based on information from the nar-
row cases and marginal cases. In other words, the p-value Pnm is computed
based on the tail distribution

(4.1) Pr(Tnm ≥ k ∣ {bs},{ms},∑i∈[ns]Zn{si} +∑i∈[ms]Zm{si},Fb),

where Fb is the subset of F restricted to the broad cases. In equation (3.3), ts
was used instead of bs, cs was used instead of ms and the sum above replaces
es. Similarly, the p-value Pbc is computed based on the tail distribution
(4.2)
Pr(Tbc ≥ k ∣ {bs + cs},{cs},∑i∈[ns]Zn{si} +∑i∈[ms]Zm{si} +∑i∈[cs]Zc{si},F).

Thus, in technical terms, Pnm and Pbc are measurable with respect to dif-
ferent sigma fields.

Second, in assumption (3.2) the sensitivity parameter Γ bounds the odds
ratio of treatment assignment for all the units stratified on their observed
covariates. But, unmeasured confounders are likely to affect the two com-
parisons in different ways (see also Section 6). Therefore, while considering
narrow versus marginal comparison we should relax this assumption only to
the broad cases since these are the only ones contributing to Tnm. Hence, we
distinguish the effect of unmeasured covariates for the two comparisons by
using two sensitivity parameters Γnm and Γbc for the narrow versus marginal
and broad versus control comparisons respectively. Then Γnm measures the
bias in treatment assignment among all the case units, and Γbc measures the
bias in treatment assignment among all case and control units, which are
similar in their observed covariates.

Therefore, the comparison of narrow versus marginal cases would compute
the upper bound on the p-value for Tnm based on the tail distribution (4.1)
for sensitivity parameter Γnm and the broad cases versus controls comparison
would compute the upper bound on the p-value for Tbc based on the tail
distribution (4.2) for sensitivity parameter Γbc. We denote them by Pnm,Γnm

and Pbc,Γbc
respectively, and when Γnm = Γbc = 1 we simply write Pnm and

Pbc for Pnm,1 and Pbc,1 respectively. Section 5 prove that Pnm,Γnm and Pbc,Γbc

are nearly independent.

4.2. Two sensitivity parameters and their amplification. In a sensitivity
analysis the sensitivity parameters Γnm and Γbc would be used to get the
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max p-values Pnm,Γnm and Pbc,Γbc
. How does an Γnm bias relate to the influ-

ence of the unmeasured confounding on the exposure to treatment of an unit
and the influence of the unmeasured confounding on the narrow to marginal
case status of the unit? The sensitivity analysis model (3.1) conditions on
the information set F , which includes the potential outcomes of the units.
The maximum p-value calculated under this model is achieved when there is
a near perfect relationship between the case definition and the unmeasured
confounders. We discuss here that this model can be interpreted differently,
“amplified,” to be a model that limits the relationship between the case
definition and the unmeasured confounders as well as the relationship be-
tween the exposure and the unmeasured confounders (Gastwirth, Krieger,
and Rosenbaum, 1998; Rosenbaum and Silber, 2009).

Let the confounding variable in the broad cases to controls comparison be
u1 and the confounding variable in narrow to marginal comparison be u2.
Consider now the set C = {(xl, u1l, u2l) ∶ l = 1, . . . , L}. As before, 0 ≤ u1l ≤ 1
and 0 ≤ u2l ≤ 1. Conditioning on the set C does not condition on the potential
outcomes.

Consider two units i1 and i2 with the same observed covariates. We model
the relationship between the unmeasured confounding and the treatment
assignment with a parameter λ, for zi1 + zi2 = 1, as

Pr(Zi1 =zi1, Zi2 = zi2 ∣ C,xi1 = xi2, Zi1 +Zi2 = 1) =
exp{λ(zi1wi1 + zi2wi2)}
exp(λwi1) + exp(λwi2)

,

(4.3)

where wl = ξ1u1l + ξ2u2l, for l = 1, . . . , L; ξ1, ξ2 ≥ 0, ξ1 + ξ2 = 1.(4.4)

If λ = 0 the probability is 1/2 and the confounders have no effect. A larger
value of λ indicates a larger influence of the unmeasured confounders on the
treatment assignment. Equation (4.4) in itself is not a new assumption. Any
number wl, taking value in [0,1], can be rewritten as wl = ξ1u1l + ξ2u2l, for
ξ1, ξ2 ≥ 0, ξ1 + ξ2 = 1 and 0 ≤ u1l, u2l ≤ 1, and vice versa. Hence, this model is
similar in spirit to model (3.1) except that the principal conditioning now
changes from F to C.

Next, we model the relationship of the unmeasured confounding and the
case status. Let us denote for unit l, when not exposed to the treatment, by
the indicator variable kbCl whether the unit is a case and by knCl whether the
unit is a narrow case. Thus, kbCl = 1 if the lth unit is a case, either narrow
or marginal, when not exposed to the treatment and kbCl = 0 if the unit is a
control when not exposed to the treatment. Similarly, kbCl = 1 if the lth unit
is a narrow case when not exposed to the treatment and kbCl = 0 otherwise.
It might be helpful to think of kbCl and knCl as being determined by rCl. For
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two units i1 and i2 with similar observed covariates, the following model
relates the case label with the confounders:

Pr(kbCi1 = 1, kbCi2 = 0 ∣ C,xi1 = xi2)
Pr(kbCi1 = 0, kbCi2 = 1 ∣ C,xi1 = xi2)

= exp{δbc(u1,i1 − u1,i2)};(4.5)

Pr(knCi1 = 1, knCi2 = 0 ∣ C,xi1 = xi2, kbCi1 = kbCi2 = 1)
Pr(knCi1 = 0, knCi2 = 1 ∣ C,xi1 = xi2, kbCi1 = kbCi2 = 1)

= exp{δnm(u2,i1 − u2,i2)}.

(4.6)

The level of bias from unmeasured confounding u1 in being a broad case is
δbc, and the level of bias from unmeasured confounding u2 in being a narrow
case over a marginal case is δnm. The larger the value of these parameters
the higher the influence of the unmeasured confounding.

How do λ, δbc and δnm relate to the sensitivity parameters Γbc and Γnm?
Proposition 1 of Rosenbaum and Silber (2009) provides the correspondence.
Let Λ = exp(λ), ∆bc = exp(δbc) and ∆nm = exp(δnm). Then Γbc = (∆bcΛ +
1)/(∆bc + Λ) and Γbc = (∆nmΛ + 1)/(∆nm + Λ). These formulas allow one
to interpret the result of a sensitivity analysis either using the sensitivity
parameters Γbc and Γnm or, under model (4.3)–(4.6), using parameters λ, δbc
and δnm. For example, Γnm = 1.5, Γbc = 1.4 corresponds to Λ = 2, ∆nm = 5/3
and ∆bc = 2. In words, a pair of bias levels of Γnm = 1.5 and Γbc = 1.4 is
equivalent to an effect of unmeasured confounders that, for units that are
similar in their observed covariates, doubles the chance an exposure, while
also increasing the chance of being a case by 5/3 fold and increasing the
chance of being a narrow case over a marginal case by 2 fold. Similarly,
Γnm = 3, Γbc = 2 corresponds to Λ = 5, ∆nm = 7 and ∆bc = 3 and so on.

5. Evidence factors. This section aims to establish that the two com-
parisons discussed in Section 4.1 explore different aspects of the study de-
sign and give separate evidence, and thus are evidence factors. The idea of
evidence factors was first formalized by Rosenbaum (2010) and extended
for studies with multiple treatment assignment mechanisms in Rosenbaum
(2011, 2017). As discussed in Section 1.2, Karmakar et al. (2019) provide
a general formulation of evidence factors in observational study designs.
Readers interested in the results of the SCOLAR data analysis can skip this
technical discussion and go to Section 5.1 and 7.

We start this section by stating the definition of evidence factors. To un-
derstand that equation (5.1) is a more general statement than (1.1), that
was used to introduced evidence factors in Section 1.2, notice that replacing
X = (P1, P2), D = [0, p1] × [0, p2] and Y a uniform distribution on [0,1]2
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recreate (1.1). The main result of this section, Theorem 5.1, says that ac-
cording to this definition, (Pnm,Γnm , Pbc,Γbc

) form evidence factors.

Definition 1. A set D is called a decreasing set if for any pair (x,y)
with x ≤ y, if y ∈ D then x ∈ D. For two random vectors X and Y we say
that X is stochastically larger than Y if

(5.1) Pr(X ∈D) ≤ Pr(Y ∈D),

for all nondecreasing sets D. If X is stochastically larger than Y we write
X ≽Y.

Definition 2. For any pair of bias levels (Γnm,Γbc), (Pnm,Γnm , Pbc,Γbc
)

are evidence factors for testing H0 if, (Pnm,Γnm , Pbc,Γbc
) ≽ (U1, U2) under the

bias levels Γnm, Γbc and under H0, for two independent Unif [0,1] random
variables U1 and U2.

Now we state the main theorem.

Theorem 5.1. Under H0 and for bias levels Γnm and Γbc we have
(Pnm,Γnm , Pbc,Γbc

) ≽ (U1, U2) for two independent Unif [0,1] random vari-
ables U1 and U2.

The rest of the section is dedicated to proving this theorem using a few
lemmas. The proof of all the lemmas are given in the appendix. These lem-
mas clarify the functional relationships of Pnm,Γnm and Pbc,Γbc

on the ex-
posure of the units Zls. Since the Zl’s are the only random variables that
determine the p-values, or their upper bounds, the purpose of these lemmas
in proving the theorem is to show that Pnm,Γnm and Pbc,Γbc

depend on dif-
ferent parts of the Zls. For a crude understanding of this, notice the term
Zc{si} in the expression of Pbc,Γbc

in Lemma 5.2 which is missing from the
corresponding expression of Pnm,Γnm — whether a control unit is exposed
to the treatment does not affect the narrow versus marginal cases analy-
sis. Lemma 5.3 shows that, not only are Pnm,Γnm and Pbc,Γbc

stochasticaly
larger than a uniform distribution on [0,1], for they are larger than the
true but unknown p-values, different conditional distributions of them are
also stochasticaly larger than a uniform distribution on [0,1]. Theorem 5.1
is about the joint distribution of (Pnm,Γnm , Pbc,Γbc

). Thus, the facts about
the marginal distributions of Pnm,Γnm , Pbc,Γbc

and their conditional distribu-
tions given certain events, along with a general lemma, Lemma 5.5, proves
the theorem.
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To slightly simplify our notation in what follows, for two random vectors
X and Y we write [X ∣ Y ] to denote the conditional distribution of X
given Y . Since we are dealing with discrete spaces, [X ∣ Y ] is a real valued
measurable function of X and Y .

The following is one of the main lemmas needed to prove Theorem 5.1.

Lemma 5.2. There exists functions fnm and fbc on appropriate domains
such that

Pnm,Γnm = fnm({Zn{si}, i ∈ [ns];∑i∈[ns]Zn{si} +∑i∈[ms]Zm{si} ∣ s ∈ [S]}),

and Pbc,Γbc
= fbc({Zc{si}, i ∈ [cs];∑i∈[ns]Zn{si} +∑i∈[ms]Zm{si} ∣ s ∈ [S]}).

Following Definition 1, let us use the notationX ≽D for a random variable
X and a probability distribution D to say that X is stochastically larger than
D or Pr(X ≤ x) ≤ Pr(Y ≤ x ∣ Y ∼D) for all x ∈ R.

Lemma 5.3. Under H0, we have the following

(i) [Pnm,Γnm ∣ {∑i∈[ns]Zn{si} +∑i∈[ms]Zm{si}},Fb,{ns}] ≽ Unif [0,1].
(ii) [Pbc,Γbc

∣ {∑i∈[ns]Zn{si}+∑i∈[ms]Zm{si}+∑i∈[cs]Zc{si}},F ,{bs+cs}] ≽
Unif [0,1].

(iii) Pnm,Γnm ≽ Unif [0,1].
(iv) Pbc,Γbc

≽ Unif [0,1].

The following lemma relies on the assumption of no interference in treat-
ment assignment among the units, which is to say Zl and Zl′ are indepen-
dently distributed for two distinct units l and l′.

Lemma 5.4. Under H0

[Pnm,Γnm ∣ {Zc{si}, i ∈ [cs]};∑i∈[ns]Zn{si} +∑i∈[ms]Zm{si}] ≽ Unif [0,1].

Lemma 5.5. Suppose two random variables P1 and P2 satisfy

C1 random variable P1 is a function of random quantity V1,
C2 [P2 ∣ V1] ≽ Unif [0,1],

then for 0 ≤ q ≤ 1, Pr(P2 ≤ q ∣ P1) ≤ q, i.e., [P2 ∣ P1] ≽ Unif [0,1].

Now we have all the necessary facts to prove Theorem 5.1.



16 B. KARMAKAR, C. A. DOUBENI AND D. S. SMALL

Proof. (of Theorem 5.1) In Lemma 5.5 take P1 = Pbc,Γbc
, P2 = Pnm,Γnm

with V1 = {{Zc{si}, i ∈ [cs]};∑i∈[ns]Zn{si}+∑i∈[ms]Zm{si}}. Then, by Lemma
5.2, condition C1 is satisfied and condition C2 is proved in Lemma 5.4. Thus
by Lemma 5.5, [Pnm,Γnm ∣ Pbc,Γbc

] ≽ Unif [0,1].
Let U1 and U2 be two independent uniformly distributed random vari-

ables on [0,1]. We use the theory of Shaked and Shanthikumar (2007) §6B.
(U1, U2) being an independent pair is a conditionally increasing in sequence
(CIS). Then combining this with the facts that Pbc,Γbc

≽ Unif [0,1] (by
Lemma 5.3) and [Pnm,Γnm ∣ Pbc,Γbc

] ≽ Unif [0,1], Theorem 6.B.4 of Shaked
and Shanthikumar (2007) finally gives us

(Pnm,Γnm , Pbc,Γbc
) ≽ (U1, U2).

Thus the proof is complete.

5.1. Combining evidence. In words, Theorem 5.1 says that the combined
information from the two evidence Pnm,Γnm and Pbc,Γbc

carries as much ev-
idence as two independent evidence. This allows us to combine these two
pieces of evidence and provide a total evidence against the hypothesis under
both the comparisons. Karmakar et al. (2019) discusses different methods for
combining evidence. Any method of combining p-values that is monotone in
both of the p-values can be used, e.g. Fisher’s combination method (Fisher,
1932), the mean of the normal transformation (Liptak, 1958), the truncated
product method of combining (Hsu, Small, and Rosenbaum, 2013; Zaykin
et al., 2002). Also see Becker (1994). These methods of combining p-values
are used when p-values are available from independent sources, e.g., in meta
analysis. In an observational study, even when there are independent tests,
combining them does not strengthen the evidence against the biases from
unmeasured confounders, if the analysis are affected by the same unmea-
sured confounding. The evidence factors are two analyses that are nearly
independent and that do not share completely overlapping biases. Thus,
combining the maximum p-values from the evidence factors strengthens the
evidence in an observational study. The simulation section considers which
combining method has largest power in sensitivity analysis for unmeasured
confounding.

Fisher’s method computes the joint evidence as the tail probability of
χ2
4 distribution over −2 log(Pnm,Γnm ⋅ Pbc,Γbc

). In the scenario of sensitivity
analysis, since we only consider largest possible p-values for a given value of
hidden bias level, the truncated product method, which weights the evidence
by the strength of the evidence is often preferred. For a given α̃, the combined
evidence using the truncated product method is given by FW{Ev(Γnm,Γbc)},
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where

(5.2) Ev(Γnm,Γbc) = 1Pnm,Γnm≤α̃ log(Pnm,Γnm) + 1Pbc,Γbc
≤α̃ log(Pbc,Γbc

), and

FW {w} = 2α̃(1 − α̃)GExp(1) {− log (
w

α̃
)} + α̃2GGamma(2,1) {− log (

w

α̃2
)} .

In the above, GExp(1) is the survival function of a random variable with
Exponential distribution with rate 1, and GGamma(2,1) the survival function
of a random variable with Gamma distribution with shape parameter 2 and
rate 1. The advised choice of α̃ is 0.20 (Hsu et al., 2013; Zaykin et al., 2002).

We conducted a simulation study to compare the powers of Fisher’s
method and the truncated product method in the setting of our problem.
The simulation scenario considered here is based on the case-control study
structure. We are going to look at the favorable situation where there are
no unmeasured confounders with treatment effect. Then for varied treat-
ment effect sizes, we compare the power of the two combining methods for
different values of (Γnm,Γbc).

We consider a population where the chance of exposure is 1/3. Thus for a
unit l, Pr(Zl = 1) = 1/3. The treatment effect is denoted by β. We consider
a univariate response and two types of response distributions in the popu-
lation. The two types of distributions when spared exposure are a normal
distribution with mean 0 and variance 1 and a t-distribution normalized
to have variance 1. Therefore, if a unit l is exposed to treatment then the
response is a sample from N(β,1) (or β + t3/

√
3) and if not exposed then

the response is a sample from N(0,1) (or t3/
√
3). The case-definition for

each of the scenarios is taken such that if the treatment effect was 0.5 then
20% of the population would be broad cases. Thus, in the setting where
the response is from normal distribution, the response of more than the 0.8
quantile of the mixture distribution 1/3N(β,1)+2/3N(0,1) would be labeled
a broad case. In our simulation we sample 2,000 broad cases and largest half
of them are labeled as narrow cases. Then we sample 2,000 controls. In both
comparisons of narrow cases versus marginal cases and broad cases versus
controls we consider paired stratum, i.e., ns =ms = 1, cs = 2.

Table 2 and 3 report the simulated power for the two combining methods.
The simulated power is based on 10,000 iterations with level of significance
α = 0.05. Except for very few situations in Table 2, the truncated product
method has better simulated power than Fisher’s combining method. The
truncated product method seem to be less sensitive as we increase Γnm and
Γbc. Fisher’s method has slightly better simulated power in a few situations
in the normal response model for moderate values of (Γnm,Γbc) when there is
a large treatment effect (β = 0.6). After considering these simulation results,
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Table 2
Simulated power, in %, of a sensitivity analysis of combined evidence in a case control
study, where there is no unmeasured confounder and Pr(Zl = 1) = 1/3. The response is

simulated from N(β,1) if Zl = 1 and N(0,1) if Zl = 0. There are 1,000 narrow cases and
1,000 marginal cases with 2,000 controls. Based on 10,000 iterations. Fisher = Fisher’s

combination method, tP = truncated product method with α̃ = 0.20
Γnm Γbc β = 0 β = 0.2 β = 0.4 β = 0.6

Fisher tP Fisher tP Fisher tP Fisher tP
1 1 5 5 100 100 100 100 100 100

1.5 0.6 1 25 26 100 100 100 100
2 0.6 1 18 22 87 86 100 100

2.5 0.6 1 18 22 75 80 100 100
1.25 1.25 0 0 48 51 100 100 100 100

2 0 0 0 0.1 15 15 100 100
2.75 0 0 0 0.1 3 5 69 66
3.5 0 0 0 0.1 3 5 69 66

1.5 1.5 0 0 0.2 0.3 99.2 99.4 100 100
2.5 0 0 0 0 0 0 54 52
3.5 0 0 0 0 0 0 1 2

1.75 1.75 0 0 0 0 51 58 100 100
2 0 0 0 0 2 3 100 100

3.25 0 0 0 0 0 0 0 0
2 2 0 0 0 0 2 3 100 100

2.5 0 0 0 0 0 0 36 43
3 0 0 0 0 0 0 0.1 0.2

3.5 0 0 0 0 0 0 0 0
2.25 2.25 0 0 0 0 0 0 88 91

2.5 0 0 0 0 0 0 35 42
3 0 0 0 0 0 0 0.1 0.2

in our case-control study of the efficacy of screening sigmoidoscopy we use
the truncated product method with α̃ = 0.20.

6. Evidence factors with differential effect of unmeasured con-
founders on the factors. The individual factors in an evidence factors
analysis, if biased, are hoped to be biased by different mechanisms so that, a
critic would need to consider both sources of bias to explain the observed sta-
tistical significance. As discussed in Section 2.1, in the sigmoidoscopy study,
the bias in comparing all colorectal cancer cases to controls could be due to
imbalance between the two groups in healthy lifestyle of the patients, family
history and also potentially due to diet. The comparison of distal cancer
cases to proximal cancer cases may be biased by diet, e.g. Mediterranean
diet. Hence, the main source of unmeasured confounding in the second anal-
ysis can, to some extent, also be a source of bias in the first analysis. The
following discussion delineates the logic of evidence factors analysis for such
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Table 3
Simulated power of a sensitivity analysis of combined evidence in a case control study,

where there is no unmeasured confounder and Pr(Zl = 1) = 1/3. The response is
simulated from β + t3/

√
3 if Zl = 1 and t3/

√
3 if Zl = 0. There are 1,000 narrow cases

and 1,000 marginal cases with 2,000 controls. Based on 10,000 iterations. Fisher =
Fisher’s combination method, tP = truncated product method with α̃ = 0.20
Γnm Γbc β = 0 β = 0.2 β = 0.4 β = 0.6

Fisher tP Fisher tP Fisher tP Fisher tP
1 1 5 5 100 100 100 100 100 100

1.5 1 1.5 0.5 0.5 100 100 100 100
2 1 1.5 0 0.1 15 18 100 100

2.5 1 1.5 0 0.1 0 0 98 98
1.25 1.25 0 0 47 54 100 100 100 100

2 0 0 0 0 14 18 100 100
2.75 0 0 0 0 0 0 71 77
3.5 0 0 0 0 0 0 0.2 0.3

1.5 1.5 0 0 0.2 0.3 100 100 100 100
2.5 0 0 0 0 0 0 98 98
3.5 0 0 0 0 0 0 0.2 0.3

1.75 1.75 0 0 0 0 82 86 100 100
2 0 0 0 0 14 18 100 100

3.25 0 0 0 0 0 0 3 5
2 2 0 0 0 0 14 18 100 100

2.5 0 0 0 0 0 0 98 98
3 0 0 0 0 0 0 24 30

3.5 0 0 0 0 0 0 0.2 0.3
2.25 2.25 0 0 0 0 0.2 0.4 100 100

2.5 0 0 0 0 0 0 98 98
3 0 0 0 0 0 0 24 30

a scenario in which the sources of bias overlap for the two evidence factors
but are different in their relative size between the two evidence factors.

Recall, Section 4.2 provides the amplification of the sensitivity parameters
Γbc and Γnm in terms of the λ, δbc and δnm. There, u1 and u2 are assumed
to be two separate unmeasured confounds. The relation of the unmeasured
confounding, u1 and u2, and the exposure to treatment is model by bias
level λ. The relation of u1 and the broad case status is modeled by the bias
level δbc. Finally, the relation of u2 and the broad case status is modeled by
the bias level δnm. In the following we allow for u1 and u2 to be influenced
by overlapping factors.

For individual l, let v1l and v2l be unmeasured numbers summarizing two
sets of unmeasured variables so that 0 ≤ v1l, v2l ≤ 1. We allow for both vari-
ables to bias each analysis but to have varying importance in their relation-
ship with the outcomes. We formalize this as follows. Let u1l = ψ1v1l +ψ2v2l
where ψ1, ψ2 ≥ 0, ψ1 + ψ2 = 1 and ψ1 is larger than ψ2. Also, let u2l =
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ψ̃1v1l + ψ̃2v2l where ψ̃1, ψ̃2 ≥ 0, ψ̃1 + ψ̃2 = 1 and ψ̃2 is larger than ψ̃1. The
fractions ψ1, ψ2, ψ̃1 and ψ̃2 are fixed numbers. The unmeasured confounders
v1l and v2l relates to the broad case status and the narrow case status by
models (4.5) and (4.6) via the variables u1l and u2l.

As for the relation between the unmeasured confounders v1l, v2l and the
observed exposure to treatment, for two units i1 and i2 with the same ob-
served covariates we write, for zi1 + zi2 = 1

Pr (Zi1 = zi1, Zi2 = zi2 ∣ C,xi1 = xi2, Zi1 +Zi2 = 1) =
exp{λ(zi1ωi1 + zi2ωi2)}
exp(λωi1) + exp(λωi2)

,

(6.1)

where ωl = ζ1v1l + ζ2v2l, for l = 1, . . . , L; ζ1, ζ2 ≥ 0, ζ1 + ζ2 = 1.(6.2)

Now consider the amplification of the sensitivity parameters Γbc and Γnm
under the model specified by equations (6.1), (6.2) and (4.5), (4.6) with
u1l = ψ1v1l +ψ2v2l and u2l = ψ̃1v1l + ψ̃2v2l. This can be communicated under
three different scenarios depending on the source of bias under doubt – either
bias from one of v1 or v2, or bias from both v1 and v2. Assume a value of
λ in model (6.1)–(6.2). We find the parameters δbc and δnm from λ and
Γbc, Γnm. Let Λ = exp(λ), ∆bc = exp(δbc) and ∆nm = exp(δnm). Then, (i)
if only v1 is the bias in question, i.e. we put the restriction v2,l = v2,l′ , then
∆bc = {(ΛΓbc − 1)/(Λ − Γbc)}1/ψ1 and ∆nm = {(ΛΓnm − 1)/(Λ − Γnm)}1/ψ̃1 .
This correspondence holds with ∣v1,i1 − v1,i2∣ = 1. (ii) If only v2 is the bias in
question, i.e. we put the restriction v1,l = v1,l′ , then ∆bc = {(ΛΓbc − 1)/(Λ −
Γbc)}1/ψ2 , ∆nm = {(ΛΓnm − 1)/(Λ − Γnm)}1/ψ̃2 and ∣v2,i1 − v2,i2∣ = 1. (iii)
Finally, if both the confounders v1 and v2 are in question, then ∆bc = (ΛΓbc−
1)/(Λ − Γbc) and ∆bc = (ΛΓnm − 1)/(Λ − Γnm). This correspondence holds
with ∣v1,i1 − v1,i2∣ = 1 and ∣v2,i1 − v2,i2∣ = 1. A closer look at these formulas
immediately shows that bias parameters δbc = log(∆bc) and δnm = log(∆nm)
changes wildly across the scenarios.

Guided by the above calculations, Figure 2 provides an illustration of the
influence of unmeasured confounders on the broad case status, δbc, and on
the narrow case status to a marginal case status, δnm. In this illustration we
assume ψ1 = 3/4, so that in determining a broad case status the magnitude
of unmeasured confounding from v1 over v2 has the ratio 3:1. Whereas in
determining a narrow case status to a marginal case status the magnitude of
unmeasured confounding from v1 over v2 has the ratio 1:4, i.e., ψ̃1 = 1/5. The
plot considers three critics, showed in three colors, with different positions
on their beliefs in the source of bias from unmeasured confounding. The first
critic assumes bias only from v1, the second critic assumes bias only from v2
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Fig 2. Level of bias from unmeasured confounding plotted under three speculations – bias
only from v1, plotted on the x-axis and in ‘red’; bias only from v2, plotted on the y-axis
and in ‘blue’; and biases from both v1 and v2, plotted in ‘green’ contours. The contours
are of the function f(δv1 , δv2) = (1/δv1 + 1/δv2)

−1. Here, ψ1 = 3/4, ψ2 = 1/4, ψ̃1 = 1/5 and
ψ̃2 = 4/5. The bias levels δbc and δnm changes with the speculation and the required bias
level is minimized when biases from both v1 and v2 are assumed.

and finally the third critic assumes biases from both v1 and v2. The x-axis
on the plot (in red) shows the amount of bias the first critic would have
to assume, the y-axis on the plot (in blue) shows the amount of bias the
second critic would have to assume and finally the green curves show the
amount of bias the third critic would have to assume. For example, the plot
highlights the situation where the critics want to explain the sensitivity of
the comparisons at level Γbc = 2 and Γnm = 2, and all of them speculate Λ = 4.
The first critic would have to assume biases at the amount of δbc ≥ 1.671 and
δnm ≥ 6.265. The second critic would have to assume biases at the amount
of δbc ≥ 1.566 and δnm ≥ 5.012. The third critic, however, can assume bias
levels of δbc ≥ 1.253 and δnm ≥ 1.253. Hence, unless a skeptic of the study
assumes unmeasured confounding from both sources of bias mechanisms she
would be forced to consider a larger influence of unmeasured confounding
in one case definition over the other.
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Thus, when the factors overlap but do not completely overlap in their
sources of bias, evidence factors will be useful in narrowing the range of
explanations for how an observed association could not be causal.

7. Results: efficacy of screening sigmoidoscopy. In our study of
mortality from colorectal cancer and screening sigmoidoscopy, the two evi-
dence factors analyses are summarized in Table 4. The count for screening
sigmoidoscopy represent the number of individuals who had a screening pro-
cedure in 10 years before the reference date. The raw odds ratio, without
controlling for any covariates, of screening sigmoidoscopy between proximal
and distal cancer cases is 0.63 (95% CI, 0.55 to 0.72) and that between all
colorectal cancer cases and controls is 0.64 (95% CI, 0.50 to 0.81). To con-
trol for important covariates we utilize the matched sets we constructed in
Section 2.1. Using this matched sets design the p-value for efficacy of screen-
ing sigmoidoscopy for the distal colorectal cancer cases versus the proximal
colorectal cancer cases is 2.3×10−5, with the corresponding odds ratio 0.60
(95% CI, 0.46 to 0.76). The p-value for all cases (distal and proximal) ver-
sus the matched controls is 5.0×10−11, with odds ratio 0.62 (95% CI, 0.54 to
0.72) (this result is similar to previously reported odds ratios, see Atkin et
al. (2010) and Segnan et al. (2011)).

We further conduct a sensitivity analysis to assess whether possible co-
variates which were not controlled for in our study may have been the reason
behind the observed association above. Being consistent with the notation
of Section 4 we consider two sensitivity parameters Γnm and Γbc for the two
comparisons. A value of 1 for a sensitivity parameter would say that there
is no bias from unmeasured confounding in the respective comparison, and
the higher the value is of the parameter, the bigger is the bias. Figure 3
shows the bias levels where the combined evidence for a beneficial effect of
screening sigmoidoscopy is sensitive. The p-value upper bounds for each bias
level of the two evidence factors are combined using the truncated product
method with α̃ = 0.20. As can be seen in this plot, only a substantial amount

Table 4
Screening sigmoidoscopy and colorectal cancer summary data. Numbers in the

parentheses show the 95% confidence intervals.
Distal Proximal All colorectal Controls

cancer cases cancer cases cancer cases
No screening sigmoidoscopy 678 662 1340 2538
Screening sigmoidoscopy 144 224 368 1097
Odds ratio from matched sets 0.60 (0.46 to 0.76) 0.62 (0.54 to 0.72)
p-value from matched sets 2.3×10−5 5.0×10−11
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Fig 3. Sensitivity analysis of the efficacy of screening sigmoidoscopy in reducing mortality
from colorectal cancer. The darker gray color represents the bias levels where the combined
evidence for a beneficial effect of screening sigmoidoscopy is sensitive.

of bias in both comparisons could explain the observed association in the
data, if in fact the null hypothesis is true. For example, with a maximum
bias of Γnm = 1.4 in the comparison of distal cancer cases to proximal cancer
cases, the combined evidence is sensitive only when the bias in the second
comparison of all colorectal cases to the controls is larger than Γbc = 1.45.
The overall evidence remains insensitive for Γnm = 2 when Γbc ≤ 1.35. Thus
the overall evidence for the efficacy of the procedure is strengthened com-
pared to evidence from an analysis that only looks at the screening rates
between all colorectal cancer cases and controls. The maximum p-values are
calculated using the ‘mh’ function in R package sensitivity2x2xk.

To better understand which part of the evidence is contributing to our
inferences about the effect of sigmoidoscopy screening, we can use closed
testing (Marcus et al., 1976) as in Karmakar et al. (2019). When both biases
are small, suppose Γnm = Γbc = 1.1, by the closed testing procedure, the joint
evidence is insensitive and both evidence factors are also insensitive with
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Pnm,1.1 = 1.36×10−7 and Pbc,1.3 = 0.0005. The closed testing procedure also
says that when Γnm = 1.5 and Γbc = 1.4, the comparison of proximal to distal
cancer cases is sensitive with maximum possible p-value of Pnm,1.5 = 0.21 but,
there is evidence from the comparison of all colorectal cancer cases to the
controls, which is insensitive with a maximum possible p-value of Pbc,1.4 =
0.034. Recall from the discussion of Section 4.2 that the pair of bias levels
Γnm = 1.5 and Γbc = 1.4 is equivalent to an effect of unmeasured confounders
that, doubles the chance of a sigmoidoscopy screening for a case relative to
a control, while also increasing the chance of death from colorectal cancer
by 5/3 fold and increasing the chance of death from a proximal colorectal
cancer over a distal colorectal cancer by 2 fold. On the other hand, if the
effect of unmeasured confounders is smaller on being a proximal cancer case
so that it increases the chance of death from proximal colorectal cancer
over a distal cancer only by 5/3 fold, but increases the chance of death
by any colorectal cancer by 2 fold, the joint evidence is sensitive to such
unmeasured confounders. The closed testing procedure for two, or many,
evidence factors and plots similar to Figure 3 can be produced by the R
package evidenceFactors available from CRAN (R Core Team, 2020).

8. Discussion. In this paper we have developed evidence factors in a
case-control study in which there is a narrow and a broad case definition.
These evidence factors are formed by two sets of comparisons, the first one
comparing narrow cases to marginal cases and the second one comparing all
cases to controls. Use of these evidence factors in a case-control study can
provide better insight into the study especially in a discussion and analysis
of possible bias in the study.

In the sigmoidoscopy study considered in this paper, the elaborate theory
(Section 1.1 and 1.3) suggested that if there is an efficacy of sigmoidoscopy
screening in reducing mortality from colorectal cancer, the benefit should
be larger for the proximal cancer cases compared to distal cancer cases and
for any colorectal cancer case over controls. Following this theory, the evi-
dence factors were thus useful in assessing the hypothesis of no benefit of
sigmoidoscopy screening. While the standard discussion of evidence factors
analyses emphasizes that the biases affecting the different factors are differ-
ent (Section 1.2), for the sigmoidoscopy study it was more likely the biases
overlap but not completely. For case-control studies, this paper also shows
that the evidence factors analyses also strengthens the evidence for a causal
effect when the biases from unmeasured confounders affecting the different
analyses may overlap.

The technical results of Section 5 can be extended to more complex de-
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signs, for example to designs with more than two types of cases (see Keogh
and Cox, 2014), using more complex notation. But these technical results are
only a part of what makes an evidence factor useful for a case-control study.
It is also equally important that the factors are coherent with the elaborate
theory of a causal effect of an exposure; for two case definitions, other ex-
amples where an evidence factors analysis may be considered are discussed
in the final subsection. Lastly, it would also be important to establish that
under overlapping biases, which is likely more prominent when there are
multiple types of cases, the multiple analyses considered still strengthens
the evidence against a large number of plausible patterns of biases. Regard-
ing this point, for the arguments of Figure 2 in Section 6 to work, one has
to think of appropriate extensions of the models in equation (4.5) and (4.6).
Such extensions are not readily available in the literature. We leave these
developments as a potential future research direction.

Our study paired narrow cases to marginal cases on the observed co-
variates and included their controls in the matched sets, and then put the
remaining marginal cases in matched sets with their controls. Other match-
ing methods could be used, e.g., full matching (Hansen, 2004), variable ratio
matching (Ming and Rosenbaum, 2000; Pimentel, Yoon, and Keele, 2015).

8.1. Other examples with multiple case definitions. In certain diseases,
like cancer in the body of the uterus, atherosclerosis, hypertension and men-
tal illness, multiple case definitions are considered or often necessary (Ache-
son, 1979; Cole, 1979; Cohen et al., 2005). Some other specific studies where
multiple case definitions have been considered are discussed here. These
studies illustrate various ways to design a broad case vs. narrow case dis-
tinction in case-control studies. In a study to assess whether statin causes
peripheral neuropathy Gaist et al. (2002) classify the neuropathy cases as
definite and nondefinite cases of idiopathic peripheral neuropathy based on
the intensity of the symptom and the quality of the clinical information. In
the terminology of the present paper the definite cases would be the narrow
cases where the association, if present, would be stronger compared to the
marginal cases, i.e., the nondefinite cases. Small et al. (2013) use an illus-
trative case-control study for physical abuse by parents in childhood and
tendency for more anger in adulthood. In this study the cases were split in
two definitions based on whether or not anger score was on a higher range.
Here, a case on a higher quantile of anger score could be defined as a nar-
row case. As a final example, in an effort to understand association between
genetic traits and cerebral malaria, Small et al. (2017) consider cerebral
malaria cases with and without retinopathy. The World Health Organiza-
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tion (WHO) defines a child as having cerebral malaria when the child is in
a coma (cannot localize a painful stimulus), has malaria parasites in his or
her blood and has no other known cause of the coma. This definition is not
specific as hospitals in malaria-endemic areas often lack diagnostic facili-
ties to identify non-malarial causes of coma and many children in malaria
endemic areas have non-symptomatic malaria infections. There are charac-
teristic retinal abnormalities (retinopathy) that increase the specificity of a
cerebral malaria diagnosis (Taylor et al., 2004). Cerebral malaria cases with
such retinal abnormalities could be considered as narrow cases and those
without the retinal abnormalities could be considered as marginal cases.

SOFTWARE

An R package evidenceFactors, available from CRAN (R Core Team,
2020), contains code for reproducing the simulation results of Section 5.1,
and code used for analyzing the sigmoidoscopy study.
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PROOF OF THE LEMMAS

Proof of Lemma 5.2. First we note that Tnm is a function of Yn{s}
which are simply linear functions of Zn{si}. Given the strata, from equa-
tion (4.1) we have that the maximum p-value of the narrow versus marginal
comparison, Pnm,Γnm , is computed based on the conditional distributions
{[Zn{si} ∣ ∑i∈[ns]Zn{si} +∑i∈[ms]Zm{si}]}. Combining these facts, we get the
first result that marginally Pnm,Γnm is a function of {Zn{si}} and∑i∈[ns]Zn{si}+
∑i∈[ms]Zm{si}.
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Next we note that Tbc is a function of ∑i∈[ns]Zn{si}+∑i∈[ms]Zm{si}. Now,
by looking at equation (4.2), Pbc,Γbc

is computed based on the family of
conditional distributions {[∑i∈[ns]Zn{si} + ∑i∈[ms]Zm{si} ∣ ∑i∈[ns]Zn{si} +
∑i∈[ms]Zm{si} +∑i∈[cs]Zc{si}]}. Consequently, Pbc,Γbc

is determined by the
number of exposed cases {∑i∈[ns]Zn{si}+∑i∈[ms]Zm{si}} and the total num-
ber of exposed individuals {∑i∈[ns]Zn{si} + ∑i∈[ms]Zm{si} + ∑i∈[cs]Zc{si}}.
But it is enough to know whether each control is exposed or not, i.e., Zc{si},
to know the number of exposed cases when we have the information on total
number of exposed units. The result is hence proved.
Proof of Lemma 5.3. For part (i) and (ii) note that p-values or their up-
per bounds are valid p-values thus are stochastically larger than Unif [0,1].
Part (iii) and (iv) follows from (i) and (ii) simply by marginalizing since
marginalization preserves stochastic ordering.
Proof of Lemma 5.4. Note that, since conditional on ∑i∈[ns]Zn{si} +
∑i∈[ms]Zm{si} the random variables Zn{si} and Zc{si} are independently dis-
tributed, by Lemma 5.2 the conditional distribution in the statement of the
lemma is same as [Pnm,Γnm ∣ ∑i∈[ns]Zn{si} +∑i∈[ms]Zm{si}]. Now the result
follows from part (i) of Lemma 5.3.
Proof of Lemma 5.5. We can write for any 0 ≤ p, q,≤ 1, the conditional
probability as,

Pr(P2 ≤ q ∣ P1 ≤ p)
by C1= Pr(P2 ≤ q ∣ {V1 ∶ P1 ≤ p})
= E [Pr(P2 ≤ q ∣ V1) ∣ {V1 ∶ P1 ≤ p}]

by C2
≤ E [q ∣ {V1 ∶ P1 ≤ p}] = q.

The second equality above follows from the tower property of conditional
expectation. The lemma then follows.
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