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Valid instrumental variables enable treatment effect inference even when
selection into treatment is biased by unobserved confounders. When multiple
candidate instruments are available, but some of them are possibly invalid,
the previously proposed reinforced design enables one or more nearly inde-
pendent valid analyses that depend on very different assumptions. That is, we
can perform evidence factor analysis. However, the validity of the reinforced
design depends crucially on the order in which multiple instrumental variable
analyses are conducted. Motivated by the orthogonality of balanced factorial
designs, we propose a balanced block design to offset the possible violation
of the exclusion restriction by balancing the instruments against each other in
the design, and demonstrate its utility for constructing approximate evidence
factors under multiple analysis strategies free of the order imposition. We
also propose a novel stratification method using multiple, nested candidate
instruments, in which case the balanced block design is not applicable. We
apply our proposed methods to evaluate (a) the effect of education on future
earnings using instrumental variables arising from the disruption of education
during World War II via the balanced block design, and (b) the causal effect
of malaria on stunting among children in Western Kenya using three nested
instruments.

1. Introduction.

1.1. Bias, instrumental variable, and replication. In an observational study, a compar-
ison between the treated and control groups might be biased because of unmeasured con-
founders, that is, because of pretreatment difference between the groups in an unmeasured
variable that is associate with the outcome. Often this bias is systematic and recurs in repli-
cated studies (Rosenbaum, 2001). In such a case, an instrumental variable, a “random nudge”
to accept a treatment, provides a unique opportunity to separate a meaningful causal effect
from bias (Angrist, Imbens and Rubin, 1996; Rosenbaum, 2010a). An instrumental variable
that is associated with a treatment variable enables us to compare the two treatment arms
by mimicking an experimental design. Consider studying the causal effect of educational at-
tainment on earnings which we use as our running example throughout this paper. Education
levels are not randomly assigned to individuals, and education and earnings are both likely
to be affected by many factors, e.g., self-motivation and exposure to financial resources, that
are difficult to measure accurately. Card (1993) proposed to use proximity to a college as an
instrument since it is highly related to educational attainment and may be considered random.
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However, a valid usage of an instrumental variable is subject to a few conditions. There
must be no direct effect of the instrument on the outcome, i.e., it must satisfy the exclusion
restriction assumption, and no unmeasured confounders between the instrument and the out-
come. However, in practice, these assumptions are often violated even after controlling for
observed covariates and are untestable without solid scientific knowledge. In Card (1993),
for example, living near a college might have a direct effect on earnings because it can lead
to different employment opportunities and/or might be associated with self-motivation or
parents’ ambition for their children that are also associated with earnings, which in the end
manifests in a spurious effect between education and earnings.

Depending on the context, other instruments can be used for the same question. For ex-
ample, to examine the same question of the causal effect of education on earnings, Angrist
and Krueger (1991) used quarter of birth interacted with year of birth as an instrument, and
Harmon and Walker (1995) used changes in the minimum school leaving age as an instru-
ment. Card (1999) reviewed other instrumental variable choices, too. To see that quarter of
birth could affect education, consider a person who leaves school at the minimum school
leaving age. If the cutoff for entering the 1st grade is being born in a certain year (as it used
to be in the US), then he or she will have less education if born in the first quarter than the
fourth quarter. Even though each of these proposed instruments may violate the exclusion
restriction and no unmeasured confounding assumption, there is no clear reason to think that
biases due to invalid instruments recur in the same direction by multiple studies. For such
a setting, we may obtain randomness in bias from multiple instrumental variables each of
which is subject to different sources of bias that do not completely overlap with each other.
For this reason, if results from the multiple independent studies based on different instrumen-
tal variables concur, their common conclusion will be more reliable than those from multiple
studies that directly compare treated and control subjects. Compared to the former studies,
the latter studies are more likely to be exposed to the same or similar bias which consistently
draws the conclusion away from the truth.

Is there any way to obtain randomness in bias and independent analyses from using multi-
ple candidate instruments based on a single study? If multiple instruments tend to induce bias
in similar directions, e.g., subjects who live near colleges are likely to be more self-motivated
and have birth dates earlier in the year in Card (1993), then there would be less gain in using
multiple instruments as one bias may affect multiple results in the same direction. However,
if each instrumental variable analysis could produce an orthogonal piece of evidence, we
can obtain randomness in bias from multiple instruments even without replicating studies.
To achieve this, we adopt the framework of evidence factor analysis (Rosenbaum, 2010b)
— multiple, nearly independent analyses of the same data set that are subject to different
potential biases — to multiple instrumental variables that would introduce unsystematic un-
certainties in bias from each instrument. In this framework, a conclusion from several pieces
of evidence tends to replicate when it is correct, and tends to fail to replicate when it is
incorrect or the studies do not have sufficient power (Rosenbaum, 2001).

This paper proposes the balanced block design and mutual stratification as two new evi-
dence factor analysis methods to implement multiple causal comparisons with instrumental
variables when invalid instruments may be present. In our proposed methods, each analysis
from multiple instruments is valid to study the causal effect when the putative instrument
is valid, and even if it is invalid without us knowing so, its bias will not affect the validity
of other analyses. We introduce three different non-parametric randomization based tests for
each candidate instrument: marginal tests, conditional tests, and reinforced tests. We show
that under the balanced block design, (a) for an instrument that is conditionally valid given
the other instruments, any one of these three types of tests is asymptotically valid under
mild regularity conditions; (b) using any of the three tests, the valid p-values calculated are
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asymptotically jointly stochastically larger than the uniform distribution on the unit cube,
which implies their near independence; and (c) the results of (a) and (b) hold in sensitivity
analysis to unmeasured confounders with the upper bounds of the p-values (in place of the
p-values) when the instruments are conditionally valid only after allowing for some amount
of unmeasured confounding. When the candidate instruments are nested, the balanced block
design is not applicable. We show that for nested instruments, (a)–(c) continue to hold with
the proposed conditional tests under mutual stratification.

We present two empirical studies using our methods. The balanced block design method
is applied to investigate the effect of education on future earnings using two instrumental
variables arising from the disruption of education during the war. The mutual stratification
method is applied to examine the effect of malaria on stunting using three nested instruments
from a cluster randomized trial involving children in Western Kenya. By applying the pro-
posed methods for each study, we can learn several nearly independent pieces of evidence
from a single data set even in the presence of invalid instruments.

1.2. Literature review. Evidence factor analysis performs multiple and nearly indepen-
dent analyses, also known as factors, each depending on assumptions that do not completely
overlap (Rosenbaum, 2010b; Rosenbaum et al., 2017). When two or more nearly indepen-
dent analyses for a causal hypothesis provide supportive evidence, the evidence for a causal
effect is strengthened. This is because neither bias nor statistical error that might invalidate
one piece of the evidence can invalidate supportive evidence from the other factors. Further,
an evidence factor analysis allows sensitivity analyses to unmeasured confounders. Thus,
evidence for a causal effect is strengthened if multiple evidence factors provide support for
a causal effect, and such evidence is further robust to a moderate degree of unmeasured
confounding in different directions. Evidence factor analysis has been developed and used
in prospective studies (Zhang et al., 2011; Zubizarreta et al., 2012), in case-control studies
(Karmakar, Doubeni and Small, 2020), to deconfound the effect of exposure biomarkers in
a study of the effect of an external exposure (Karmakar, Small and Rosenbaum, 2020), and
with multiple treatments (Rosenbaum et al., 2017; Nattino et al., 2021). Karmakar, French
and Small (2019) and Karmakar and Small (2020) studied design sensitivity of an evidence
factor analysis.

One source of multiple analyses is multiple instruments. Karmakar, Small and Rosenbaum
(2021) proposed the reinforced design to use multiple instrumental variables in an evidence
factor analysis where one comparison can be valid even in the presence of invalid instruments.
When there are K candidate instruments, this method develops K + 1 evidence factors from
those instruments plus the direct comparison of treatment and matched controls. To apply
this method, one needs to delicately build independent analyses using multiple instrumental
variables that are possibly correlated with each other. Previously, this was done by specify-
ing an order of analyses within the instrumental variables set and imposing a set of partial
exclusion restrictions for each instrument where all previous instruments are fixed by condi-
tioning. However, this method may collapse when at least one instrumental variable violates
the partial exclusion restriction assumptions and when we have no information on which in-
strumental variable does. This is further elaborated in Section 2.2. Our proposed methods in
this paper disentangle the order imposition and thus have wider applications to studies with
multiple candidate instruments.

Prior work on the violation of the exclusion restriction often constrains the number of in-
valid instruments, instead of the order of analyses. The methods provided by Han (2008),
Bowden et al. (2016), Kang et al. (2016), Guo et al. (2018) and Windmeijer et al. (2019)
require that at least 50% among the candidate instruments are valid. Furthermore, several
robust methods have been proposed in Mendelian randomization by adapting the approaches
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used in a meta-analysis, viewing combining evidence from multiple instruments as com-
bining results from multiple studies (Burgess, Butterworth and Thompson, 2013; Bowden,
Davey Smith and Burgess, 2015; Burgess, Dudbridge and Thompson, 2016). Under the sum-
marized genome-wide association studies (GWAS) setting, different versions of the inverse
variance weighted methods have been developed, often assuming no correlation between
genetic instruments (Han, 2008; Greco M et al., 2015). Kolesár et al. (2015) and Bowden,
Davey Smith and Burgess (2015) proposed the causal effects estimation method provided
that the instruments’ effects on the treatment are orthogonal to their effects on the outcome.
All of the methods above utilize multiple instruments, some of which are possibly invalid,
to produce one valid causal inference under some additional assumptions. In contrast, in
our proposed methods, the nearly independent factors can be combined to provide a robust
causal conclusion when they corroborate each other, or they can be used to caution against
a causal conclusion when there are large discrepancies among them. Since the factors are by
construction susceptible to separate sources of biases, the proposed methods provide useful
detail regarding the strength of the evidence in the presence of invalid instruments.

Literature on sensitivity analysis for invalid instruments is limited. Small and Rosenbaum
(2008) considered sensitivity to a nonrandom assignment of an instrument. Small (2007)
proposed multivariate sensitivity parameters from a regression model to evaluate the effect
of possible violation of the exclusion restriction. In summarized GWAS data, sensitivity anal-
yses to each instrument’s assumption can be performed using visualization approaches such
as a funnel plot or a scatter plot. See Burgess et al. (2017) for more sensitivity analysis tools
in a Mendelian randomization analysis. Wang et al. (2018) developed the sensitivity analysis
method using a sensitivity parameter that quantifies the associations of the candidate instru-
ments with unmeasured confounders and with the outcome. Recently, Spieker et al. (2020)
proposed a generalized version of the exclusion restriction, of which strength is controlled by
a suggested sensitivity parameter. Most of the sensitivity analyses above heavily depend on
the treatment and/or outcome models. On the other hand, Kang et al. (2021) viewed the maxi-
mum number of invalid instruments as a sensitivity parameter, resulting in more conservative
inference with a higher maximum number. Our work will extend the sensitivity analysis tools
in Small and Rosenbaum (2008) and Kang et al. (2021).

1.3. Modification of dependence structure via the balanced block design. Violation of
the exclusion restriction or no unmeasured confounding assumptions subjects randomization
tests of the candidate instruments to liberal type-I error rates. In the presence of multiple can-
didate instruments, some instruments may directly violate the exclusion restriction whereas
others are conditionally-valid after conditioning on the directly-invalid ones. The test for a
treatment effect using a conditionally-valid instrument may be invalidated due to the lack of
proper conditioning.

One way to relax the requirement on proper conditioning is to form balanced blocks in
which there are an equal number of units under each combination of the candidate instru-
ments. Analogous to the balanced factorial design in the context of randomized experiments,
the blocking intuitively balances the distributions of the directly-invalid instruments within
each level of the conditionally-valid ones, and thereby ensures the validity of the resulting
tests even in the absence of proper conditioning. The explicit proof of the utility of the bal-
anced blocking is not trivial, however. This is because the balanced blocking is imposed
ex-post facto, instead of in a pre-planned design. We establish the ability of the proposed
balanced block design to restore the test validity with multiple, possibly invalid, instruments
in Section 3.

Previously, for a treatment-control analysis without unmeasured confounders, Rosenbaum,
Ross and Silber (2007) noted the appeal of balancing the empirical distribution of categori-
cal variables in matching. They proposed the fine balancing method as a useful addition to
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traditional approaches like propensity score and close individual matches when exact match-
ing is impractical. This can be seen as an attempt to mimic the randomized experiments as
the gold standard for causal inference, which, by stochastically balancing the distributions of
both observed and unobserved covariates between treatment groups on average, ensures unbi-
ased estimation of the average treatment effects. In contrast, the proposed balanced blocking
method balances the distribution of candidate instruments instead of covariates.

1.4. A single ordinal instrument to multiple nested instruments. Quite often in appli-
cations, instruments are hierarchically nested either by nature or by design. But balanced
blocking is not feasible with nested instruments as at least one level of each instrument is
fixed given the value of its nesting instrumental variable. A few applications of nested in-
struments follow. Consider the Mendelian randomization where one candidate instrument
often indicates the presence of a minor allele of single-nucleotide polymorphism (SNP) or
the number of the minor alleles (e.g., G), e.g., 0, 1, and 2 for having AA, AG, and GG,
respectively. When having two minor alleles has a larger association with the exposure vari-
able than having a single minor allele does, we may benefit from dividing the instrument into
two, nested instruments. Here the first instrument indicates having at least one minor allele of
SNP or not and the second instrument indicates having two minors alleles or not. Similarly, in
measuring the causal effect of education, the number of (older) siblings has been commonly
used as an instrument for attending higher education (e.g., Sander (1995) and Tan (2006)).
In such a case, we can translate one ordinal instrument into K instrumental variables, each
of which denotes having at least k number of siblings (k = 1,2, . . . ,K). Furthermore, the
instrumental variables sometimes denote the distance to available services (e.g., Hadley et al.
(2003); Lorch et al. (2012); Voors et al. (2012), and Zeng et al. (2019)) or the intensity of a
single variable (e.g., Walker et al. (2020) and Zeng, Li and Ding (2020)). Then each of these
continuous or ordinal instruments can be converted into multiple nested instruments. Such
conversion to the coarser set of nested instruments might be more reasonable than using a
single instrument when the validity of the instrument may depend on the level or intensity of
its value. For example, Voors et al. (2012) examined the causal effect of exposure to violence
on economic behaviors using distance to Bujumbura (where much of the war occurred) as an
instrument. Here it might be conceivable that being beyond (or within) a certain distance to
Bujumbura is associated with unmeasured confounders that affect the outcomes (economic
behaviors). In this case, the continuous instrument that denotes the distance to Bujumbura
might be invalid, whereas the binary instrument that would be only active at a certain range
of the distance is valid.

Given these numerous situations where nested instruments are possible, and where our
proposal of a balanced blocking is not possible, a different method is required. We propose
a stratification method that conditions on all the rest of candidate instruments. We demon-
strate that the resulting p-values from each instrumental variable analysis after conditioning
on proper variables are likely to produce negatively correlated conclusions, providing non-
redundant findings akin to evidence factors.

1.5. Outline of this paper. Section 2 defines the notation and reviews the key concepts
in the evidence factor literature. Section 3 introduces the balanced block design as a way
to construct approximate evidence factors in the presence of possibly invalid instruments.
In Section 4, we illustrate the mutual stratification method for multiple, nested instruments.
Section 5 illustrates the finite sample performance of the balanced block design and mutual
stratification. We apply the proposed methods to two real data examples in Section 6. Sec-
tion 7 concludes the paper with some practical recommendations. All the relevant code can
be found at https://github.com/youjin1207/EvidenceIV.

https://github.com/youjin1207/EvidenceIV
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2. Notation and key definitions.

2.1. Notation. Consider a study population of N units in I strata, i = 1, . . . , I , with ni
individuals ij in stratum i (j = 1, . . . , ni; N =

∑I
i=1 ni). There are K binary candidate in-

struments, Zij,1, . . . ,Zij,K , in addition to a binary treatment variable Dij . Let I(·) denote the
indicator function. In the educational attainment and earnings example, one could takeK = 3
with (i) Zij,1 = I{grew up in an area with a college}, (ii) Zij,2 = I{born in the first quarter},
(iii) Zij,3 = I{minimum school leaving age ≤ 15}, and Dij = I{attending high school} for
individual ij. Individual ij has an observed covariate vector xij and K unobserved covari-
ates {uij,k : k = 1, . . . ,K} corresponding to the K candidate instruments, respectively. The
observed covariate vector is controlled by stratification with xij = xij′ for 1 ≤ j, j′ ≤ ni
whereas the unobserved covariates may be different for two units in the same stratum, i.e.,
uij,k 6= uij′,k for some i, k and j 6= j′. First consider two potential outcomes of individual ij:
rT ij when Dij = 1 and rCij when Dij = 0. We aim to test the following Fisher’s sharp null
hypothesis of no treatment effects for all units:

H0 : rT ij = rCij , ∀ij.(1)

Let [m] = {1, . . . ,m} be the set of 1 to m for positive integer m; we will hence abbreviate
i = 1, . . . , I , j = 1, . . . , ni, and k = 1, . . . ,K as i ∈ [I], j ∈ [ni], and k ∈ [K], respectively,
when no confusion would arise. Write Zk = (Z11,k, . . . ,ZInI ,k)

T for the N -dimensional as-
signment vector for instrument k. Let K be a subset of [K], and let Z̃K = (Zk)k∈K be the
N × |K| matrix concatenating the assignment vectors of the instruments in K. Abbreviate
Z̃[K] as Z̃ for K= [K].

Let Aij = (Zij,1, . . . ,Zij,K) be the assignment vector of the K instruments for unit ij.
Let A= {0,1}K be the set of the 2K possible values Aij can take. For K⊆ [K], let Aij,K =
(Zij,k)k∈K be the subset of Aij containing the instruments within K; thus, Aij,[K] = Aij .
Let Aij,−K = (Zij,k)k 6∈K be the complement of Aij,K with regard to Aij .

Let Rij be the observed outcome for unit ij, vectorized as R = (R11, . . . ,RInI
)T. Let

rij,(a,d) be the potential outcome of individual ij if (Aij ,Dij) = (a, d) ∈ {0,1}K+1. Let rij
be the collection of rij,(a,d) for (a, d) ∈ {0,1}K+1. Write F = {(rij ,xij , uij,k) : i ∈ [I]; j ∈
[ni]; k ∈ [K]}. Distinct individuals are assumed to have independent values of (Aij ,Dij)
and (Ai′j′ ,Di′j′) conditioning on F . The observed outcome satisfies Rij = rij,(Aij ,Dij) for
unit ij.

The above notation imposes no assumptions on the effects of the candidate instruments on
the outcome, and results in 2K+1 potential outcomes for each individual ij. Different types
of the exclusion restriction assumption impose different restrictions on how the instruments
may affect the outcome, and constrain the number of potential outcomes in various ways to
facilitate inference for the causal effects. We formalize this in the following section.

2.2. Variants of the partial exclusion restriction and approximate evidence factors. The
classic exclusion restriction assumption asserts that a valid set of instruments can change
the outcome only by changing the value of the treatment, and in no other way (Angrist,
Imbens and Rubin, 1996). It is the strongest form of the exclusion restriction, resulting in
only two potential outcomes for each individual ij, that is, rij,(a,1) = rT ij and rij,(a,0) = rCij
for all a ∈ {0,1}K . In the educational attainment and earnings example, this means neither
the proximity to school, the birth quarter, or the minimum school leaving age has any direct
effect on earnings once we condition on the educational attainment. There is uncertainty
whether this exclusion restriction holds for applications in practice.

Karmakar, Small and Rosenbaum (2021) proposed the partial exclusion restriction that is
less stringent in the way it constrains the set of potential outcomes.
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DEFINITION 2.1. Let K ⊆ [K], and let k be the smallest element of K. The partial
exclusion holds for K if, with Aij,[k−1] = (Zij,1, . . . ,Zij,k−1) fixed by conditioning, each
individual ij has two potential outcomes depending upon the value of Dij , namely rT ij if
Dij = 1 or rCij if Dij = 0.

Under this restriction, they proposed the reinforced design that conducts K analyses on
the K candidate instruments, in which the step k analysis performs a stratified randomization
inference on Zk conditioning on the Aij,[k−1]’s. When the partial exclusion restriction holds
for K ⊆ [K], the reinforced design delivers |K| valid evidence factors for k ∈ K. In the
educational attainment and earnings example, the step 1 analysis compares the earnings for
individuals who live closer to a college to the others by an unconstrained randomization
test, the step 2 analysis compares earnings of individuals who were born in the first quarter
of the year to the others after stratifying on the geographical proximity to a college, and
the step 3 analysis compares earnings of individuals who went to a school with a school
leaving age of at least 16 to the others after stratifying on geographical proximity to a college
and birth-year cohort. The partial exclusion restriction will fail to hold for K when 1 ∈ K
if, for example, areas with a college also attract businesses which leads to different career
opportunities for the residents. The increase in the minimum school-leaving age to 16 in the
United Kingdom enforced from September 1, 1972 led to over-crowding in schools and labor
market shortage, thus possibly affecting future job opportunities and earnings (Halsey et al.,
1980). Thus, the partial exclusion restriction may also fail to hold when 3 ∈K. Additionally,
this change in minimum school-leaving age does not affect individuals born in the first quarter
of 1972; hence Zij,2 and Zij,3 are correlated. See further discussion of these instruments in
the references given in the introduction.

The definition of the partial exclusion restriction implies an inherent order among the K
candidate instruments under consideration. If a suboptimal order is used, the reinforced de-
sign may produce biased tests. Consider K = 2 for concreteness. The set K can take three
possible values, K= {1},{2},{1,2}, corresponding to scenarios (i) Zij,1 satisfies the exclu-
sion restriction, (ii) Zij,2 satisfies the exclusion restriction after conditioning on Zij,1, and
(iii) both instruments satisfy the exclusion restriction, respectively. The reinforced design in
the order of Zij,1 to Zij,2 runs an unconditional test of Zij,1 and a conditional test of Zij,2
conditioning on Zij,1, returning |K| valid evidence factors under either of these three scenar-
ios. The above list of possible K’s, however, does not cover the fourth scenario in which (iv)
Zij,1 satisfies the exclusion restriction only after conditioning on Zij,2, whereas Zij,2 violates
the exclusion restriction both unconditionally and after conditioning on Zij,1. In this fourth
scenario, the exclusion restriction is violated in both steps of the above reinforced design in
the order of Zij,1 to Zij,2, subjecting the analysis to two biased tests.

Since the optimal ordering of the instruments assumed by the partial exclusion restric-
tion is unlikely to be known in practice, Definition 2.2 gives a variant of the original partial
exclusion with no order implication.

DEFINITION 2.2. Let K ⊆ [K]. The unordered partial exclusion holds for K if, with
Aij,−K = (Zij,k)k 6∈K fixed by conditioning, each individual ij has two potential outcomes
depending upon the value of Dij , namely rT ij if Dij = 1 or rCij if Dij = 0.

The unordered partial exclusion ensures that the potential outcomes depend on only the
treatment and the instruments outside K, namely, rij,(a,d) = rij,(a−K,d) for a = (z1, . . . , zK)T

and a−K = (zk)k 6∈K. The instruments in K, as a result, satisfy the exclusion restriction after
conditioning on Aij,−K. The unordered partial exclusion restriction allows for possible viola-
tion of no direct effects and/or no unmeasured confounding assumptions in other instruments
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that are conditioned on. For example, in our running example, the unordered partial exclusion
restriction with K = {2} allows for the possibility of ambitions driving families living near
good colleges and different labor markets that pupils may face, but stipulates that the birth
quarter has no direct effect on the outcome after we condition on the proximity to college and
the minimum school leaving age.

Note that, in practice, sometimes we cannot distinguish whether an invalid instrument
k 6∈ K violates the no direct effects assumption or the no unmeasured confounders assump-
tion. For instance, higher ambitions might be interpreted as a confounder so that conditioning
on ambitions renders the first instrument valid, but without measurements of ambitions, the
instrument is invalid because of the failure of the no unmeasured confounders assumption.
Or, one might argue differently that living near good colleges comes along with ambitions, re-
sulting in a direct effect on earnings when ambitions affect earnings. Since we cannot observe
unmeasured confounders (e.g., ambitions) nor can we manipulate the instrument while fixing
the treatment, we do not know the sources of invalidity of conditioning instrument(s) (An-
grist, Imbens and Rubin, 1996; Heng, Small and Rosenbaum, 2020).

Absent knowledge of K in practice, the reinforced design does not provide appropriate
evidence factors under this unordered exclusion restriction. We propose two novel strategies
to produce valid evidence factors irrespective of the order of the analyses.

Evidence factors are formally defined as being nearly independent using the relationships
among p-values from each evidence. Definitions 2.3 and 2.4 review the definitions of approx-
imate evidence factors refined from Rosenbaum (2011).

DEFINITION 2.3. A vector of p-values (P1, . . . , Pν) ∈ [0,1]ν is stochastically larger than
the uniform when for all coordinate-wise non-decreasing bounded continuous function g :
[0,1]ν → R, we have, under H0, E{g(P1, . . . , Pν)} ≥ E{g(U1, . . . ,Uν)}, where U1, . . . ,Uν
are i.i.d. uniform[0,1] random variables.

DEFINITION 2.4. Multiple analyses are approximate evidence factors when (i) bias that
invalidates one analysis does not necessarily bias other analyses; and (ii) the p-values from
the analyses are stochastically larger than the uniform under the null.

Under the unordered exclusion restriction for K, we will show that the proposed balanced
block design and mutual stratification method yield |K| approximate evidence factors based
on instruments in K.

2.3. Combination of multiple evidence factors. When multiple independent p-values are
available, various methods exist to combine them to form a single p-value for decision mak-
ing. Typically, the combined statistic, e.g., Fisher’s method (Fisher, 1926) and Simes’ method
(Simes, 1986), is a monotone function of the component p-values. Becker (1994) gave a com-
prehensive survey of these methods. Rosenbaum (2011, Lemma 1) showed that these combi-
nation methods also yield valid combined p-values when the components are stochastically
larger than the uniform.

When several of the instruments are possibly invalid, we may not know K. Assume it is
guessed that a subset K (with size ν = |K|) of K p-values ({P1, . . . , PK}) are stochastically
larger than the uniform distribution of the ν-dimensional unit cube. Lemma 1 affords the
basis to define a p-value by combining the K p-values in this situation. Let P(k) denote the
kth order statistic of {P1, . . . , PK}.

LEMMA 1. Assume P1, . . . , PK are K p-values among which a subset of size ν are
stochastically larger than the uniform distribution of the ν-dimensional unit cube. For any f
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that is coordinate-wise non-decreasing with Pr{f(U1, . . . ,Uν)≤ α} ≤ α for all 0≤ α≤ 1,
where U1, . . . ,Uν are i.i.d. uniform[0,1] random variables, we have f(P(K), . . . , P(K−ν+1))
is a valid p-value.

PROOF OF LEMMA 1. Let K be the index set of the ν p-values stochastically larger
than the uniform distribution of the ν-dimensional unit cube. Without loss of essential
generality, assume K = [ν] with P1 ≥ P2 ≥ · · · ≥ Pν . The result follows from Definition
2.3 by taking g(p1, . . . , pν) = I{f(p1, . . . , pν) > α}. Since Pr{f(P(K), . . . , P(K−ν+1)) ≤
α} ≤ Pr{f(P1, . . . , Pν) ≤ α} = 1 − E{g(P1, . . . , Pν)} ≤ 1 − E{g(U1, . . . ,Uν)} =
Pr{f(U1, . . . ,Uν)≤ α} ≤ α.

The above combination method is similar to the partial conjunction method of Benjamini
and Heller (2008). We propose to use the truncated product method of Zaykin et al. (2002)
to combine independent p-values by calculating the product of those p-values smaller than
some truncation point, κ (0 < κ ≤ 1). Hsu, Small and Rosenbaum (2013) demonstrated
that the truncated product has higher power than Fisher’s method in sensitivity analyses of
observational studies. The implementation of the (truncated) product of p-values is available
through the sensitivitymv package in R (Rosenbaum, 2015).

3. Approximate evidence factors via the balanced block design.

3.1. Bias in the absence of proper conditioning. Assume the following model for the
instrument assignment:

Pr(Zij,k = 1 | F ,Aij,[k−1]) =
exp{κk(xij ,Aij,[k−1]) + γkuij,k}

1 + exp{κk(xij ,Aij,[k−1]) + γkuij,k}
(2)

for k ∈ [K], where γk ≥ 0. Let ni,a be the number of units with instrument combination
Aij = a ∈ A in stratum i, vectorized in lexicographical order of (i,a) as n = (ni)

I
i=1 with

ni = (ni,a)a∈A. Let Ω be the set of possible values of Z̃ = (Z1, . . . ,ZK) subject to the joint
counts constraint

∑ni

j=1 I(Aij = a) = ni,a for all i ∈ [I]. Model (2) implies

Pr{Z̃ = (z1, . . . ,zK) | F ,n}=
exp(

∑
k γku

T

kzk)∑
(b1,...,bK)∈Ω exp(

∑
k γku

T

kbk)

for (z1, . . . ,zK) ∈Ω,

where uk = (u11,k, . . . , uInI ,k)
T. The assignment is thus as-if randomized if γk = 0 for all k.

Non-zero values of γk parameterize the influence of unmeasured confounders on instrument
k. In sensitivity analyses we will let γk take any value less than some non-negative bound to
assess the robustness of the findings to the violation of as-if randomization.

In addition, model (2) assumes the effect of the unmeasured confounders uij,k’s to be
separate from the covariates and in a logistic model. Recently, some generalizations of this
sensitivity analysis model have been considered that relax these restrictions (Hasegawa and
Small, 2017; Fogarty and Hasegawa, 2019; Heng and Small, 2021). These generalizations
often require additional sensitivity parameters, and can lead to harder computation of the
p-values from randomization inference. We do not consider them here.

Consider K = 2 and the unordered partial exclusion restriction with K = {1} as an illus-
trating example. We have Zij,2 directly violates the exclusion restriction, whereas Zij,1 on
its own does not. The potential outcomes satisfy rij,(a,d) = rij,(z2,d) for a = (z1, z2) ∈ A =
{(00), (01), (10), (11)} such that Rij = rij,(Zij,2) depends only on the value of Zij,2 under
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the null hypothesis. Write R = R(Z2) to highlight the dependence of R on Z2 even in the
absence of the direct effects of the treatment.

Let ni,(z1z2) be the number of units with instrument combination (Zij,1,Zij,2) = (z1, z2) in
stratum i for z1, z2 = 0,1, and let ni,k(zk) be the marginal count of units with Zij,k = zk. Let
Ω(1,2) = {(z1,z2) :

∑ni

j=1 I(Aij = a) = ni,a, i ∈ [I], a ∈A} be the set of possible values of
(Z1,Z2) subject to the joint counts constraint, and let Ω1 be the set of possible values of Z1

subject to the marginal stratum constraint
∑ni

j=1Zij,1 = ni,1(1).
For t1 = t1(Z1,R) as an arbitrary test statistic for studying Z1, the marginal test of Z1 ran-

domly permutes Z1 within Ω1 and induces a uniform distribution over T π = {t1(z1,R(Z2)) :
z1 ∈Ω1} conditioning on R(Z2). This defines the randomization distribution of t1 under the
marginal test. The true sampling distribution of t1(Z1,R) under the null hypothesis, on the
other hand, is a distribution over T = {t1(z1,R(z2)) : (z1,z2) ∈Ω(1,2)} with the probability
mass function determined by the joint distribution of (Z1,Z2). The violation of the exclusion
restriction for Zij,2 causes R(z2) to vary over (z1,z2) ∈ Ω(1,2) such that T π and T differ
even under H0. This discrepancy in the supports of the sampling distributions causes the
randomization distribution to deviate from the sampling distribution under the null hypothe-
sis, and thereby subjects the marginal test of Z1 to possibly liberal type-I error rates even if
γ1 = γ2 = 0 in (2) (Wu and Ding, 2020).

The same intuition extends to the general K-instrument study and illustrates the source of
possible biases for the step k ∈ K analysis in the absence of proper conditioning on Aij,−K.
We define below three conditioning strategies to facilitate the discussion.

DEFINITION 3.1. Consider three types of randomization tests for studying the effects of
variations in instrument k ∈ [K]. Refer to a test as marginal if it does not fix the values of any
of the other K−1 instruments when studying the effects of variations in Zij,k. Refer to a test
as reinforced if it fixes the values of Aij,[k−1] by conditioning but not those of Aij,{k+1,...,K}
when studying the effects of variations in Zij,k. Refer to a test as conditional if it fixes the
values of all the other K − 1 instruments when studying the effects of variations in Zij,k.

The reinforced test characterizes the step k analysis in the reinforced design proposed
by Karmakar, Small and Rosenbaum (2021). Consider the educational attainment and earn-
ings example with K = 3 instruments for concreteness. For the step k = 2 analysis study-
ing the effects of being born in the first quarter, Zij,2, the marginal test performs an un-
constrained randomization test on Zij,2, fixing neither geographical proximity, Zij,1, nor
minimum school-leaving age, Zij,3. The reinforced test performs a stratified randomization
test on Zij,2 by permuting Z2 within each stratum of Zij,1, namely {ij : Zij,1 = 1} and
{ij : Zij,1 = 0}, but puts no constraints on the value of Zij,3. The conditional test performs
a stratified randomization test on Zij,2 by permuting Z2 within each stratum of (Zij,1,Zij,3),
namely {ij : (Zij,1,Zij,3) = (z1, z3)} for z1, z3 ∈ {0,1}, fixing the other K − 1 = 2 factors
while studying the effects of instrument 2.

The reinforced design thus consists of K reinforced tests of instruments 1 to K , respec-
tively, and generates K candidate evidence factors under the partial exclusion assumption.
Assume the unordered partial exclusion with K 6= [K] instead. Both the marginal and rein-
forced tests of instrument k ∈ K are subject to possible biases by not conditioning on the
full set of Aij,−K even if γk = 0 for all k. Let Pk,FRT denote the p-value produced by the
randomization test of instrument k. Of interest is if certain study designs can help retain the
test validity, in the sense of Pr(Pk,FRT ≤ pk)≤ pk for all pk ∈ (0,1), for all k ∈K.

A possible remedy is to form blocks in which there are an equal number of units under
each instrument combination a ∈ A. This intuitively balances the distributions of Aij,−K
over different levels of Zij,k for k ∈ K, and thereby offsets the bias due to the influence of
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Aij,−K over Rij . If Zij,k were randomized we would expect the distribution of Aij,−K to
be balanced stochastically. The blocking strategy, on the other hand, enforces the balance
by design. Refer to such a strategy as a balanced block design with precise definition given
in Definition 3.2 in Section 3.2. We show in Section 3.2 its utility in restoring the validity
of marginal and reinforced tests for instrument k ∈ K under the unordered partial exclusion
restriction, and demonstrate in Sections 3.3 and 3.4 its utility to create approximate evidence
factors under all three types of tests.

3.2. Valid marginal and reinforced tests under the balanced block design. We demon-
strate in this section the utility of the balanced block design in restoring the validity of
marginal and reinforced analyses in the absence of proper conditioning. To this end, we start
by introducing some additional notation and regularity conditions to facilitate the discussion.

Let A = {Aij : i ∈ [I], j ∈ [ni]} be the collection of Aij . For an arbitrary finite population
(F ,A) ofN units nested in I strata, let pi = ni/N be the relative size of stratum i. Recall ni,a
as the number of units with instrument combination Aij = a = (z1, . . . , zK) ∈ A= {0,1}K
in stratum i. Let pi,a = ni,a/ni be the proportion of units with combination a ∈A in stratum
i. For k ∈ [K], let ni,k(zk) be the marginal count of units with Zij,k = zk, and let pi,k(zk) =
ni,k(zk)/ni be the marginal proportion of level zk of instrument k.

Under H0, the unordered partial exclusion restriction ensures that rij,(a,d) = rij,a−K
for a = (z1, . . . , zK) and a−K = (zk)k 6∈K. That is, with the treatment having no effect
on the potential outcomes of unit ij, the potential outcomes under instrument combi-
nations a = (aK,a−K) ∈ A and a′ = (a′K,a

′
−K) ∈ A are identical as long as a−K =

a′−K. The observed outcome equals Rij = rij,(Aij,−K). Let r̄i,a−K = n−1
i

∑ni

j=1 rij,a−K ,
S2
i,a−K

= (ni−1)−1
∑ni

j=1(rij,a−K− r̄i,a−K)2, and Si,(a−K,a′−K) = (ni−1)−1
∑ni

j=1(rij,a−K−
r̄i,a−K)(rij,a′−K − r̄i,a′−K) with Si,(a−K,a−K) = S2

i,a−K
be the finite-population means, vari-

ances, and covariances of {rij,a−K : j ∈ [ni], a−K ∈ {0,1}K−|K|} in stratum i, respectively,
for i ∈ [I].

CONDITION 1. As ni →∞ for i ∈ [I], for all a,a′ ∈ A, (i) pi and pi,a have limits in
(0,1), (ii) r̄i,a−K , S2

i,a−K
, and Si,(a−K,a′−K) have finite limits, and (iii) there exists a c0 <∞

independent of ni such that n−1
i

∑ni

j=1 r
4
ij,a−K

≤ c0.

We first consider the balanced block design with two instruments to illustrate the ba-
sic ideas, and then extend the results to the general K-instrument setting. Assume K = 2
candidate instruments, Zij,1 and Zij,2, with K = {1}. The notation above simplifies to
a = (aK,a−K) = (z1, z2), (ni,a, pi,a) = (ni,(z1z2), pi,(z1z2)), and rij,(a,d) = rij,a−K = rij,(z2)

underH0 with mean r̄i,a−K = r̄i,(z2), variance S2
i,a−K

= S2
i,(z2), and covariance Si,(a−K,a′−K) =

Si,(z2,z′2) = Si,(0,1) = Si,(1,0). A two-instrument balanced block design stipulates

ni,(11)/ni,(10) = ni,(01)/ni,(00) for i ∈ [I](3)

in addition to xij = xij′ for 1≤ j, j′ ≤ ni, and thereby ensures identical distribution of Zij,2
across different levels of Zij,1 within each stratum and vice versa. A simple example is
ni,(11) = ni,(10) = ni,(01) = ni,(00) = 1, where we form blocks of size ni = 4 with one ob-
servation under each possible combination of (Zij,1,Zij,2) ∈ {0,1}2. The proportion of units
in each block with Zij,2 = 1 equals 1/2 for each level of Zij,1 ∈ {0,1} and vice versa.

Consider the difference-in-means statistic

τ̂1 = τ̂1(Z1,R) =

I∑
i=1

wiτ̂i,1
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for the marginal test of Z1, where τ̂i,1 = R̂i,1(1)− R̂i,1(0) is the difference in means in stratum
i with R̂i,1(z1) = n−1

i,1(z1)

∑
j:Zij,1=z1

Rij , and w1, . . . ,wI are some prespecified weights. Let
τ̂π1 represent a random variable from the randomization distribution of τ̂1 induced by the per-
mutation of Z1 within Ω1. Assume the finite-population asymptotic framework that embeds
F and A into a sequence of finite populations and assignments for N = 1,2, . . . ,∞. Wu and
Ding (2020, Proposition 4) ensured that the marginal randomization test based on τ̂1 controls
type-I error rates asymptotically under H0 if, under H0, the asymptotic distribution of |τ̂π1 |
stochastically dominates that of |τ̂1| for almost all sequences of A. Building on this impli-
cation, Proposition 1 uses the permutation central limit theorem to show the utility of the
balanced block design in restoring the asymptotic validity of the marginal test of instrument
1.

Let ei,z1 = pi,(z11)/pi,1(z1) be the conditional proportion of Zij,2 = 1 within the subset of
units with Zij,1 = z1. The balanced block design ensures ei,1 = ei,0 for all i ∈ [I]. Recall
rij,(a,d) = rij,(z2) under H0. Let τij = rij,(1) − rij,(0) be the corresponding difference in po-
tential outcomes when the level of Zij,2 changes from 0 to 1. Write a.s. to indicate a statement
holds for almost all sequences of A.

PROPOSITION 1. Assume Condition 1 for K = 2, the unordered partial exclusion with
K where 1 ∈ K, and the assignment model (2) with γ1 = γ2 = 0 for a sequence of finite
populations (F ,A) not necessarily balanced.

(a) If H0 is true, then
√
N(τ̂1 − µ)  N (0, v), and

√
Nτ̂π1  N (0, v′) a.s. under the

marginal test, where µ=
∑I

i=1wi(ei,1 − ei,0)τ̄i and

v =

I∑
i=1

w2
i p
−1
i

{(
ei,0
pi,1(0)

+
ei,1
pi,1(1)

)
S2
i,(1) +

(
1− ei,0
pi,1(0)

+
1− ei,1
pi,1(1)

)
S2
i,(0) − S

2
i,τ (ei,1 − ei,0)2

}
,

v′ =

I∑
i=1

w2
i p
−1
i p−1

i,1(0)p
−1
i,1(1)

(
pi,2(1)S

2
i,(1) + pi,2(0)S

2
i,(0) + pi,2(1)pi,2(0)τ̄

2
i

)
with τ̄i = n−1

i

∑ni

j=1 τij = r̄i,(1) − r̄i,(0) and S2
i,τ = (ni − 1)−1

∑ni

j=1(τij − τ̄i)2.
(b) Further assume the balanced block design with (3). Then µ = 0 and v ≤ v′ such that
|τ̂1| ≤st |τ̂π1 | a.s. as ni’s go to infinity under H0.

Let P1,m-FRT be the p-value from a two-sided marginal test of Z1. Under the balanced
block design, Proposition 1 ensures Pr(P1,m-FRT ≤ p1) ≤ p1 for all p1 ∈ (0,1) a.s. as ni’s
go to infinity under H0, and thereby restores the asymptotic validity of the marginal test on
instrument 1 ∈ K. The result extends immediately to the reinforced test, which coincides
with the marginal test for instrument 1. We generalize below the result to the marginal and
reinforced tests under general K-instrument studies.

DEFINITION 3.2. Assume K binary candidate instruments, Zij,k for k ∈ [K]. A K-
instrument balanced block design creates I strata, i ∈ [I], of ni units, ij (j ∈ [ni]), with

ni,a = ni

K∏
k=1

pi,k(zk)(4)

in addition to xij = xij′ for all 1≤ j, j′ ≤ ni. Refer to a K-instrument balanced block design
as a 2K balanced block design if ni,a = 2−Kni for all a ∈A with pi,k(1) = pi,k(0) = 1/2 for
all i ∈ [I] and k ∈ [K].
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Refer to a stratum in a balanced block design as a balanced block interchangeably when
no confusion would arise. Balanced block design ensures pi,(z1,...,zK) =

∏K
k=1 pi,k(zk), im-

posing independence between instruments by design. In our running example with K = 3
instruments, a simple 2K balanced block design forms blocks of size ni = 8 with one unit
under each instrument combination (z1, z2, z3) ∈ {0,1}3 and pi,k(1) = 0.5 for k = 1,2,3.
Alternatively, we could let pi,2(1) = 0.25 to match the population prevalence, assuming ap-
proximately 1/4 of the population were born in the first quarter. The resulting balanced block
features ni,(z1,1,z3) = 3−1ni,(z1,0,z3) for all (z1, z3) ∈ {0,1}2.

Depending on if we condition on the first k − 1 instruments in the analysis of instrument
k, the strata we use for the randomization test equal either the original I balanced blocks for
the marginal test or the I×2k−1 strata by further conditioning on Aij,[k−1] for the reinforced
test. Index the strata for the randomization test by s = [S], with S = I under marginal test
or S = I × 2k−1 under reinforced test. The difference-in-means statistic for the study of
instrument k equals

τ̂k = τ̂k(Zk,R) =

S∑
s=1

wsτ̂s,k,(5)

where τ̂s,k = R̂s,k(1)−R̂s,k(0) with R̂s,k(zk) = n−1
s,k(zk)

∑
j:Zsj,k=zk

Rij , and thews’s are some
prespecified weights. The unordered partial exclusion restriction implies that R is a function
of the assignment vectors Zk′ for k′ 6∈ K even under H0. The τ̂k as such is a function of
Zk ∪ (Zk′)k′ 6∈K, and is stochastic because of the stochasticity of the assignment Z̃.

Theorem 3.3 extends Proposition 1 to the general K-instrument study and ensures |τ̂k| ≤st
|τ̂πk | a.s. under H0 and the balanced block design with either marginal or reinforced test for
all k ∈ K. To simplify the presentation, we state the results in terms of the marginal test on
the I original balanced blocks; those for the reinforced test follow by replacing i with s and
K with K∩ {k+ 1, . . . ,K} for the analysis of instrument k.

THEOREM 3.3. Assume Condition 1, the unordered partial exclusion with K, the assign-
ment model (2) with γk = 0 for all k, and the balanced block design (4). For all k ∈ K, if
H0 is true, then

√
Nτ̂k N (0, vk), and

√
Nτ̂πk  N (0, v′k) a.s. with vk ≤ v′k under either

marginal or reinforced test as ni’s go to infinity.

Let Pk,m-FRT and Pk,r-FRT be the p-values in the step k analysis produced by the marginal
and reinforced tests, respectively. Theorem 3.3 ensures that they both control the type-I error
rates asymptotically under the balanced block design; we relegate the explicit forms of vk
and v′k to the supplementary material.

PROPOSITION 2. Assume Condition 1, the unordered partial exclusion with K, the as-
signment model (2) with γk = 0 for all k, and the balanced block design (4). For all k ∈K, if
H0 is true, then Pr(Pk,m-FRT ≤ pk)≤ pk and Pr(Pk,r-FRT ≤ pk)≤ pk for all pk ∈ (0,1) a.s. as
ni’s go to infinity.

The stochastic dominance properties (cf. Definition 2.2) under the reinforced design, as the
collection of K reinforced tests, then follow from Karmakar, Small and Rosenbaum (2021).

THEOREM 3.4. Assume Condition 1, the unordered partial exclusion with K, the as-
signment model (2) with γk = 0 for all k, and the balanced block design (4). If H0 is true,
then the joint distribution of the p-values from the |K| reinforced tests in K with τ̂k’s as
in (5), {Pk,r-FRT : k ∈ K}, is stochastically larger than the uniform distribution of the |K|-
dimensional unit cube as ni’s go to infinity.
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Theorem 3.4 illustrates the utility of the balanced block design in producing |K| approx-
imate evidence factors from reinforced tests even in the absence of proper conditioning,
i.e., ordered partial exclusion restriction. We establish results similar to Theorem 3.4 for
marginal and conditional tests in Section 3.3 and Section 3.4, respectively.

3.3. Asymptotically independent p-values with K marginal tests. Consider the m-
statistic for the marginal comparison of the group with Zij,k = 1 versus the group with
Zij,k = 0:

tk(Zk,R) =

I∑
i=1

∑
j:Zij,k=1

∑
j′:Zij′,k=0

ψk{(Rij −Rij′)/σ},(6)

where ψk(·) is an odd function with ψk(x) ≥ 0 for x ≥ 0 and σ > 0 is a constant. The τ̂k
in (5) is a special case of tk with ψk(x) = x. Like τ̂k, tk(Zk,R) is stochastic under the
randomization inference framework due to its dependence on Zk and R, which is a func-
tion of (Zk′)k′ 6∈K even under H0. Theorem 3.5 below states the asymptotic independence
of {tk(Zk,R) : k ∈ K} when γk = 0 for all k ∈ K. This affords the basis for the resulting
p-values to qualify as approximate evidence factors.

Recall that Z̃i = (Zi,1, . . . ,Zi,K) is the ni × K sub-matrix of Z̃ with columns Zi,k =
(Zi1,k, . . . ,Zini,k)

T. Let ti,k =
∑

j:Zij,k=1

∑
j′:Zij′,k=0ψk{(Rij−Rij′)/σ} be the component

of tk from stratum i, which is a function of Z̃i. As theK = 2 case, let Ωi be the set containing
all possible values of Z̃i subject to the joint counts constraint

∑ni

j=1 I(Aij = a) = ni,a for
all a ∈ A, and let ti,k(z̃i) be the potential value of ti,k when Z̃i = z̃i ∈ Ωi. Let vi(kk′) =

|Ωi|−1
∑

z̃i∈Ωi
ti,k(z̃i)ti,k′(z̃i).

CONDITION 2. As I →∞, maxi=1,...,I vi(kk′)/
∑I

i′=1 vi′(kk′) = o(1) for all k, k′ ∈ K
and I−1

∑I
i′=1 vi′(kk′) has a finite limit.

Intuitively, we can always form smaller balanced blocks from larger ones of possibly dif-
ferent ratios. A simple example is to divide a balanced block of sizes {ni,a : a ∈ A} into
n′i = mina∈A ni,a smaller blocks each of which has one unit under each instrument com-
bination. The condition of ni →∞ for i ∈ [I] thus implies I →∞ for a related balanced
block design as long as pi,a has a limit in (0,1) for all i ∈ [I] and a ∈A. This illustrates the
connection between Conditions 1 and 2.

THEOREM 3.5. Assume K marginal tests under the 2K balanced block design, the un-
ordered partial exclusion with K, the assignment model (2), and Condition 2. If H0 is true,
then (i) for k ∈ K and k′ 6= k, (tk, tk′) are asymptotically independent provided γk = 0; and
(ii) {tk : k ∈ K} are asymptotically jointly independent provided γk = 0 for all k ∈ K. Fur-
ther assume K= [K]. Then the 2K requirement can be relaxed to any general K-instrument
balanced block design (4).

Let Pk denote the true p-value based on the sampling distribution of tk underH0. Theorem
3.5 ensures the asymptotic independence of {Pk : k ∈ K} provided γk = 0 for all k ∈ K.
This, together with the fact that Pk,m-FRT ≥ Pk for k ∈ K under the balanced block design
from Proposition 2, affords the basis for constructing asymptotically independent evidence
factors based on the K marginal tests.
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COROLLARY 1. Assume the unordered partial exclusion with K and γk = 0 for all k
in the assignment model (2). If H0 is true, then the p-values from the |K| marginal tests
in K, {Pk,m-FRT : k ∈ K}, are stochastically larger than the uniform distribution of the |K|-
dimensional unit cube asymptotically provided either (i) ni→∞ for i ∈ [I] and we test with
τ̂k’s as in (5) under Condition 1 and the 2K balanced block design; or (ii) I→∞, K= [K],
and we test with tk’s as in (6) under Condition 2 and the general K-instrument balanced
block design (4).

In the absence of as-if randomization, we cannot be sure if a comparison is valid. The
asymptotic independence between tk and t′k from Theorem 3.5(i) ensures that the violation
of random assignment by instrument k′ 6= k does not affect the asymptotic validity of Pk,m-FRT

as long as γk = 0. We formalize the intuition in Proposition 3 below. Let

Pr(Zij,k = 1 | F) =
exp{κ′k(xij) + γ′ku

′
ij,k}

1 + exp{κ′k(xij) + γ′ku
′
ij,k}

for k ∈ [K]

be the marginal assignment model for Zij,k after integrating out the other instruments from
(2) with 0≤ u′ij,k ≤ 1 and γ′k = log(Γk). Let P k,Γk

be the upper bound on the p-value for the
marginal test of instrument k ∈K.

PROPOSITION 3. Assume the 2K balanced block design, unordered partial exclusion
with K, and the assignment model (2). If H0 is true, then for k, k′ ∈K, (P k,Γk

, P k′,Γk′ ) from
the marginal tests using (tk, tk′) are asymptotically stochastically larger than the uniform
distribution of the two-dimensional unit cube provided either γk = 0 or γk′ = 0 as I →∞
under Condition 2. Further assume K = {1, . . . ,K}. The 2K requirement can be relaxed to
any general K-instrument balanced block design (4).

Theorem 3.5, Corollary 1, and Proposition 3 together illustrate the utility of the balanced
block design for constructing approximate evidence factors from marginal tests when the
instruments are possibly invalidated by the violation of either the strict exclusion restriction
or as-if randomization or both. We move on to addressing its properties under conditional
tests.

3.4. Asymptotically independent p-values with K conditional tests. The conditional test
of the kth candidate instrument fixes the value of Z−k = (Zk′)k′ 6=k when making inference
using Zk. The unordered partial exclusion restriction with K ensures that the comparison
k ∈K is valid under conditional test as long as γk = 0. Of interest is whether we can combine
the |K| comparisons for k ∈K as |K| independent p-values.

Consider two ways of conducting conditional randomization tests under the balanced
block design. The first, “restricted” strategy uses the same m-statistic tk(Zk,R) in (6) as
under the marginal tests yet permutes Zk within the subset of Ωk compatible with Z−k un-
der the balanced block constraint (4). To illustrate, consider K = 2 and a 22 balanced block
with observed assignments {(0,0), (1,0), (0,1), (1,1)}. The observed values of Zk’s equal
Z1 = (0,1,0,1)T and Z2 = (0,0,1,1)T, respectively. Then, in this first strategy, a test us-
ing Z1 permutes (Zi1,1,Zi2,1,Zi3,1,Zi4,1) in {(0,1,0,1), (1,0,0,1), (0,1,1,0), (1,0,1,0)},
which is the subset of Ω1 = {(zi1,1, zi2,1, zi3,1, zi4,1) ∈ {0,1}4 : zi1,1 + · · ·+ zi4,1 = 2} com-
patible with Z2 under the joint counts constraint. The second, “stratified” strategy further
divides each balanced block into 2K−1 strata by the values of Aij,−k = (Zij,k′)k′ 6=k, and
conducts a stratified randomization test based on the resulting S = I × 2K−1 strata. Index
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by sj the jth unit in stratum s under the second strategy. The m-statistic for comparison k
equals

t∗k(Z̃,R) =

S∑
s=1

∑
j:Zsj,k=1

∑
j′:Zsj′,k=0

ψk{(Rsj −Rsj′)/σ}(7)

for ψk(·) and σ as in (6). Theorem 3.6 below states the asymptotic independence of
{tk(Zk,R) : k ∈ K} and that of {t∗k(Z̃,R) : k ∈ K} under the two conditional test strate-
gies respectively when the assignments of the instruments in K are as-if randomized.

Let Z̃s = (Zs,1, . . . ,Zs,K) be the sub-matrix of Z̃ corresponding to stratum s. Let t∗s,k =∑
j:Zsj,k=1

∑
j′:Zsj′,k=0ψk{(Rsj −Rsj′)/σ} be the component of t∗k from stratum s, which

is a function of Z̃s. Let Ω∗s be the set containing all possible values of Z̃s under the balanced
block constraint (4), and let t∗s,k(z̃s) be the potential value of t∗s,k when Z̃s = z̃s ∈ Ω∗s . Let
v∗s(kk′) = |Ω∗s|−1

∑
z̃s∈Ω∗s

t∗s,k(z̃s)t
∗
s,k′(z̃s).

CONDITION 3. As S→∞, maxs=1,...,S v
∗
s(kk′)/

∑S
s′=1 v

∗
s′(kk′) = o(1) for all 1≤ k, k′ ≤

K and S−1
∑S

s=1 v
∗
s(kk′) has a finite limit.

THEOREM 3.6. Assume the unordered partial exclusion with K and γk = 0 for all k ∈K
in the assignment model (2). If H0 is true, then (i) (tk)k∈K as in (6) from the |K| restricted
conditional tests are asymptotically jointly independent Gaussian as I→∞ under Condition
2 and the general K-instrument balanced block design (4); and (ii) (t∗k)k∈K as in (7) from
the |K| stratified conditional tests are asymptotically jointly independent Gaussian as S→∞
under Condition 3 and the 2K balanced block design.

COROLLARY 2. Assume the unordered partial exclusion withK and γk = 0 for all k ∈K
in the assignment model (2). If H0 is true, then the p-values from the |K| conditional tests in
K, {Pk,c-FRT : k ∈ K}, are asymptotically stochastically larger than the uniform distribution
of the |K|-dimensional unit cube provided (i) we conduct the restricted conditional tests with
tk’s as in (6) under Condition 2 and the general K-instrument balanced block design (4) as
I→∞; or (ii) we conduct the stratified conditional tests with t∗k’s as in (7) under Condition
3 and the 2K balanced block design as S→∞.

REMARK. The 2K balanced design requirement in Theorem 3.6(ii) and Corollary 2(ii)
for the stratified conditional tests can be relaxed to accommodate pi,k(1) 6= 1/2 for one k ∈K
in each stratum i. In the case of two-instrument studies, this allows us to form balanced
blocks with (n00 : n01 : n10 : n11) = (1 : ρ : 1 : ρ) or (ρ : 1 : ρ : 1) where pi,1(1) = 1/2 or
pi,2(1) = 1/2. This is of practical interest when the distribution of instrument combinations
differs markedly from (1 : 1 : 1 : 1) in the population prior to blocking. The flexibility in ρ
allows more units to be grouped into the balanced blocks and thereby improves the power.

3.5. Some practical remarks. This concludes our discussion on the utility of the balanced
block design in ensuring evidence factors from either marginal, reinforced, or conditional
tests. In practice, we recommend using the balanced block design when the validity of multi-
ple candidate instruments is in doubt and choosing the marginal ratios, namely the pi,k(zk)’s,
to maximize the number of units that can be included into the balanced blocks. Then, if it is
guessed that at least ν of the candidate instruments are valid, we can combine the ν largest
p-values to form one single p-value. We show these steps in our application in Section 6.1.
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We have considered marginal, reinforced, or conditional inference for the sharp null hy-
pothesisH0. As is known from the seminal work of Angrist, Imbens and Rubin (1996), an in-
strumental variables analysis, under a monotonicity assumption, provides inference only for
the local treatment effect on the corresponding compliers. Thus, the tests under the marginal,
reinforced, or conditional inference provide evidence for the local treatment effects on the
corresponding subpopulations of the compliers which are defined by the instrument and the
conditioning event. For example, in our running example of educational attainment and earn-
ings, the marginal test of Zij,1 concerns the effect for the subpopulation that would change
their schooling decision if they lived closer to a college than not, irrespective of the other
instruments. The conditional test of Zij,1, on the other hand, concerns the conditional effect
for the subpopulation that, with the other instruments fixed, would change their schooling
decision if they lived closer to a college than not. If there is evidence to reject the sharp null
for any subpopulation, we reject the sharp null for the whole population.

Thus, two guidelines may be followed to choose among a marginal, a reinforced, and
a conditional inference (Deaton, 2010; Imbens, 2010). First, if it is expected that the local
treatment effects will be large in magnitude for the tests under one of these inferential meth-
ods, then this method may be preferred, as it would suggest that the power will be large.
Second, if the subpopulations of the compliers are expected to be sufficiently diverse for the
tests under an inferential method, then such method may be preferred, as it would increase
generalizability of the inference. Sufficient subject matter knowledge is needed to make a
potentially best choice following these guidelines.

From a technical point of view, the marginal and reinforced tests require a 2K balanced
block design when not all K instruments are valid, whereas the restricted conditional test
requires only a general K-instrument balanced block design. The latter is thus preferred
when the ni,a’s differ greatly in the original study population, allowing more units to be
formed into the balanced blocks, thereby increasing power.

We presented our results using the test statistics tk(Zk,R)’s and t∗k(Z̃,R)’s based on
differences between the observed outcomes R. These results also hold when we additionally
use covariance adjustment. In a covariance-adjusted inference for H0, one uses the residuals
Rij − g(wij)’s in place of the Rij’s in the test statistics for some fitted model g(wij) of the
outcomes on pre-treatment covariates wij’s that are possibly different from the xij’s. Many
authors have suggested using covariance adjustment as it is typically more efficient; see e.g.,
Rubin (1979); Gail, Tan and Piantadosi (1988); Tukey (1993); and Rosenbaum (2002).

A key limitation of the balanced block design is that it requires observations from all
possible combinations of the instruments of interest. We move on to Section 4 to address this
concern and present an alternative strategy for instruments that are nested.

4. Approximate evidence factors with nested instruments. In this section, we intro-
duce an evidence factor analysis with nested instruments where we are not able to form bal-
anced blocks. Consider multiple tests from K binary instruments for individual j from stra-
tum i: Aij = (Zij,[K]) for i ∈ [I] and j ∈ [ni]. Unless otherwise mentioned, suppose that K
instruments are positively nested in the order of Zij,1,Zij,2, . . . ,Zij,K ; that is, Zij,k′ = 1 only
if Zij,k = 1 for k ∈ [k′ − 1]. Define Zij,0 ≡ 1 and Zij,K+1 ≡ 0. In the educational attainment
example, Zij,k can denote living within dk-distance from a college with d1 > d2 > . . . > dK .

With F := {(rij ,xij , uij,k) : i ∈ [I], j ∈ [ni], k ∈ [K]}, we have the following instrument
assignment of Zij,k with κk being an arbitrary function for i ∈ [I], j ∈ [ni], k ∈ [K]:

Pr(Zij,k = 1|F ,Aij,−k) = Pr(Zij,k = 1|F ,Zij,k−1,Zij,k+1)

= I(Zij,k−1 = 1,Zij,k+1 = 0)
exp{κk(xij) + γkuij,k}

1 + exp{κk(xij) + γkuij,k}
(8)

+ I(Zij,k−1 = 1,Zij,k+1 = 1),
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where uij,k’s with 0≤ uij,k ≤ 1 are unmeasured covariates. The first line of equation (8) is
due to the nested structure in Aij , i.e., Zij,k is conditionally independent of Zij,k′ for all
k′ 6= k− 1, k+ 1.

We consider the unordered partial exclusion restriction for K= [K] in Definition 2.2. Un-
der this restriction, we can rule out the influence from the invalidity of Zij,k merely due to
its correlation with other instruments in Aij,−k, i.e., not due to its direct effect on the out-
come. To exclude such violation that would be dismissed after conditioning on the variables
in Aij,−k, we further stratify the unit of inference by the other K − 1 instruments. We call
this stratification mutual stratification within Aij , which was also used for the second type
of conditional test in Section 3.4. In this way, as long as Zij,k satisfies the unordered par-
tial exclusion within Aij , the hypothesis H0k of no effect of Zij,k on Rij conditioning on
(Xij ,Aij,−k) is the same as the null in (1).

4.1. Negatively correlated p-values from the mutual stratification. As a result of the mu-
tual stratification that conditions on Aij,−k when doing inference with Zij,k, we have K
p-values, one from each of the K mutually stratified instrumental variable analysis for instru-
ment k ∈ [K]. As a test statistic from one mutually stratified analysis is typically associated
with those from other analyses due to the correlations in Aij , the tests are not necessar-
ily independent of each other. Despite possible dependencies between the test statistics, we
will show that under certain conditions, the mutual stratification method still can produce
approximate evidence factors (cf. Definition 2.4) that preserve the validity of the multiple
comparisons.

Let us first investigate the relationships of a pair of p-values from two nested instruments,
Zij,k andZij,k′ whereZij,k′ = 1 only ifZij,k = 1. We consider a one-sided nonparametric test
to test the sharp null (1). For simplicity, suppose that there is no stratum constructed by the
observed covariates xij so that i= 1 for all j’s and N = ni. Consider the following general
form of two test statistics, which can encompass Huber’s m-statistics, stratified Wilcoxon
rank-sum statistics, and Hodges-Lehmann aligned rank statistics (Rosenbaum, 2011). Let

Tk =

N∑
j=1

(1−Zij,k′)Zij,kqij,k,(9)

Tk′ =

N∑
j=1

Zij,kZij,k′qij,k′ ,

where qij,k and qij,k′ are some functions of the observed outcomes with the exact form of
the functions determined by the test statistics. Due to the nested structure, we only compare
the outcomes under Zij,k variable when Zij,k′ = 0 in Tk and compare the outcomes under
Zij,k′ when Zij,k = 1 in Tk′ . Let v(k,k′)

ij,λ = var{λ1(1− Zij,k′)Zij,kqij,k + λ2Zij,kZij,k′qij,k′}
with any non-zero vectors λ = (λ1, λ2) ∈ R2. Suppose that the unordered partial exclusion
restriction holds for K⊆ [K].

THEOREM 4.1. Assume the following two conditions hold for k ∈ K and
k′ = minl∈K{l > k}: (i)

∑ni

j=1 qij,kqij,k′ → c ≥ 0 for a constant c and (ii)

maxj∈[ni] v
(k,k′)
ij,λ /

∑ni

j′ v
(k,k′)
ij′,λ → 0 as ni→∞ for each stratum i. Then under the assignment

model (8) with γk = 0 for all k ∈K, p-values from the aforementioned test statistics from the
mutual stratification are stochastically larger than the uniform among valid instruments, i.e.,

Pr(Pk ≤ pk,∀k ∈K)≤
∏
k∈K

pk,
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for any 0≤ pk ≤ 1. Moreover, when the unordered exclusion restriction is satisfied for a set
K with |K| ≥ ν, f

(
P(K), . . . , P(K−ν+1)

)
is a valid p-value when P(k) denotes the kth order

statistic of (P1, . . . , PK) and f is as in Lemma 1.

The one-sided tests generally satisfy condition (i) in the above theorem, not only with
positive {qij,k, qij,k′} but also with the standardized qij,k and qij,k′ having mean zeros (e.g.,
m-statistics). This is because, roughly speaking, qij,k and qij,k′ both consider subjects ij
with (Zij,k,Zij,k′) = (1,0). For example, suppose that qij,k and qij,k′ denote the rank of
Rij among individuals with Zij,k′ = 0 and individuals with Zij,k = 1, respectively. Then
qij,k and qij,k′ of those subjects would be both small (or large) depending on the value of
observed outcomes Rij’s, thus they are positively correlated. On the other hand, condition
(ii) excludes the case where qij,k or qij,k′ is constant over all j ≥M for some large M so that
the denominator in (ii) does not increase as ni increases.

COROLLARY 3. The result of Theorem 4.1 holds in the presence of the stratification by
observed covariates xij when the number of the strata, I , induced by xij is bounded and
conditions (i) and (ii) hold for all i ∈ [I].

In practice, we may consider (i) dividing a single instrument with multiple values into
multiple, nested instruments, (ii) deriving a p-value from each mutually stratified instrumen-
tal variable analysis, and (iii) performing an evidence factor analysis under different levels
of sensitivity parameters. If at least ν of the candidate instruments are presumed to be valid,
then we can combine the ν largest p-values to form one single p-value. In our forthcoming
simulations study, we will explore the finite sample performance of two different analyses
with the same data: one using a single ordinal instrument and the other using multiple nested
instruments.

REMARK. Even though it seems like the nested structure of instruments determines the
order of the analyses, the mutual stratification still exhibits different implications from the
reinforced design. Under the mutual stratification, invalid descendent instruments that are
nested within a precedent instrument cannot invalidate the analysis with the precedent instru-
ment. On the other hand, under the reinforced design, the validity of the precedent instrument
may collapse when there is an unmeasured associational or a causal path through the descen-
dant instruments to the outcome variable.

4.2. Sensitivity analysis with nested instruments. One of the advantages of the mutual
stratification is that we can investigate the sensitivity to bias due to the unmeasured factors
directly associated with each instrument that would be still present after conditioning on other
instruments.

The parameter Γk := exp(γk) in (8) quantifies the influence of unmeasured covariates
uij,k that is present conditioned on xij when Zij,k−1 = 1 and Zij,k+1 = 0; that is, bias due to
uij,k comes from the violation of the unordered partial exclusion of Zij,k for {k−1, k, k+1},
thus for [K]. When each comparison from the mutually stratified analysis is biased by at most
Γk ≥ 1, denote the maximum of p-values given F and {Aij,−k : i ∈ [I], j ∈ [ni]} over all
possible {uij,k : i ∈ [I], j ∈ [ni]} as P k,A−k,Γk

or, for simplicity, P k. The following propo-
sition shows that the upper bounds P k,A−k,Γk

’s are stochastically larger than the uniform
distribution under the same conditions as in Theorem 4.1.

PROPOSITION 4. Consider K nested instruments and assignment model (8). For k ∈
[K], let P k,A−k,Γk

be the maximum p-value from the mutually stratified instrumental variable
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analysis with Zij,k at Γk ≥ 1. Assume the same regularity conditions as in Theorem 4.1.
Then under the null (1), when the unordered exclusion restriction is satisfied for a set K with
|K| ≥ ν, f

(
P (K), . . . , P (K−ν+1)

)
is a valid p-value when P (k) denotes the kth order statistic

of (P 1, . . . , PK) and f is as in Lemma 1.

Given a fixed ν, we may vary {Γk : k ∈ [K]} to introduce the amount of bias due to unmea-
sured confounders in Zij,k (k ∈ [K]) that would be present even after mutual stratification
and adjustments for the measured confounders. On the other hand, the number of (in)valid
instruments among K candidates can be viewed as a sensitivity parameter as well (Kang
et al., 2021). In practice, we do not know the true number of valid instruments. Instead, we
can allow one to vary the minimum number of valid instruments ν and observe how sensitive
the results are. The decreased value of ν from c to c+1 essentially dismisses the contribution
of one p-value (often small p-value) to the combined p-value. Therefore, underestimating ν
compared to the true number of valid instruments will result in conservative inference, but as
long as we have at least ν valid instruments the combined p-value is conservative for type-I
error.

5. Simulation studies.

5.1. Numerical examples under the balanced block design. We illustrate in this part the
validity of the balanced block design under the null hypothesis even in the absence of proper
conditioning. See Section S3 in the supplementary material for additional simulation studies
on the power of sensitivity analysis and design sensitivity.

We consider a study with two candidate instruments, Zij,1 and Zij,2. The goal is to test the
null hypothesis of no treatment effect for any unit:H0 : rij,(z1,z2,1) = rij,(z1,z2,0), ∀ij. Assume
that instrument 2 directly violates the exclusion restriction whereas instrument 1 is valid after
conditioning on instrument 2. This ensures the unordered partial exclusion restriction holds
with K = {1}. The marginal test of instrument 1 is invalid without further adjustment when
the instruments are correlated as illustrated in Section 3.1. We show below the utility of the
balanced block design to restore its validity.

Consider eight blocking strategies, with (ni,(00), ni(01), ni(10), ni(11)) equaling (a)
(1,1,1,1), (b) (1,2,1,2), (c) (1,4,1,4), (d) (1,2,2,4), (e) (2,2,2,2), (f) (4,4,4,4), (g)
(1,1,1,2), and (h) (1,1,1,3), respectively. Strategy (h) forms units into blocks of size
1 + 1 + 1 + 3 = 5 in which there is one unit with each of (z1, z2) ∈ {(0,0), (0,1), (1,0)}
and three units with (z1, z2) = (1,1). It then conducts block randomization test by permuting
the assignment vector of interest within each block; likewise for strategies (a)–(g). A block-
ing strategy is balanced if ω = ni,(11)/(ni,(01) + ni,(11)) − ni,(10)/(ni,(00) + ni,(10)) equals
0. Strategies (a)–(f) thus correspond to block randomization tests under balanced blocks,
whereas strategies (g)–(h) correspond to block randomization tests under unbalanced blocks.
In addition, consider strategy (i) that conducts the unblocked randomization test on a popu-
lation with instrument assignment model:

Pr(Zij,1 = 1) = 0.33, Pr(Zij,2 = 1) = 0.4, and

Pr(Zij,1 = 1 | Zij,2 = 1)−Pr(Zij,1 = 1 | Zij,2 = 0) = 0.14.
(10)

The resulting instrument combination frequencies are roughly
(ni,(00), ni,(01), ni,(10), ni,(11)) = ni × (0.45,0.22,0.15,0.18). Generate the potential
outcomes for a total of N = 3,600 units under each strategy from

rij,(z1,z2,d) = λ2z2 + ε, where ε∼N (0, σ2).(11)
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This data generating model ensuresK= {1} and the treatment d, missing from the right-hand
side of (11), has no effect on the potential outcomes, such that H0 holds.

Table 1 shows the type-I error rates of the marginal tests of Zij,1 under the eight blocking
strategies at 5% significance level over 10,000 independent replications. The result accords
with the theory and illustrates the ability of the balanced block designs to deliver valid p-
values even in the absence of proper conditioning. In particular, all six strategies with the
balanced blocking, namely strategies (a)–(f), preserve the correct type-I error rates even with-
out conditioning on Zij,2, whereas the three strategies without the balanced blocking, namely
strategies (g)–(i), do not. Provided the blocks are balanced, the exact sizes and ratios, namely
whether it is (1,1,1,1) or (1,2,2,4) or (4,4,4,4), result in no material differences in the
type-I error rates. Moreover, the valid tests under the six balanced block designs become
increasingly more conservative as σ decreases. Intuitively, this is because the observed out-
comes Rij =Rij(Zij,2)’s reveal more information about the likely values of the Zij,2’s as σ
diminishes, with units with larger Rij’s more likely to have Zij,2 = 1. As the Zij,1’s are bal-
anced across different values of Zij,2, the marginal tests of Zij,1 tend to produce less extreme
test statistics values and thus more conservative type-I error rates.

We next put the balanced block design in perspective, and compare its validity with the
two-stage least squares regression and the original reinforced design proposed by Karmakar,
Small and Rosenbaum (2021). Consider a study population of N = 2,500 units nested in
I = 50 initially unbalanced strata. We generate the finite population of (Yij ,Zij,1,Zij,2,Dij)
by (10)–(11) and Pr(Dij = 1 | Zij,1,Zij,2) = max{min(ξij ,1),0} with ξij = 0.3Zij,1 +
0.25Zij,2 + ηij , where ηij ∼ N (0,0.06). The null hypothesis is true and should not be re-
jected at a rate higher than the nominal rate of 5%. The two-stage least squares regression
performs a joint analysis using (Zij,1,Zij,2) as instruments and reports one p-value as the
final conclusion. The balanced block and reinforced designs run one randomization test for
each of Zij,1, Zij,2, and Dij , and produce three evidence factors to be weighed against each
other. Table 2 shows the type-I error rates for testing H0 under three combinations of (λ2, σ).
The two-stage least squares regression yields biased joint analysis. The reinforced design
yields unbiased tests of Dij , yet is biased for both Zij,1 and Zij,2. In contrast, the balanced
block design restores the validity of the marginal tests based on Zij,1 in addition to those
based on Dij , yielding the right “do not reject” decision by majority vote which is lacking
from the other two methods.

TABLE 1
Type-I error rates at 5% significance level for the marginal tests of Zij,1 with van Elteren statistics under

different blocking strategies over 10,000 repetitions. The potential outcomes are generated from model (11) with
λ2 = 0.1 for N = 3,600 units. The balanced block design features ω = 0 with treatment group sizes determined
by the ratio of the ni,(z1z2)’s. The treatment proportions for the unblocked analysis in column (i) is generated

using assignment model (10). Results with Hodges-Lehmann statistics are similar and thus omitted.

ω = 0 ω 6= 0

(a) (b) (c) (d) (e) (f) (g) (h) (i)
σ (1,1,1,1) (1,2,1,2) (1,4,1,4) (1,2,2,4) (2,2,2,2) (4,4,4,4) (1,1,1,2) (1,1,1,3) Assignment model (10)

1 0.053 0.050 0.048 0.049 0.052 0.049 0.114 0.157 0.106
0.5 0.053 0.050 0.047 0.049 0.051 0.049 0.219 0.346 0.192
0.1 0.039 0.036 0.036 0.035 0.036 0.035 0.357 0.012 0.67

5.2. Numerical experiments with nested instruments. In this section, we examine (i) mul-
tiple causal comparisons using the mutual stratification with nested instruments and (ii) a sin-
gle comparison using the Kruskal-Wallis test (Breslow, 1970). Set I = 50 strata with ni = 50
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TABLE 2
Type-I error rates at 5% significance level under the two-stage least squares regression, reinforced design, and
balanced block design using marginal tests over 1,000 repetitions of N = 2,500 units nested in I = 50 strata

generated from models (10)–(11).

Two-stage Reinforced design Balanced block design
λ2 σ least squares Z1 Z2 D Z1 Z2 D

0.5 0.5 1 1 1 0.047 0.030 1 0.043
0.1 0.5 0.946 0.265 0.996 0.047 0.048 0.968 0.043
0.1 1 0.436 0.124 0.771 0.047 0.047 0.558 0.043

units in each stratum i= [I]. Generate two nested instruments with Pr(Zij,1 = 1) = 0.8 := p1

and Pr(Zij,2 = 1 | Zij,1 = 0) = 0, and Pr(Zij,2 = 1) = δp1. We control the dependency be-
tween the two nested instruments by varying δ in {0.3,0.5,0.7}. Let

ξij = φ1Zij,1 + φ2Zij,2 + ηij

Pr(Dij = 1 | Zij,1,Zij,2) = max{min(ξij ,1),0}(12)

Rij = λ1Zij,1 + λ2Zij,2 + β∗Dij + εij ,

where (εij , ηij) are bivariate Gaussian with zero means, fixed variances of 0.25 and 0.06, re-
spectively, and covariance of 0.3. Set φk = 0.5 for k = 1,2. After (i) the mutual stratification,
we combine two p-values using Fisher’s method (Fisher, 1926) without truncation. Consider
an ordinal instrument Z∗ij = 1I(Zij,1 = 1)+1I(Zij,2 = 1) and use this variable Z∗ij for (ii) the
Kruskal-Wallis test (or one-way ANOVA on ranks) to test whether the medians of all groups
defined by Z∗ij (e.g., Z∗ij = 0,1,2) are equal. Figure 1 shows the rejection rates when two
instruments are both valid (upper panel; λ2 = 0.0) and one of them (k = 2) is invalid (lower
panel; λ2 = 0.1). Across all panels in Figure 1, λ1 is set to zero.

The lower panels of Figure 1 present the results when the second instrument is invalid.
Assuming we know that at most one of the two instruments is invalid, we use ν = 1 in
Lemma 1. We observe that the use of a single variable Z∗ij becomes invalid to use when
either Zij,1 or Zij,2 is invalid, failing to control a type-I error under the null (β∗ = 0.0).
On other hand, as long as ν is correctly specified, we can control a type-I error with two
instruments where one of them is invalid.

Next, we generate five hierarchially nested instruments with increased stratum size ni =
200 for i= [I] with I = 50. Set φk = 0.1 for k = 1, . . . ,5. With (εij , ηij) generated from the
same bivariate Gaussian distribution,

Pr(Zij,1 = 1) = 0.8; Pr(Zij,k = 1) = Pr(Zij,k−1 = 1)δ, k = 2,3,4,5.

ξij = φ1Zij,1 + φ2Zij,2 + φ3Zij3 + φ4Zij4 + φ5Zij5 + ηij(13)

Pr(Dij = 1 | Zij,1,Zij,2,Zij3,Zij4,Zij5) = max{min(ξij ,1),0}

Yij = λ1Zij,1 + λ2Zij,2 + λ3Zij3 + λ4Zij4 + λ5Zij5 + β∗Dij + εij .

Figure 2 presents the rejection rates when five instruments are all valid (upper panel; set ν =
5) or when one of the five instruments is invalid (lower pannel; set ν = 4). In the latter case,
the Kruskal-Wallis test with a single instrument (Z∗ij defined similarly) fails to control the
type-I error; while the combined p-value using the mutual stratification is valid with at least
ν valid p-values and often more conservative for type-I error. The power from the Kruskal-
Wallis test is higher than the power using the mutual stratification when λ = (0,0,0,0,0).
This is because instruments often become stronger when combined (Davies et al., 2015).
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FIG 1. Rejection rates under model (12). When λ2 = 0.0, both methods are valid and the Kruskal-Wallis test has
a higher power than the combined p-value. On the other hand, when λ2 = 0.1, the Kruskal-Wallis test is not valid
anymore but the proposed method gives valid inference as long as the minimum number of valid instruments ν is
correctly specified.
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FIG 2. Rejection rates under model (13). When λ = (0,0,0,0,0), both methods are valid and the Kruskal-
Wallis test has a higher power than the combined p-value using mutual stratification. On the other hand, when
λ = (0,0,0.1,0,0), the Kruskal-Wallis test is not valid anymore but the proposed method gives valid inference
as long as the minimum number of valid instruments ν is correctly specified.

6. Data applications.

6.1. The long-run education cost of World War II. Social science studies sometimes in-
volve multiple candidate instruments with unclear dependence structure and uncertain valid-



24

ity. We illustrate in this section the utility of the balanced block design in providing additional
guarantees.

The disruption of education suffered by school-age children remains an important aspect
of the long-run cost of a war and affords a promising instrumental variable for studying
the effect of education on earnings. Ichino and Winter-Ebmer (2004) studied the effect of
education attainment on the hourly wage in 1984–86 for individuals that were 10 years old
during World War II via a two-stage least squares analysis, and documented sizable earnings
loss among Germans born between 1930–39 compared to their cohorts born between 1925–
29 and 1940–49. The original analysis of the German population included the indicators
of 1930–39 cohort and father without high-school degree as candidate instruments, and the
indicators of gender, living in big city, and father being a blue-collar worker as covariates.

Using data from the Socio-Economic Panel (SOEP) (Socio-Economic Panel (SOEP),
2018; Wagner, Frick and Schupp, 2007), we examine the hourly wage in 1986 for 2,792
Germans born between 1925 and 1949. We develop three evidence factors from previously
used strategies for identifying the effect of education on earnings, namely (i) the indicator
of born between 1930–39 as an instrument, denoted by Z1, (ii) the indicator of living in city
until age 15 as an instrument, denoted by Z2, and (iii) the indicator of receiving 10 or more
years of education as the treatment, denoted by D, to address this question, each depending
on very different assumptions for its validity. Table 3 depicts the structure of the three fac-
tors. See Ichino and Winter-Ebmer (2004) for discussion on age 10 being a crucial age in the
German educational system for pupils to decide their future education pathways. The cohort
born between 1930–39 reached age 10 during or immediately after the war, and thus suffered
more serious disruptions to education at this crucial stage compared with other cohorts. See
also Ichino and Winter-Ebmer (2004) for discussion on the civilian population in big cities
being hit by the war more severely than in small villages or in the countryside, hence ex-
posed to more serious disruptions to education. Following Ichino and Winter-Ebmer (2004),
we use the indicators of born between 1930–39 and living in city until age 15 as two plausible
instruments.

Following Ichino and Winter-Ebmer (2004), we adjust for the effects of age with a cubic
polynomial in age for each gender. The residuals become the covariance-adjusted outcomes
for the randomization tests under the balanced block design. The first analysis uses an indi-
cator of whether a person was born in the 30s as a candidate instrument. The second analysis
uses an indicator of whether a person lived in city until age 15 as a candidate instrument.
The third analysis directly compares individuals getting 10 or more years of education with
those otherwise, viewing both city/country and 30s/non-30s as covariates. The partial F -
statistic from the ordinary least squares regression of the treatment D on Z1 and Z2 is 74.41
jointly, suggesting both candidate instruments have reasonable strengths. Following Ichino
and Winter-Ebmer (2004), we adjust for gender and whether father had a high school degree
by stratifying the individuals into four initial strata, and then form balanced blocks within
each stratum based on the approximate proportions of (Z1,Z2) within that stratum. We ex-
clude individuals for which any of the covariates or instruments are missing.

Table 4 shows the results at biases of Γ = 1,1.1,1.2,1.25 under the balanced block design
with marginal tests and reinforced design, respectively. The inferences under the reinforced
design use all data points, whereas those under the balanced block design use only those
that can be formed into the balanced blocks. See Karmakar, Small and Rosenbaum (2021)
for interpretation of the parameter Γ in terms of the impact of unobserved covariates on
treatment assignment and amplification. Table 4 summarizes the raw p-value upper bounds
from the tests of Z1, Z2, and treatment D, respectively, and the combined p-value upper
bounds assuming at least two of them are valid using the truncated product method with
κ = 0.2. The analyses under the balanced block design are in general more conservative than
those under the reinforced design; both suggest that the full concurrence of all three evidence
factors depends critically on the validity of the candidate instruments.
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TABLE 3
Counts and percents of receiving 10 or more years of education for the four strata created by the two candidate

instruments in the World War II study.

Year of birth Place grew up Education Count %

Born in 1930–39 City ≥ 10 years 488 79

<10 years 132 21

Country ≥ 10 years 330 63

<10 years 196 37

Otherwise City ≥ 10 years 851 88

<10 years 112 12

Country ≥ 10 years 495 72

<10 years 188 28

Total 2,792

TABLE 4
p-value upper bounds under the three analysis strategies for the World War II study. “BB” stands for the

balanced block design with marginal tests for Zk (k = 1,2) and stratified test for D. “RD” stands for the
original reinforced design by Karmakar, Small and Rosenbaum (2021) in the order of Z1 to Z2 to D. “RD

reversed” stands for the reinforced design in the order of Z2 to Z1 to D. The combined p-values (column “C”)
are computed using the truncated product method with κ = 0.2 assuming at least two are valid.

BB RD RD reversed
Γ Z1 Z2 D C Z1 Z2 D C Z1 Z2 D C

1 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
1.1 0.05 0.04 0.00 0.01 0.02 0.00 0.00 0.00 0.02 0.00 0.00 0.00
1.2 0.26 0.23 0.00 1.00 0.13 0.04 0.00 0.02 0.13 0.05 0.00 0.03
1.25 0.44 0.40 0.00 1.00 0.25 0.11 0.00 0.22 0.26 0.12 0.00 0.23

6.2. The effect of malaria on stunting. In this section we provide an application of evi-
dence factor analysis using our proposed mutual stratification with nested instruments.

Understanding the effect of malaria on stunting among children is important for building
models for public health priorities like the Lives Saved Tool (Jackson and Black, 2017). To
rule out the effect of unmeasured confounding between malaria and stunting among chil-
dren, Ateba et al. (2021) used the randomized insecticide-treated bednets as an instrument
based on a cluster randomized trial conducted in Western Kenya. This is based on a previ-
ous finding that bednet usage has a negative association with the onset of malaria. On the
other hand, the time at which each child was ‘assigned the bednet’ was different among chil-
dren. The bednet trial started in 1997. Therefore, a child born after 1997 could be exposed
to the bednet since birth while a child born before 1997 could be only partially exposed to
the bednet. Year born may be associated with unmeasured confounders (e.g., improvement
in sanitation) which may make the instrument invalid.

Following the study in Ateba et al. (2021), we used the longitudinal observational study of
the Asembo Bay Cohort study that includes a cluster randomized trials of bednets. Figure 3
shows that the proportion of lifetime exposed to the bednet has a negative correlation with
symptomatic malaria per age, with 0 indicating the control and 1 indicating the intervention
before birth among N = 20,521 children aged 0 to 5 years old. There is evidence that bed-
net use provides some protection against other infectious diseases besides malaria, such as
cutaneous leishmaniasis, that are transmitted by insects (Wilson et al., 2014). These diseases
may also affect stunting, leading to the possible invalidity of the bednet intervention as an
instrument.
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FIG 3. Relationship between proportion of lifetime exposed to the bednet (instrument) and symptomatic malaria
per age (exposure). The red line is a fitted cubic spline of the data, showing the negative correlation between the
instrument and the exposure.

TABLE 5
Results of the effect of malaria on stunting study. A t-statistic (p-value) of the regression coefficient representing
the association between each instrument Zij,k and the exposure variable Dij conditioned on (Xij ,Aij,−k).

The second row presents the number of strata (Sk) used for each mutual stratification (k = 1,2,3) and the
number of the control and the treated individuals to be compared to. The last four rows show the resulting

p-value upper bounds at different sensitivity parameter Γk .

IV1 (k = 1) IV2 (k = 2) IV3 (k = 3)

t-statistic (p-value) of each IV -9.59 (< 0.001) -7.73 (< 0.001) -9.04 (< 0.001)

Sk (control vs. treated) 42 (745 vs. 3988) 39 (1262 vs. 740) 37 (1773 vs. 1158)

p-value (Γk = 1.0) 0.501 0.309 0.001

p-value (Γk = 1.1) 0.835 0.647 0.015

p-value (Γk = 1.2) 0.968 0.880 0.073

p-value (Γk = 1.3) 0.996 0.972 0.214

In our analysis, instead of using a binary instrumental variable that indicates having re-
ceived the bednet intervention or not, we render it into three instruments depending on
whether and when the bednet intervention was assigned to the child. The first instrument
is an indicator of any exposure to the bednet intervention; the second instrument is an in-
dicator of no less than 20% of exposure to the bednet intervention; the third instrument is
indicating no less than 50% of exposure to the bednet intervention.

We first stratify the children in this study whose outcome (stunting) is measured in or
after year 1995 by the following baseline covariates: age with four categories by quartiles,
the sickle cell trait, and the child’s village to account for the study design of a cluster ran-
domized trial. We denote the exposure variable for subject ij as Dij indicating the child’s
clinical malaria incidence rate (the number of symptomatic malaria episodes divided by the
child’s age) and the outcome variable as Rij indicating child ij’s height adjusted for age cal-
culated as the Z-score using Epi-Info version 2000 (Ateba et al., 2021). We finally performed
evidence factor analysis using the mutual stratification with Aij,[3] = (Zij,1,Zij,2,Zij,3).

Table 5 presents the results of mutual stratification analysis with each instrument. The t-
statistics in the first row illustrate that all three instruments are negatively associated with the
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exposure variable conditioned on the other instruments and the observed covariates. In the
absence of unmeasured confounding, i.e., Γk = 1.0, we could reject the null only with the
third instrument, with which we still reject the null at Γk = 1.1.

On the other hand, when all of the three instruments are valid, we can use other methods
of combining the p-values. For example, when Γk = 1.0, using Fisher’s p-value combination
and the truncated p-value combination with κ = 0.2, the combined p-values are 0.007 and
0.018, respectively. At Γk = 1.1, the combined p-values are 0.141 and 0.108, respectively,
using the two methods. When the minimum number of valid instruments is set to ν = 2,
allowing at most one invalid instrument, the combined p-value is 0.44 under no unmeasured
bias using Fisher’s p-value combination method.

7. Discussion, limitation, and recommendations. This paper proposed two novel
methods to conduct valid inference with possibly invalid instruments. Under the more lib-
erally defined exclusion restriction condition, we allowed a subset of the candidate instru-
ments to be conditionally valid after conditioning on those that directly violate the exclusion
restriction. Along the lines of Karmakar, Small and Rosenbaum (2021), the proposed meth-
ods deliver multiple and nearly independent inferential results from multiple instruments, but
remove the stringent requirement on proper ordering of that paper, as opposed to much of
the existing literature that produces a single result when considering multiple candidate in-
struments. This is done by an evidence factor analysis, which further enables us to perform a
separate sensitivity analysis for each instrument.

We showed through theory and numerical results that the balanced block design restores
the validity of individual marginal and reinforced tests in the absence of proper conditioning
and ensures asymptotically nearly independent p-values under all three types of inferences,
namely the marginal, reinforced, and conditional tests. We thus recommend using the bal-
anced block design for constructing approximate evidence factors when the validity of any
of the multiple instruments available is in doubt. The choice between marginal, reinforced,
or conditional tests, on the other hand, may be made based on subject matter knowledge to
boost the power and generalizability of the tests.

A key limitation of the balanced block design is that it requires observations from all
possible combinations of the instruments of interest, and is thus infeasible if the candidate
instruments are nested. For the use of evidence factor analysis with nested instruments, we
propose to stratify by all the instruments, except the one used for making a comparison, and
other observed covariates. Then, under certain conditions, the resulting p-values are shown
to be stochastically larger than the uniform under the null. This stratification method will be
particularly useful when we have an ordinal instrument of which different levels may inval-
idate the instrument. In this case, we can enhance a causal comparison by dividing a single
instrument into several nested instruments and investigating the sensitivity to the invalidity at
each level.

However, dividing a single instrument into multiple instruments is likely to diminish
power. We may consider additional adjustments for improving power under certain distribu-
tional assumptions (Zhao, Small and Su, 2019; Tian and Ramdas, 2019). In addition, without
a priori knowledge of the instrument, it is unclear how to determine the cut points that divide
an ordinal instrument into a few nested instruments. These two are in our future work agenda
to use possibly invalid instrumental variables for evidence factor analysis.

We considered the randomization-based inference under assignment model (2). The find-
ings provide insights for more complex generalizations. As commented by Imbens (2003),
“often most of the insights of a sensitivity analysis can be obtained with relatively simple
models.” We conjecture that the theory extends to assignment mechanisms with more com-
plex dependence structures as well. We leave the technical details to future work. In addition,
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our approach is limited to testing the sharp null hypothesis of no treatment effect for any
unit. Future work is needed to apply the evidence factor analysis with multiple instruments
to test other null hypotheses, such as the weak null hypothesis of no average treatment effect
or bounded nulls (Caughey et al., 2021).

The output of our proposed statistical analysis is a comprehensive set of results that quan-
tify (a) separate pieces of evidence for a causal effect from different candidates instruments,
(b) evidence that remains valid if there is some amount of bias from unmeasured confound-
ing, and (c) combined evidence if it is guessed that the number of invalid instruments among
the candidate instruments is less than some upper bound.

Funding. Bikram Karmakar was supported by NSF Grant DMS-2015250.
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SUPPLEMENT TO “EVIDENCE FACTORS FROM MULTIPLE, POSSIBLY
INVALID, INSTRUMENTAL VARIABLES”

APPENDIX S1: PROOF OF THE RESULTS IN SECTION 3

S1.1. Valid marginal and reinforced inferences under the balanced block design.
Recall pi,k(zk) as the proportion of units with Zij,k = zk in stratum i. For k ∈ K, let
ni,(zk,a−K) be the number of units with (Zij,k,Aij,−K) = (zk,a−K) in stratum i, and
let ei,(zk,a−K) = ni,(zk,a−K)/ni,k(zk) = pi,(zk,a−K)/pi,k(zk) be the proportion of units with
Zij,k = zk that have Aij,−K = a−K in stratum i. Let ei be the concatenation of ei,a−K =

(−ei,(0,a−K), ei,(1,a−K))
T over all a−K, and let Si = (Si,(a−K,a′−K)) be the 2K−|K| × 2K−|K|

covariance matrix of {rij,a−K : j ∈ [ni]; a−K ∈ {0,1}K−|K|}, with elements Si,(a−K,a−K) =

S2
i,a−K

and Si,(a−K,a′−K) arranged in the lexicographical order of a−K. We verify below The-
orem 3.3 for the general K-instrument study with

vk =

I∑
i=1

w2
i p
−1
i

∑
a−K

(
ei,(0,a−K)

pi,k(0)
+
ei,(1,a−K)

pi,k(1)

)
S2
i,a−K − eT

i (Si ⊗ J2)ei

 ,

v′k =

I∑
i=1

w2
i p
−1
i p−1

i,k(0)p
−1
i,k(1)S

2
i ,

where J2 denotes the 2× 2 matrix of ones and

S2
i =

∑
a−K

pi,a−KS
2
i,a−K +

∑
a−K

pi,a−K(r̄i,a−K − r̄i)2 with r̄i =
∑
a−K

pi,a−K r̄i,a−K ,(S1)

under a sequence of possibly unbalanced finite populations (F ,A). The result implies Propo-
sition 1 with slight modification of notation ei,z1 = ei,(z1,1) and 1− ei,z1 = ei,(z1,0). In partic-
ular, when K = 2, we have

Si =

(
S2
i,(0) Si,(0,1)

Si,(0,1) S2
i,(1)

)
and ei = (−(1− ei,0),1− ei,1,−ei,0, ei,1)T such that

eT

i (Si ⊗ J2)ei = (S2
i,(1) + S2

i,(0) − 2Si,(0,1))(ei,1 − ei,0)2 = S2
i,τ (ei,1 − ei,0)2.

PROOF OF THEOREM 3.3. Assume H0 and fixed k ∈K throughout the proof. Recall that
τ̂i,k is the component of τ̂k in stratum i, with τ̂k =

∑I
i=1 τ̂i,k. Let Ri = (Ri1, . . . ,Rini

)T and
Wi = (Wi1, . . . ,Wini

)T with Wij = n−1
i,k(1)Zij,k − n

−1
i,k(0)(1− Zij,k) to write τ̂i,k = WT

iRi.
Let π be a permutation of {ij : i ∈ [I], j ∈ [ni]} respecting the stratum membership. The ran-
domization distribution of τ̂k can be represented as τ̂πk ∼

∑I
i=1 τ̂

π
i,k, where τ̂πi,k = (Wi)

T

πRi

with (Wi)π = (Wπ(i1), . . . ,Wπ(ini))
T denoting a random permutation of the elements in Wi.

By the properties of the stratified randomization, it suffices to verify
√
niτ̂i,k N (0, vi,k),

√
niτ̂

π
i,k N (0, v′i,k) a.s.,(S2)

where

vi,k =
∑
a−K

(
ei,(0,a−K)

pi,k(0)
+
ei,(1,a−K)

pi,k(1)

)
S2
i,a−K − eT

i (Si ⊗ J2)ei, v′i,k = p−1
i,k(0)p

−1
i,k(1)S

2
i .
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We verify first the result on τ̂πi,k based on Zhao and Ding (2021, Lemmas S2 and S5) and then
the result on τ̂i,k based on Li and Ding (2017, Theorem 5).

For the result on τ̂πi,k, let R̂i = n−1
i

∑ni

j=1Rij and Ŝ2
i = (ni − 1)−1

∑ni

j=1(Rij − R̂i)2 be
the finite-population mean and variance of the observed outcomes Ri = (Ri1, . . . ,Rini

)T; let

R̂i,a−K = n−1
i,a−K

∑
j:Aij,−K=a−K

Rij , Ŝ2
i,a−K = (ni,a−K −1)−1

∑
j:Aij,−K=a−K

(Rij− R̂i,a−K)2

be the sample mean and variance of {Rij : Aij,−K = a−K}, where ni,a−K denotes the number
of units in stratum i with Aij,−K = a−K. With pi,a−K = ni,a−K/ni, we have

Ŝ2
i = (ni − 1)−1

∑
a−K

∑
j:Aij,−K=a−K

(Rij − R̂i,a−K + R̂i,a−K − R̂i)2

=
∑
a−K

ni,a−K − 1

ni − 1
Ŝ2
i,a−K +

∑
a−K

ni,a−K
ni − 1

(R̂i,a−K − R̂i)2

= S2
i + o(1) a.s.

by Zhao and Ding (2021, Lemma S5). This, together with
∑ni

j=1Wij = 0 and
∑ni

j=1W
2
ij =

n−1
i p−1

i,k(0)p
−1
i,k(1) by direct algebra, ensures

√
niτ̂

π
i,k  N (0, v′i,k) a.s. by Zhao and Ding

(2021, Lemma S2).
For the result on τ̂i,k, index by (zk,a−K) ∈ {0,1}1+K−|K| the 21+K−|K| possible combi-

nations of (Zij,k,Aij,−K). Let

R̂i,(zk,a−K) = n−1
i,(zk,a−K)

∑
j:(Zij,k,Aij,−K)=(zk,a−K)

Rij

be the sample mean of Rij over units with (Zij,k,Aij,−K) = (zk,a−K)} in stratum i, and let
R̂i be the 21+K−|K|×1 vector concatenating {(R̂i,(0,a−K), R̂i,(1,a−K))

T : a−K ∈ {0,1}K−|K|}
in lexicographical order of a−K. Let r̄i be the 2K−|K| × 1 vector of {r̄i,a−K : a−K ∈
{0,1}K−|K|} with elements in the same lexicographical order of a−K as that in R̂i. We
have

E(R̂i) = r̄i ⊗ 12, ni cov(R̂i) = diag
(
p−1
i,(zk,a−K)S

2
i,a−K

)
− Si ⊗ J2,(S3)

where 12 = (1,1)T. The definition of ei,(zk,a−K) = ni,(zk,a−K)/ni,k(zk) = pi,(zk,a−K)/pi,k(zk)

further ensures

R̂i,k(zk) = n−1
i,k(zk)

∑
j:Zij,k=zk

Rij = n−1
i,k(zk)

∑
a−K

ni,(zk,a−K)R̂i,(zk,a−K) =
∑
a−K

ei,(zk,a−K)R̂i,(zk,a−K).

This ensures τ̂i,k = eT

i R̂i with

E(τ̂i,k) = eT

iE(R̂i) =
∑
a−K

(ei,(1,a−K) − ei,(0,a−K))r̄i,a−K ,

ni var(τ̂i,k) = eT

i {ni var(R̂i)}ei

=
∑
a−K

(
ei,(0,a−K)

pi,k(0)
+
ei,(1,a−K)

pi,k(1)

)
S2
i,a−K − eT

i (Si ⊗ J2)ei = vi,k

by (S3); the last identity follows from ei,(zk,a−K)/pi,(zk,a−K) = p−1
i,k(zk) by definition and

eT

i diag
(
p−1
i,(zk,a−K)S

2
i,a−K

)
ei
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=
∑
a−K

eT

i,(a−K)

(
p−1
i,(0,a−K)S

2
i,a−K

p−1
i,(1,a−K)S

2
i,a−K

)
ei,(a−K)

=
∑
a−K

(
e2
i,(0,a−K)

pi,(0,a−K)
+
e2
i,(1,a−K)

pi,(1,a−K)

)
S2
i,a−K =

∑
a−K

(
ei,(0,a−K)

pi,k(0)
+
ei,(1,a−K)

pi,k(1)

)
S2
i,a−K .

The result in (S2) then follows from Li and Ding (2017, Theorem 5).
Further assume the balanced block design that ensures ei,(0,a−K) = ei,(1,a−K) = pi,a−K . Let

pi be the concatenation of pi,a−K in the same order of a−K as that in Si. We have ei = pi ⊗
(−1,1)T such that eT

i (Si⊗J2)ei = 0. This ensures vi,k = p−1
i,k(0)p

−1
i,k(1)

∑
a−K

pi,a−KS
2
i,a−K

≤
v′i,k by the definition of S2

i from (S1) and thus vk ≤ v′k.

PROOF OF PROPOSITION 2. The result follows from Theorem 3.3, which ensures |τ̂k| ≤st
|τ̂πk | a.s.. See also Wu and Ding (2020, Proposition 4).

PROOF OF THEOREM 3.4. The result follows from Karmakar, Small and Rosenbaum
(2021, Proposition 1).

S1.2. Asymptotically independent p-values with K marginal tests. We next verify
the results on the marginal tests under the K-instrument balanced block design.

PROOF OF THEOREM 3.5. Central limit theorem under Condition 2 ensures that (tk, tk′)
are asymptotically joint Gaussian. It thus suffices to verify cov(tk, tk′) = 0 for k, k′ ∈ K
provided γk = 0. Let Z̃−k be the N × (K − 1) concatenation of Zk′ for k′ 6= k. Let Z̃−K =
(Zk)k 6∈K be the N × (K−|K|) concatenation of Zk for k’s that directly violate the exclusion
restriction. For k ∈K, we have Z̃−K ⊆ Z̃−k such that R is fixed conditioning on Z̃−k.

Let Ωk be the possible values of Zk subject to the marginal counts restriction under the
2K balanced block design. By symmetry, we have 1N − zk ∈ Ωk for all zk ∈ Ωk under the
2K balanced block design, with

tk(Zk,R) =−tk(1N −Zk,R) for k ∈K conditioning on Z̃−K.

This ensures E{tk(Zk,R) | Z̃−k}= 0 for k ∈K provided γk = 0. The result follows from

E(tk) =E{E(tk | Z̃−k)}= 0,

E(tktk′) =E{E(tktk′ | Z̃−k)}=E{tk′E(tk | Z̃−k)}= 0

such that cov(tk, tk′) =E(tktk′)−E(tk)E(tk′) = 0 for k ∈K and arbitrary k′ 6= k.
For the relaxation of the 2K requirement when K = {1, . . . ,K}, recall ti,k as the compo-

nent of tk from stratum i with tk =
∑I

i=1 ti,k. A sufficient condition for cov(tk, tk′) = 0 for
k 6= k′ is thus cov(ti,k, ti,k′) = 0 for all i and 1 ≤ k 6= k′ ≤K . We verify this for arbitrary
fixed i and (k, k′).

First, ψk(v) + ψk(−v) = 0 ensures
∑

j:Zij,k=1

∑
j′:Zij′,k=1ψk{(Rij −Rij′)/σ} = 0. We

have

ti,k =
∑

j:Zij,k=1

∑
j′:Zij′,k=0

ψk{(Rij −Rij′)/σ}

=
∑

j:Zij,k=1

∑
j′:Zij′,k=0

ψk{(Rij −Rij′)/σ}+
∑

j:Zij,k=1

∑
j′:Zij′,k=1

ψk{(Rij −Rij′)/σ}
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=
∑

j:Zij,k=1

ni∑
j′=1

ψk{(Rij −Rij′)/σ}

=
∑

j:Zij,k=1

ψij,k =

ni∑
j=1

ψij,kZij,k,

where ψij,k =
∑ni

j′=1ψk{(Rij −Rij′)/σ} is fixed independent of Zk.This ensures

cov(ti,k, ti,k′) =
∑

1≤j,j′≤ni

ψij,kψij′,k′ cov(Zij,k,Zij′,k′).

We proceed to verify cov(Zij,k,Zij′,k′) = 0 when the assignment is as-if randomized. To
simplify the presentation, let pk = pi,k(1) and pk′ = pi,k′(1) be the proportions of Zij,k = 1
and Zij,k′ = 1 in stratum i, respectively. Under complete randomization, the joint distribution
of {(Zij,k,Zij,k′)}ni

j=1 is uniform across all possible permutations under the balanced block
restriction, with E(Zij,k) = Pr(Zij,k = 1) = pk and E(Zij′,k′) = Pr(Zij′,k′ = 1) = pk′ . The
target is thus equivalent to E(Zij,kZij′,k′) = pkpk′ for all 1≤ j, j′ ≤ ni.

To verify that this is correct, let Ua = {j : (Zij,k,Zij,k′) = a} be the index set of the units
with (Zij,k,Zij,k′) = a ∈ {0,1}2, and let ni,a = |Ua|. For j = j′, we have E(Zij,kZij,k′) =
Pr(j ∈ U(11)) = pkpk′ . For j 6= j′, we have

E(Zij,kZij′,k′) = Pr(Zij,k = 1,Zij′,k′ = 1)

= Pr(j, j′ ∈ U(11)) + Pr(j ∈ U(11), j
′ ∈ U(01))

+ Pr(j ∈ U(10), j
′ ∈ U(11)) + Pr(j ∈ U(10), j

′ ∈ U(01))

= pkpk′ ,

where the last equality follows from

Pr(j, j′ ∈ U(11)) =
ni,11(ni,11 − 1)

ni(ni − 1)
=
pkpk′(nipkpk′ − 1)

ni − 1
,

Pr(j ∈ U(11), j
′ ∈ U(01)) =

ni,11ni,01

ni(ni − 1)
=
pkpk′ni(1− pk)pk′

ni − 1
,

Pr(j ∈ U(10), j
′ ∈ U(11)) =

ni,10ni,11

ni(ni − 1)
=
pk(1− pk′)nipkpk′

ni − 1
,

Pr(j ∈ U(10), j
′ ∈ U(01)) =

ni,10ni,01

ni(ni − 1)
=
pk(1− pk′)ni(1− pk)pk′

ni − 1

under the general K-instrument balanced block design. This completes the proof.

PROOF OF COROLLARY 1. With Pr(Pk ≤ pk) = pk under H0, the joint asymptotic in-
dependence of {tk : k ∈ K} under H0 by Theorem 3.5 ensures Pr(Pk ≤ pk,∀k ∈ K) =∏
k∈K pk asymptotically.
For K = [K], all instruments are valid such that all marginal tests satisfy Pk,m-FRT = Pk

and thus Pr(Pk,m-FRT ≤ pk,∀k) =
∏K
k=1 pk asymptotically.

For K 6= [K], Theorem 3.3 ensures Pk,m-FRT ≥ Pk for k ∈K such that

Pr(Pk,m-FRT ≤ pk,∀k ∈K)≤ Pr(Pk ≤ pk,∀k ∈K) =
∏
k∈K

pk.
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PROOF OF PROPOSITION 3. With Pr(Pk ≤ pk) = pk under H0, Theorem 3.5 ensures the
asymptotic independence of (tk, tk′), and hence that of (Pk, Pk′), under H0 as along as one
of γk and γk′ equals zero. The result follows from Pr(P k,Γk

≤ pk, P k′,Γk′ ≤ pk′)≤ Pr(Pk ≤
pk, Pk′ ≤ pk′) = pkpk′ .

S1.3. Asymptotically independent p-values with K conditional tests.

LEMMA S1. Assume the two-instrument balanced block design (3) with at least one of
pi,k(1) equaling 1/2 for each i. If H0 is true and instruments 1 and 2 are both valid, then
cov(t∗1, t

∗
2) = 0 under the stratified conditional tests of instruments 1 and 2.

PROOF OF LEMMA S1. To avoid confusion, we refer to the original I strata satisfying
(3) as the balanced blocks, indexed by i, and use strata to refer specifically to the finer strata
formed after further stratifying by the other instrument, namely instrument k′ = {1,2}\{k},
when testing for instrument k ∈ {1,2}. There are two strata within each balanced block for
the stratified conditional test of each instrument.

Recall t∗i,k as the component of t∗k in balanced block i. The joint independence of
(t∗i,1, t

∗
i,2)T over i ∈ [I] ensures that it suffices to verify

cov(t∗i,1, t
∗
i,2) = 0 for all i ∈ [I](S4)

if at least one of pi,k(1)’s equals 1/2 for k = 1,2.
Zoom in on one arbitrary i, and let U(z1z2) be the set of units with (Zij,1,Zij,2) =

(z1, z2) ∈ {0,1}2 in balanced block i. Write ψ(ij,ij′),k = ψk{(Rij−Rij′)/σ}with ψ(ij,ij′),k+
ψ(ij′,ij),k = 0 for k = 1,2 to simplify the presentation. There are two strata in block i, namely
s = (i,Z2 = z2) for z2 = 0,1, when making stratified conditional inference of Z1, with the
component of t∗1 in stratum s= (i,Z2 = z2) equaling

t∗s,1 = t∗(i,Z2=z2),1 =
∑

j∈U(1z2)

∑
j′∈U(0z2)

ψ(ij,ij′),1.

Likewise for

t∗s,2 = t∗(i,Z1=z1),2 =
∑

j∈U(z11)

∑
j′∈U(z10)

ψ(ij,ij′),2(S5)

defining the component of t∗2 in stratum s= (i,Z1 = z1) when making stratified conditional
inference of Z2. This allows us to write

t∗i,1 = t∗(i,Z2=1),1 + t∗(i,Z2=0),1,

t∗i,2 = t∗(i,Z1=1),2 + t∗(i,Z1=0),2

such that (S4) is equivalent to

cov(t∗(i,Z2=1),1 + t∗(i,Z2=0),1, t
∗
(i,Z1=1),2 + t∗(i,Z1=0),2) = 0(S6)

if at least one of pi,k(1)’s equals 1/2 for k = 1,2.
Assume without loss of generality pi,2(1) = pi,2(0) = 1/2. A sufficient condition for (S6)

is cov(t∗(i,Z2=1),1 + t∗(i,Z2=0),1, t
∗
(i,Z1=z1),2) = 0 for z1 = 0,1. We proceed to verify

C = cov(t∗(i,Z2=1),1 + t∗(i,Z2=0),1, t
∗
(i,Z1=1),2) = 0(S7)

for z1 = 1. The result for z1 = 0 follows by symmetry.
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First, the definition in (S5) ensures that t∗(i,Z1=1),2 =
∑

j∈U(11)

∑
j′∈U(10)

ψ(ij,ij′),2 is fixed
conditioning on (U(11),U(10)). The law of total expectation ensures

cov(t∗(i,Z2=z2),1, t
∗
(i,Z1=1),2) =E

{
cov(t∗(i,Z2=z2),1, t

∗
(i,Z1=1),2 | U(11),U(10))

}
+ cov

{
E(t∗(i,Z2=z2),1 | U(11),U(10)), t

∗
(i,Z1=1),2

}
= cov(Cz2 , t

∗
(i,Z1=1),2)

with Cz2 =E(t∗(i,Z2=z2),1 | U(11),U(10)). The goal in (S7) is thus equivalent to

(S8) cov(C1 +C0, t
∗
(i,Z1=1),2) = 0.

Second, let U(0·) = U(00) ∪U(01) = {j : Zij,1 = 0, j ∈ [ni]} be the set of units with Zij,1 =
0, which is also fixed conditioning on (U(11),U(10)). Write

t∗(i,Z2=z2),1 =
∑

j∈U(1z2)

∑
j′∈U(0z2)

ψ(ij,ij′),1 =
∑

j∈U(1z2)

∑
j′∈U(0·)

I(Zij′,2 = z2) ·ψ(ij,ij′),1

to see that

Cz2 =E(t∗(i,Z2=z2),1 | U(11),U(10)) =
∑

j∈U(1z2)

∑
j′∈U(0·)

Pr(Zij′,2 = z2 | U(11),U(10)) ·ψ(ij,ij′),1

= pi,2(z2)

∑
j∈U(1z2)

∑
j′∈U(0·)

ψ(ij,ij′),1

when (Z1,Z2) are jointly randomly assigned. This ensures

C1 +C0 = p2(1)

∑
j∈U(11)

∑
j′∈U(0·)

ψ(ij,ij′),1 + p2(0)

∑
j∈U(10)

∑
j′∈U(0·)

ψ(ij,ij′),1

= 2−1
∑
j∈U(1·)

∑
j′∈U(0·)

ψ(ij,ij′),1 =C ′(S9)

is a function of U(1·) when pi,2(1) = 1/2. The sufficient condition in (S8) is thus further
equivalent to

(S10) cov(C ′, t∗(i,Z1=1),2) = 0.

We verify below (S10) by the law of total expectation conditioning on U(1·). In particular, it
follows from

∑
j∈J

∑
j′∈J ψ(ij,ij′),2 = 0 for arbitrary J that

t∗(i,Z1=1),2 =
∑

j∈U(11)

∑
j′∈U(10)

ψ(ij,ij′),2 =
∑

j∈U(11)

∑
j′∈U(10)

ψ(ij,ij′),2 +
∑

j∈U(11)

∑
j′∈U(11)

ψ(ij,ij′),2

=
∑

j∈U(11)

∑
j′∈U(1·)

ψ(ij,ij′),2 =
∑
j∈U(1·)

∑
j′∈U(1·)

I(j ∈ U(11)) ·ψ(ij,ij′),2.

As a result,

E(t∗(i,Z1=1),2 | U(1·)) =
∑
j∈U(1·)

∑
j′∈U(1·)

Pr(j ∈ U(11) | U(1·)) ·ψ(ij,ij′),2 = 0

given Pr(j ∈ U(11) | U(1·)) = p2(1) for j ∈ U(1·) and
∑

j∈U(1·)

∑
j′∈U(1·)

ψ(ij,ij′),2 = 0. This,
together with C ′ being a function of U(1·) and thus fixed given U(1·), ensures the sufficient
condition in (S10) by

cov(C ′, t∗(i,Z1=1),2)

=E
{

cov
(
C ′, t∗(i,Z1=1),2 | U(1·)

)}
+ cov

{
E
(
C ′ | U(1·)

)
,E
(
t∗(i,Z1=1),2 | U(1·)

)}
= 0.
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PROOF OF THEOREM 3.6. Given the asymptotic normality of tk and t∗k under Conditions
2 and 3, respectively, it suffices to verify cov(tk, tk′) = 0 for k 6= k′ ∈K.

The result for the stratified conditional tests follows from Lemma S1 by applying the
block-wise result to the balanced blocks of (Zk,Zk′) within the strata of distinct values of
Aij,−{k,k′} ∈ {0,1}K−2. The result for the restricted conditional tests follows from identical
reasoning as the proof of Theorem 3.5.

PROOF OF COROLLARY 2. We verify below the result under the stratified conditional
tests. The proof for the restricted conditional tests is identical after replacing t∗k by tk.

Let Pk be the true p-value with regard to the sampling distribution of t∗k under conditional
test. The asymptotic joint independence of {t∗k : k ∈ K} under H0 ensures the joint inde-
pendence of {Pk : k ∈ K} such that they are equivalent to the uniform distribution of the
|K|-dimensional unit cube.

The conditional test further ensures that the exclusion restriction is satisfied by instrument
k ∈ K within each stratum of its randomization inference. This ensures Pk,c-FRT = Pk and
verifies the result.

APPENDIX S2: PROOF OF THE RESULTS IN SECTION 4

To prove Theorem 4.1, we introduce the following three lemmas: Lemmas S2, S3, and S4.

LEMMA S2. Suppose that each of (Zij,1,Zij,2) satisfies the unordered partial exclusion
for K= {1,2} and is associated with the exposure variable Dij in the same direction under
the assignment model (8) with γ1 = γ2 = 0. Suppose that (i)

∑ni

j=1 qij,1qij,2→ c ≥ 0 for a

constant c and (ii) maxj=[ni] v
(1,2)
ij,λ /

∑ni

j′=1 v
(1,2)
ij′,λ −→ 0 as ni→∞ for all non-zero vectors

λ ∈R2 hold. Then the two p-values each from T1 and T2 in (9) are stochastically larger than
the uniform; that is,

Pr(P1 ≤ p1, P2 ≤ p2)≤ p1p2,

where Pk is a p-value associated with Tk (k = 1,2), and 0≤ p1, p2 ≤ 1.

PROOF OF LEMMA S2. Under the mutual stratification randomization, if we take the ex-
pectation to each statistic of T1 and T2,

E(T1|R,Z2) =

N∑
j=1

(1−Z2j)qij,1E(Z1j |Z2j = 0)

E(T2|R,Z1) =

N∑
j′=1

Z1j′qij′,2E(Z2j′ |Z1j′ = 1)

Let pzz′ = Pr(Z1 = z,Z2 = z′), pz· := P (Z1 = z) and p·z = P (Z2 = z) for z ∈
{0,1}. Let p(k)

z|z′ := P (Zk = z|Zk′ = z′) for k 6= k′ and z, z′ ∈ {0,1}. Since E{T1 −
E(T1|R,Z2)}=E(T1|R)−E(E(T1 |R,Z2)|R) = 0 and E{T2 −E(T2|R,Z1)}=E(T2 |
R)−E(E(T2|R,Z1)|R) = 0,

cov(T1 −E(T1|R,Z2), T2 −E(T1|R,Z1))

= E [{T1 −E(T1|R,Z2)}{T2 −E(T2|R,Z1)} |R]
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=

N∑
j′=1

N∑
j′=1

E{(1−Z2j)(Z1j − p(1)
1|0)Z1j′(Z2j′ − p(2)

1|1)}qij,1qij′,2

:= C.

Let C :=C1 +C2, where

C1 =

N∑
j,j′=1, j 6=j′

E{(1−Z2j)(Z1j − p(1)
1|0)Z1j′(Z2j′ − p(2)

1|1)}qij,1qij′,2 = 0

C2 =

N∑
j,j′=1,j=j′

E{(1−Z2j)(Z1j − p(1)
1|0)Z1j′(Z2j′ − p(2)

1|1)}qij,1qij′,2

=

N∑
j=1

E{Z1j(1−Z2j)}p(2)
1|1(p

(1)
1|0 − 1)qij,1qij,2

=−p10p
(2)
1|1(1− p(1)

1|0)

N∑
j=1

qij,1qij,2.

By condition (i) in Lemma S2,
N∑
j=1

qij,1qij,2 → v1 ≥ 0. Therefore, cov(T1 − E(T1 |

R,Z2), T2 −E(T2 |R,Z1))→−p10p
(2)
1|1(1− p(1)

1|0)v1 ≤ 0, i.e.,

cov

(
T1 −E(T1|R,Z2)

se(T1|R,Z2)
,
T2 −E(T2|R,Z1)

se(T2|R,Z1)

)
−→ c≤ 0.

Let Wk = {Tk −E(Tk|R,Zk′)}/se(Tk |R,Zk′) for k, k′ = 1,2 (k 6= k′).
Under condition (ii), for all non-zero vectors (λ1, λ2) ∈ R2, the central limit theorem ap-

plies to λ1T1 +λ2T2 by Lindeberg’s condition. Finally, by the Cramér-Wold device, (T1, T2)
asymptotically follows a bivariate normal. Then apply the Slepian’s Lemma (Slepian, 1962)
to bivariate normal (W1,W2). Since E((−W1)(−W2)) =E(W1W2)≤ 0,

Pr(−W1 ≤w1 and −W2 ≤w2) = Pr(W1 ≥−w1 and W2 ≥−w2)

≤ Pr (R1 ≤w1 and R2 ≤w2) , R1,R2 ∼N (0,I2×2)

for any w1,w2 ∈ R. Therefore, with w1 = Φ−1(p1) and w2 = Φ−1(p2), Pr(P1 ≤ p1, P2 ≤
p2)≤ p1p2 for any 0≤ p1, p2 ≤ 1.

LEMMA S3 (Combined p-value from the mutual stratification). Let K > 1 be the num-
ber of candidate instruments; K⊆ [K] be a set of valid instruments, satisfying the unodered
partial exclusion restriction. Let Pk be a p-value of testing the sharp null with instrument k
whose violation of the unordered partial exclusion restriction within Aij does not affect the
validity of other p-values, Pk′ (k 6= k′). Suppose that there exists a sequence of the instru-
ments in K, {k1, k2, . . . , kν}, that satisfies the following inequality for l = [ν] under the null
H0,

Pr
(
Pkl ≤ pl|Pkl′ ≤ pl′ ,∀l

′ = [l− 1]
)
≤ pl.(S11)

Then

Pr(Pk ≤ pk,∀k ∈K)≤
∏
k∈K

pk,
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and when the number of valid instruments is at least ν(1≤ ν ≤K), f
(
P(K), . . . , P(K−ν+1)

)
is a valid p-value.

PROOF OF LEMMA S3. Without loss of generality, suppose that the first ν among K can-
didate instruments are valid so that {k1, k2, . . . , kν}= [ν]. Then for any 0≤ pk ≤ 1 the fol-
lowing inequalities hold under the condition (S11). Since we have Pr(Pk ≤ pk)≤ pk under
the null for all k ∈ [ν] regardless of the presence of other invalid instruments within the
candidate set in Aij .

Pr(Pk ≤ pk,∀k = [K])

=

ν∏
k=1

Pr(Pk ≤ pk|Pk′ ≤ pk′ , k′ = [k− 1])

×
K∏

k=ν+1

Pr(Pk ≤ pk|Pk′ ≤ pk′ , k′ = [k− 1], k− 1≥ ν)

≤
ν∏
k=1

Pr(Pk ≤ pk|Pk′ ≤ pk′ , k′ = [k− 1])

≤
ν∏
k=1

pk (By condition (S11)).

Therefore, Lemma 1 can be applied.

LEMMA S4. Consider the same conditioned assumed in Theorem 4.1. Then the p-values
from the mutual stratification satisfies the results in Lemma S3 under the null.

PROOF OF LEMMA S4. Prove by induction on the number of (valid) instruments that sat-
isfy the unordered partial exclusion restriction. Consider 0 ≤ pk ≤ 1 for all k = [K]. When
ν = 2 and K= {1,2}, Pr(P1 ≤ p1, P2 ≤ p2)≤ p1p2 by the result of Lemma S2. When ν = 3
and K= {1,2,3}, Z1 and Z3 are independent conditional on Z2. Thus

Pr(P3 ≤ p3|P1 ≤ p1, P2 ≤ p2) =E
{

Pr(P3 ≤ p3|P1 ≤ p1, P2 ≤ p2,Z−3)
∣∣P1 ≤ p1, P2 ≤ p2

}
=E

{
Pr(P3 ≤ p3|P2 ≤ p2,Z−3)

∣∣P1 ≤ p1, P2 ≤ p2

}
=E

{
Pr(P3 ≤ p3|P2 ≤ p2)

∣∣P1 ≤ p1, P2 ≤ p2

}
≤ p3.

Therefore, there exists a sequence of the instrument, e.g., (Zij,1,Zij,2,Zij,3), that satisfies the
condition (S11).

Now suppose that the inequality holds when we have ν (≥ 3) valid instruments. Next
consider ν + 1 valid instruments (Zij,1,Zij,2, . . . ,Zij,ν+1). Since Zij,ν+1 and Zij,k are con-
ditionally independent on Zij,ν (k 6= ν, ν + 1), the following results hold.

Pr(Pν+1 ≤ pν+1|P2 ≤ p2, . . . , Pν ≤ pν)

=E
{

Pr(Pν+1 ≤ pν+1|P1 ≤ p1, . . . , Pν ≤ pν ,Z−(ν+1))
∣∣Pk ≤ pk, k = 1,2, . . . , ν

}
=E

{
Pr(Pν+1 ≤ pν+1|Pν ≤ pν ,Z−(ν+1))

∣∣Pk ≤ pk, k = 1,2, . . . , ν
}

=E
{

Pr(Pν+1 ≤ pν+1|Pν ≤ pν)
∣∣Pk ≤ pk, k = 1,2, . . . , ν

}
≤ pν+1.
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Therefore, we have a sequence of (ν+ 1) valid instruments that satisfies the condition (S11).

PROOF OF THEOREM 4.1. By Lemma S4 above, with K nested instruments, we have a
sequence of instruments {k1, k2, . . . , kν} such that for all l= [ν],

Pr(Pkl ≤ pl|Pkl′ ≤ pkl′ , l
′ = [l− 1])≤ pl.

Applying the above inequality to all valid instruments k ∈ K, ν p-values are stochastically
larger than the uniform. Therefore, Theorem 4.1 holds.

PROOF OF COROLLARY 3. Let T1 =
∑I

i=1 T1,i and T2 =
∑I

i=1 T2,i. Then cov(T1, T2) =
I∑

i,i′=1
Cor(T1,i, T2,i) ≤ 0 from the proof of Lemma S2. Two test statistics T1 and T2 are

also bivariate normal when I is finite as the sum of independent normal are also normal.
Therefore, we can apply the Slepian’s Lemma to prove Pr(P1 ≤ p1, P2 ≤ p2) ≤ p1p2. We
can apply the same argument to any pairs of (k, k′) s.t. k ∈K and k′ = minl∈K{l > k}.

PROOF OF PROPOSITION 4. Under H0, the nested structure among Aij does not change
according to the perturbations due to {uij,k}. Therefore, substitute Pk in Lemma S4 in the
supplement by P k,A−k.Γk

.

APPENDIX S3: ADDITIONAL SIMULATION STUDIES

We show in this section the power of sensitivity analyses and design sensitivity under the
balanced blocked design. Consider the following response model

R= β∗D+ λ2Z2 + ε, ξ = 0.3Z1 + 0.25Z2 + η,

Pr(D = 1 | Z1,Z2, η) = max{0,min(1, ξ)},
(S12)

where (ε, η) are independent bivariate Gaussian with zero means and fixed variances 1 and
0.06 for ε and η, respectively. Standalone, the distribution of (Zij,1,Zij,2) in the study pop-
ulation prior to blocking does not matter. Table S1 shows the power of the marginal tests of
Zij,1 in correctly rejecting H0 based on N = 1,440 units. We see that the conservative nature
of the balanced block design affects the power when the noise level is high, whereas a large
block size preserves relatively higher power. We also show the result based on the truncated
p-value combination method with the two largest p-values at cutoff κ = 0.2. Assume prior
knowledge that at least one among the two instruments is conditionally valid, and that the
treatment is as-if randomized conditioning on Zij,1 and Zij,2. Lemma 1 ensures the resulting
statistic is a valid p-value that preserves the correct type-I error rates under H0.

To compare with the unblocked case, which is effectively the step k = 1 analysis from
Karmakar, Small and Rosenbaum (2021), consider

Pr(Zij,1 = 1) = 0.33, Pr(Zij,2 = 1) = 0.4,

Pr(Zij,1 = 1 | Zij,2 = 1)−Pr(Zij,1 = 1 | Zij,2 = 0) = 0,
(S13)

as an alternative to (10) that ensures the validity of the marginal test of Zij,1 even without the
balanced block design. We generate sample from (S12) and (S13) in I = 50 strata, each of
size ni = 50, and form balanced blocks with various ratios.

Table S2 shows the result on the power of sensitivity analysis and design sensitivity for the
marginal test of Zij,1 with and without the balanced block design. Conceptually, the design
sensitivity characterizes the transition point of the limit of the power of a sensitivity analysis,



11

TABLE S1
Power of sensitivity analysis for the valid analyses under model (S12) for N = 1,440 units. The true effect size

is β∗ = 0.3. The p-values from the marginal tests of Z2 are biased and thus not shown. Because the invalidity of
Zij,2 will be unknown in practice, column “C” represents the combined decision based on the combined
p-value assuming at most one instrument is invalid by using the truncated product method with κ = 0.2.

σ = 0.5 1:1:1:1 1:2:1:2 1:4:1:4
Γ Z1 D C Z1 D C Z1 D C

1 0.979 1 1 0.985 1 0.999 0.986 1 0.996
1.05 0.935 1 0.995 0.957 1 0.996 0.96 1 0.988
1.1 0.855 1 0.972 0.887 1 0.983 0.903 1 0.967
1.15 0.73 1 0.913 0.793 1 0.938 0.834 1 0.917

1:2:2:4 2:2:2:2 4:4:4:4
Γ Z1 D C Z1 D C Z1 D C

1 0.971 1 0.998 0.997 1 1 0.993 1 1
1.05 0.939 1 0.994 0.953 1 0.999 0.962 1 0.997
1.1 0.876 1 0.978 0.815 1 0.966 0.835 1 0.972
1.15 0.786 1 0.951 0.715 1 0.925 0.742 1 0.94

σ = 1 1:1:1:1 1:2:1:2 1:4:1:4
Γ Z1 D C Z1 D C Z1 D C

1 0.567 0.998 0.926 0.598 1 0.93 0.618 1 0.868
1.05 0.373 0.997 0.783 0.436 0.997 0.801 0.454 0.998 0.737
1.1 0.242 0.993 0.556 0.272 0.992 0.612 0.3 0.99 0.536
1.15 0.14 0.976 0.341 0.159 0.985 0.399 0.198 0.984 0.337

1:2:2:4 2:2:2:2 4:4:4:4
Γ Z1 D C Z1 D C Z1 D C

1 0.584 1 0.921 0.583 0.997 0.945 0.554 0.999 0.924
1.05 0.429 1 0.816 0.415 0.994 0.811 0.429 0.997 0.815
1.1 0.259 0.996 0.629 0.266 0.992 0.608 0.271 0.992 0.633
1.15 0.159 0.992 0.439 0.154 0.983 0.419 0.156 0.987 0.439

TABLE S2
Power of sensitivity analysis and design sensitivity analysis of the valid marginal tests of Z1 under models (S12)

and (S13), with σ = 0.5, ni = 50, and I = 50. The true effect size is β∗ = 0.5, and Γ̃ is the design sensitivity.

blocked randomization unblocked randomization
Γ 1:1:1:1 1:1:2:2 1:1:4:4 1:2:2:4 2:2:3:3 Karmakar, Small and Rosenbaum (2021)

1 0.784 0.833 0.667 0.808 0.802 0.940
1.2 0.196 0.243 0.195 0.200 0.245 0.377
1.4 0.011 0.012 0.025 0.015 0.020 0.033

Γ̃ 1.27 1.31 1.35 1.34 1.34 1.36

and measures the limiting sensitivity of a design to unmeasured bias as the sample size goes
to infinity (Rosenbaum, 2004). Recall that analyses under the balanced block design draw
inference based only on the units that can be formed into the blocks. The decrease in sample
size results in loss of the statistical power. On the other hand, the sample size is inconsequen-
tial for the design sensitivity. It characterizes the amount of unmeasured confounding that
the method can tolerate assuming the presence of treatment effects. In the table, the design
sensitivities do not seem to be substantially different for the two methods. The structure of
the blocks seems to have only small effect on the design sensitivity. Tables 2 and S2 together
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illustrate the trade-off between validity and power regarding the adoption of the balanced
block design; undoubtedly, we cannot sacrifice validity for power.
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