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Summary. Blocked randomized designs are used to improve the precision of treatment effect
estimates compared to a completely randomized design. A block is a set of units that are
relatively homogeneous and consequently would tend to produce relatively similar outcomes
if the treatment had no effect. The problem of finding the optimal blocking of the units into
equal sized blocks of any given size larger than two is known to be a difficult problem—
there is no polynomial time method guaranteed to find the optimal blocking. All available
methods to solve the problem are heuristic methods. We propose methods that run in
polynomial time and guarantee a blocking that is provably close to the optimal blocking. In
all our simulation studies, the proposed methods perform better, create better homogeneous
blocks, compared with the existing methods. Our blocking method aims to minimize the
maximum of all pairwise differences of units in the same block. We show that bounding
this maximum difference ensures that the error in the average treatment effect estimate is
similarly bounded for all treatment assignments. In contrast, if the blocking bounds the
average or sum of these differences, the error in the average treatment effect estimate can
still be large in several treatment assignments.

Keywords: Approximation algorithms; average treatment effect; blocking; experimental de-
signs.

1. Introduction: context; approximation algorithm; review; contributions
1.1. Blocking of an experimental design, paired study design, and larger block sizes. In simple
words, Cox (1958) describes a block in an experimental design as “a set of units, all the units
in the set being as alike as possible.” A blocked randomized design, by which treatments
are randomized to units separately within each block, has been a fundamental and common
sense tool to reduce the statistical error in treatment effect estimation (Fisher, 1935). In
a successful blocking, the unit-to-unit variability is much smaller within blocks than across
the blocks. Thus blocking removes some sources of variability from treatment comparisons,
producing more precise treatment effect estimators than a design in which treatments are
assigned to units completely at random. An example of blocking is a paired study design
that has blocks of size two, exactly one in a pair is randomly chosen to be treated. Fogarty
(2018) calls such designs finely stratified designs. Blocked designs are also useful for com-
paring multiple treatments, which can be from multiple levels of a treatment factor, or from
combinations of multiple treatments factors, each with two or more levels. For example, to
evaluate the effectiveness of mass media interventions to prevent smoking in youth, Flay et
al. (1988) compared four different treatments: television only, television plus classroom pro-
gram, classroom only, and a control, and Ellickson et al. (2003) compared a control and two
treatments created from a combination of school based curriculum and the National Youth
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Anti‐Drug Media Campaign. When comparing multiple treatments using a complete blocked
design, each block needs to have multiple units; e.g., four treatments can be randomized in
a block of size 4 at a 1:1:1:1 ratio. For a review of block randomization and its practical
benefits see Kernan et al. (1999). We will consider blockings with equal sized blocks.

Grouping similar units is a relatively straightforward problem when they are to be similar
in a few discrete covariates. Moore (2012) makes the argument that blocking on continuous
as well as discrete covariates is better than complete randomization or blocking only on a
small number of discrete covariates. With many covariates, design of a paired study design
has an “optimal” solution (Beck et al., 2016; Greevy et al., 2004; Lu et al., 2011). But, for
equal sized blocks of size larger than two it is known that no algorithm can always quickly, in
a sense to be made explicit, calculate the optimal solution for every given collection of units.
This paper provides an algorithm, guaranteed to run quickly for calculating a near-optimal
blocking for any collection of units, for blocked designs which are more complex than a paired
study design.

Rerandomization (Morgan and Rubin, 2012) is another tool to constrain randomization.
For specific problems, rerandomization creates identical designs to blocking. Parallelly, any
blocked randomization may be achieved, albeit computationally inefficiently, by the rejective
sampling in rerandomization. However, while the standard randomization-based ANOVA
easily adapts to blocked designs, it is not generally appropriate for rerandomization designs.
Also, highly constrained rerandomization designs put similar units in the same treatment
arm in every assignment, thus reduces the effective sample size (Moulton, 2004).

The optimal pairing algorithm, mentioned above, minimizes the average within block
differences in covariates of the units, but cares little about the largest pairwise difference.
We refer to this algorithm as the Minimize Average Paired Difference (MAPD) algorithm.
Rosenbaum (2017) notes: “... minimizing the mean pair difference is consistent with having
dozens of poorly matched pairs.” Moreover, this situation is more frequent in average cases
than a practitioner will be comfortable to accept (see, §4.3 for simulations). Many researchers
have advocated for controlling the largest of the in-block differences rather than the average
in-block differences (Higgins et al., 2016, and Moore and Schnakenberg, 2016). Cochran
(1965) noted that, a few large differences is more problematic than many small ones because
a regression adjustment during analysis easily mitigates the small differences (Rubin, 1979;
Snedecor and Cochran, 1967, Chapter 14).

In a designed experiment, a practitioner would want to investigate that the imbalance in
the covariates after treatment assignment is not large. For a blocked randomization design
that bounds the largest within block difference, the covariate imbalance is bounded for any
treatment assignment. But this feature is not enjoyed by blocked designs that bound the
average pairwise differences. Specifically, §3 shows that bounding the maximum difference
ensures that the error in the average treatment effect estimate is similarly bounded for all
treatment assignments, but not when bounding the average pairwise differences.

1.2. Goal: the blocking problem, polynomial time algorithms, and approximation algorithms.
Our blocking problem, formalized in §2.2, is to find, for a given set of study units and the
differences in the covariates among them, blocking of the units into blocks of a given size so
that the maximum of the differences of any two units in the same block is minimized. Section
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5.2 considers a related but different blocking problem that aims to minimize the maximum
of the average in-block differences. We aim to find algorithms that run in time polynomial
in the number of units to solve these blocking problems.

Algorithms that run in polynomial time in the size of the problem are desired, but often
unattainable for many optimization problems; these computationally hard problems are
categorized as NP problems according to their computational complexity (Papadimitriou
and Steiglitz, 1998). Proposition 4 establishes that the blocking problem for blocks of any
size more than two does not permit a polynomial time solution, unless P=NP.

Mixed integer programming problems (MIPs) is another class of theoretically hard prob-
lems. Modern mathematical optimizers have been used to solve MIP formulations of certain
observational study designs (Zubizarreta, 2012; Zubizarreta and Keele, 2017). Although,
they do not provide computation time guarantees. While our blocking problems can also be
formulated as a MIP, this formulation is theoretically and practically intractable.

The compromise we make for the lack of any polynomial time solution to the blocking
problem for larger block sizes is an approximation algorithm (Williamson and Shmoys, 2011).
Definition 1. An approximation algorithm for an optimization problem is a polynomial-
time algorithm that for all instances of the problem produces a solution whose value is within
a factor of α of the optimal solution for some constant α.

An approximation algorithm ensures efficiency and assures that the produced solution is
not too far from the optimal solution and, therefore, preferable to a heuristic algorithm.
1.3. Review of existing blocking methods. Consider N study units to be blocked using N(N−
1)/2 numbers, summarizing the pairwise differences of the units on their covariates. In prac-
tice, paired study designs are created using the MAPD algorithm that solves a weighted
non-bipartite matching problem for a complete graph of N vertices with the covariate dif-
ferences between the two units as the edge weights (Beck et al., 2016; Lu et al., 2011).

A few methods are available in the literature for blocking with larger block sizes. Moore
(2012) proposed the “optimal-greedy” method. Given N = nk units and the desired block
size k, this algorithm first creates n pairs greedily. Then, if k = 3, it greedily matches one
unit to each pair. For larger k, the method proceeds similarly, until a desired blocking is
created. Although it is in the name, the “optimal-greedy” method is not known to have
any optimality property. Karmakar (2018) proposed a randomized algorithm for blocking
which first randomly chooses n units as template units for the n blocks and then assigns the
remaining n(k−1) units optimally to these n blocks at a ratio (k−1):1 to create a blocking.
Template matching methods have been used elsewhere in the literature, e.g., Hu et al. (2018)
and Silber et al. (2014). Neither of these methods provide any performance guarantee.

Higgins et al. (2016) proposed the ‘threshold blocking’ method, which is an approximation
algorithm. This method aims to create a blocking that minimizes the largest difference
between any two units in the same block. But, the design can have any block size of ≥ k.
There are two challenges with such designs. First, when there are k treatments, it is unclear
in general how to assign the treatments to the units in the resultant blocks. Simulations
show that the blocks created by this algorithm can often have a much larger number of units
than k; see the supplement. Second, tests for the treatment effects are more efficient when
the sample sizes for the treatment combinations are the same.
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1.4. Contributions: estimation error bounds, the blocking problems, approximation algorithms,
extensions. The definition of the technical terms used in this section are given in §2.1. The
blocking methods presented in the paper aim to create a blocking that minimizes the largest
difference of any two units in the same block.

In §3.1 we study the estimation error for the average treatment effect in blocked random-
ized designs. Theorem 1 establishes a uniform upper bound for the error for all treatment
assignments in terms of the bound on the maximum pairwise differences in the units in the
same block. If, on the other hand, the average of the pairwise differences is bounded, the
theorem also gives a lower bound on the error for a large class of treatment assignments that
gets worse with the size of the blocks and the number of blocks.

The blocking problem for a paired study design is formulated as a non-bipartite matching
problem in §4.1. Algorithm 1, in §4.2, solves this non-bipartite matching problem in polyno-
mial time. The algorithm starts with an empty match and expands the size of the match by
augmenting it with the shortest augmenting path for the problem (Derigs, 1988) and finally
creates a maximum cardinality match, which, as Theorem 2 shows, solves the non-bipartite
matching problem. The simulation study in §4.3 compares Algorithm 1 with the MAPD
algorithm.

In §5.1, we propose Algorithm 2, to create a blocking with block size k = 2J , for a positive
integer J . Theorem 3 shows that Algorithm 2 is an approximation algorithm with approxi-
mation factor k−1. We further study the local property of this algorithm. Theorem 5 shows
that Algorithm 2 may fail to create a locally optimal blocking. We propose Algorithm 3, that
uses solutions to certain bipartite matching problems for local improvements of Algorithm 2,
in §5.2. In Section 5.3, we then show that, with some small changes, Algorithm 2 and 3 can
be used for blocking of any block size.

We compare our proposal to existing blocking methods using synthetic and simulated data
sets. Using a synthetic dataset we compare our proposal with MAPD in paired randomized
designs. The results in §6 show that using the proposed method gives much larger power for
testing the null hypothesis of no treatment effect, and smaller root mean squared error in av-
erage treatment effect estimation. The simulation results in §7 compare the treatment effect
estimation error in the proposed methods to several existing methods in paired randomized
designs and blocked randomized designs with larger blocks.

The proposed methods have been implemented in R and are available from https://github.
com/bikram12345k/BlockingAlgo/. The repository also includes code to reproduce the sim-
ulation and data analysis results of this paper. An online supplement includes, among other
things, all the proofs and details of the implementation of the methods.

2. The problem of creating blocks
2.1. Notation and some definitions. For a finite set A, |A| denotes the cardinality of the set.
A graph G is an ordered pair of sets G = (V,E), where V is a finite set of vertices and
E ⊆ V ×V is the edge set. Two graphs G = (V,E) and G′ = (V ′, E ′) are isomorphic if there
is a bijection σ : V = {v1, . . . , vn} → V ′ = {v′1, . . . , v′n} so that (vi, vj) ∈ E if and only if
(σ(vi), σ(vj)) ∈ E ′. For an equivalence class of isomorphic graphs of N vertices, the vertices
may be labeled by 1, . . . , N . A cost function c on the edge set of a graph is a real valued
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function on E. Let cij be the cost of the edge (i, j). Throughout this paper cij is assumed to
be nonnegative, without any loss of generality. In our discussion, we will often be interested
in complete graphs that has (i, j) ∈ E for all i ̸= j.

For a graph G = (V,E) and a partition of its vertices V = {ν1, . . . νp}, the projected graph
G(V) := (V , E(V)) is defined as (ν, ν ′) ∈ E(V) if for some i ∈ ν and j ∈ ν ′, (i, j) ∈ E.

Below we give definitions of some graph theoretic concepts. For a textbook discussion of
these concepts see Bondy and Murty (1976). A match M of a graph G = (V,E) is a subset of
the edge set E such that no two edges, called matched edges, in M share a common vertex.
A match M is a maximum cardinality match of G if for any other match M ′ of G, it satisfies
|M ′| ≤ |M |. A perfect match is a match M where each vertex in V is in a matched edge. In
a complete graph, a perfect match is a maximum cardinality match and vice versa.

A path is a sequence of vertices, which do not repeat, so that any two consecutive vertices
in the path are connected by an edge. A path in G is called an alternating path with respect
to a match M if the alternating edges in the path are in M and not in M . An augmenting
path in G with respect to a match M is an alternating path which starts at an unmatched
vertex and ends at an unmatched vertex. An alternating cycle is an alternating path where
the start and the end vertex are the same. Suppose M is a matching of G and P is an
augmenting path with respect to M which is expressed as the set of all edges connecting two
consecutive vertices in the path. The augmented match of M with respect to P is defined as
M ⊕ P = (M \ P ) ∪ (P \M). Notice that, |M ⊕ P | = |M |+ 1; thus the name augmenting
path for P . For an alternating cycle R, define M ⊕R = (M \R) ∪ (R \M), another match
with |M ⊕R| = |M |.

A graph G = (V,E) is a complete bipartite graph if V = V1 ∪ V2, V1 ∩ V2 = ∅, and
(x1, x2) ∈ E if and only if x1 ∈ V1 and x2 ∈ V2. Clearly, if a perfect match M of G exists,
then |V1| = |V2| = |V |/2, and M is also a maximum cardinality match with |M | = |V |/2.
The bipartite matching problem is the problem of finding a perfect match in a bipartite
graph that aims to optimize certain objective. Bipartite matching problems are regularly
solved in designs of observational studies, to match a treated group and a control group
on their propensity scores and observed pre-treatment covariates, see Hansen and Klopfer
(2006); Pimentel et al. (2015a, 2018); Rosenbaum (1989); Yang et al. (2012); and Zubizarreta
(2012). Strictly speaking, a non-bipartite matching is a matching on a graph that contains
an odd cardinality cycle. For the purpose of this paper, to keep our discussion relevant to
blocking problems, by a non-bipartite matching we mean a matching on a complete graph.

2.2. The blocking problem. For a complete graph of kn vertices, k ≥ 2, n ≥ 2, a blocking of
size k is a set of n non-overlapping blocks of size k each, B = {B1, . . . , Bn} with |Bi| = k,
Bi ∩ Bj = ∅ for i ̸= j and ∪ni=1Bi = {1, . . . , kn} =: V . Given cij, the blocking problem is to
find a blocking B that minimizes

max
b∈B={B1,...,Bn}

max
i,j∈b;i ̸=j

cij. (1)

Higgins et al. (2016) consider a different version of the problem, called the threshold
blocking. They require that the blocks are of size at least k, |Bi| ≥ k, instead of the hard
cardinality constraint |Bi| = k. Both of these problems are NP-hard when k > 2. A proof
of hardness of the threshold blocking problem is given by Higgins et al., and a proof of the
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hardness of (1) is given in Proposition 4. As was discussed in §1.3, in experimental designs, a
blocking with the hard cardinality constraint is more practical than the threshold. It is well
recognized that a hard cardinality constraint makes an optimization problem comparatively
more difficult to solve (Papadimitriou and Steiglitz, 1998; Williamson and Shmoys, 2011).

3. Treatment effect estimation for blocked designs
3.1. Efficiency of treatment effect estimation using blocked designs. Higgins et al. (2016) note
the advantage of using a blocking objective that minimizes the maximum within-block dif-
ferences that it guarantees the average imbalance cannot exceed this maximum after the
treatment is assigned; minimizing the sums or averages does not provide such a guarantee.
Here we state a result establishing further that the above fact has implication in the effi-
ciency in the treatment effect estimation. Specifically, Theorem 1 below shows that when
the maximum difference is bounded, the absolute error in the average treatment effect esti-
mate is similarly bounded uniformly for all treatment assignments. While, when the average
difference is bounded, the absolute error in the average treatment effect estimate can still
be large for some treatment assignments. It is important to note that the choice of block-
ing objective is important only in so far as it impacts the efficiency of the analysis, while
both will provide an unbiased estimator of the (intended to treat) treatment effect under a
randomized design.

Consider a single block B of size k. We are interested in estimating the treatment effect
under the above two strategies for blocking. For multiple blocks, the upper bound in Theorem
1 for a blocking that bounds the maximum in-block difference remains the same and the lower
bound for a blocking that bounds the average difference becomes worse.

In this section, we make it explicit that the difference, cij, is based on the covariates. Let
Xi denote the d dimensional vector of covariates for unit i and let cij ≡ c(Xi, Xj) denote the
distance between units i and j.

Under the potential outcomes framework let Yi(z) be the potential outcome for unit i under
treatment z. We focus only on binary treatments, so that z = 0 or 1. Let τi = Yi(1)− Yi(0).
We are interested in estimating the average treatment effect on the design units

ATE =
1

k

k∑
i=1

τi.

Assume a completely randomized assignment of treatments 0 and 1 (call them control and
treated, respectively) among these units so that k1 of these k units are assigned treatment.
Let Zi be the treatment indicator for unit i and Z denote the set of all possible treatment
assignments (Z1, . . . , Zk) where k1 are treated and the rest are control; thus |Z| =

(
k
k1

)
. We

assume that the observed outcome of unit i is Yi = Yi(1)Zi+Yi(0)(1−Zi). We can unbiasedly
estimate ATE using the Horvitz-Thompson estimator

ÂTE =
1

k1

k∑
i=1

ZiYi −
1

k − k1

k∑
i=1

(1− Zi)Yi,

which is the difference of the mean outcomes of the treated and control units.
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Following Iacus et al. (2011), who show the benefit of minimizing the maximum imbalance
in designing a matched-pairs observational study, suppose the outcome Yi(1) = g(Xi, 1) and
Yi(0) = g(Xi, 0). For the function g(·, z) of d-dimensional covariates, define the class of
Hölder continuous functions parametrized by M ≥ 0 and α ∈ [0, 1] as

Gα,M :=
{
g : (−∞,∞)d → (−∞,∞) : |g(x)− g(y)| ≤M c(x, y)α

}
.

When α = 1 this is a class of Lipschitz continuous functions. Assume without loss of any
generality that k1 ≤ k/2.

Theorem 1. Suppose c(Xi, Xj) satisfies the triangle inequality, i.e., c(Xi, Xj) ≤ c(Xi, Xj′)+
c(Xj, Xj′) for any i, j and j′.

(a) If max1≤i,j≤k c(Xi, Xj) ≤ δ1 then

sup
(Z1,...,Zk)∈Z

sup
g(·,0)∈Gα,M ,g(·,1)∈Gα,M

|ÂTE− ATE| ≤Mδα1 .

(b) There exists c(Xi, Xj) values satisfying {k(k − 1)}−1∑
1≤i ̸=j≤k c(Xi, Xj) ≤ δ2 so that

the following is true.
Let l ∈ {0, . . . , k}. Suppose Z̃l be the set of all possible assignments to l units
according to assignments of k units to k1 treated and (k − k1) control. Then there
is a subset Zl of Z of cardinality

(
k
l

)
max{1, |Z̃l|} such that the following is true for

any ϵ ≥ 0

inf
(Z1,...,Zk)∈Zl

sup
g(·,0)∈Gα,M ,g(·,1)∈Gα,M

|ÂTE− ATE|

≥M

{
δ2(k − 1)

k1
− kϵ

k1(k − k1)

}α

min
p∈{0,...,min{k1,l}}

∣∣∣∣1− kp

k1(k − k1)

∣∣∣∣ .
While the error bound in part (a) of the theorem is easy to understand, to understand

the error lower bound in part (b) consider l = 0 and ϵ = 0. Then there is a treatment
assignment that gives an error of at least M{δ2(k− 1)/k1}α. This error gets larger with the
ratio (k − 1)/k1. It is not possible to know if we will face this error until the treatment has
been assigned. The role of the index l in the result is to highlight the fact that there is not
one, but many relatively poor treatment assignments where a poor assignment of only (k− l)
of the units is enough to make the whole assignment poor no matter how the other l units
are assigned. We include ϵ > 0 to allow for the possibility of continuous c(Xi, Xj) values.
Theorem 1(a), on the other hand, shows that bounding the maximum with a small value
of δ1 achieves a primary goal of a blocked design which is to guarantee that the estimate is
good for all treatment assignments to the blocked units, i.e., controls haphazard variation
(Cox and Reid, 2000).

When there are n ≥ 1 blocks of size k the unbiased difference-in-means estimator is the
difference of the mean outcomes of all the treated and all the control units across the blocks.
In this case the bound in (a) remains the same where δ1 is an upper bound for the maximum
difference of any pair of units in a block, but the lower bound in (b) will now have n × δ2
in place of δ2 where δ2 is an upper bound for the average of all pairwise differences of two
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within-block units. The worsening performance is because poor assignment is now possible
across blocks and the errors accumulate.
Remark 1. The lower bound in Theorem 1(b) for the error in ATE estimation is derived by
a construction of a set of distances c(Xi, Xj). But we remark that such set of c(Xi, Xj) values
is not pathological. Suppose Xi is drawn randomly from a standard normal distribution and
c(Xi, Xj) = |Xi − Xj|. Then Lemma S1 in the supplement gives a minimum conditional
probability of observing a set of c(Xi, Xj) values that implies the lower bound given that the
average pairwise difference is at most δ2. Using that lemma we calculate, when k = 3, k1 = 1,
δ2 = .025 and ϵ = 0.01 the probability is 3.2%, and when k = 4, k1 = 2, δ2 = .02 and ϵ = 0.01
the probability is at least 5%. Additionally, an even worse lower bound in Theorem 1(b) can
be proved if c(Xi, Xj) varied with l > 0.
Remark 2. The proof of the theorem also gives a clue as to when blocking with objective
(1) will provide an improvement on blocking that minimizes the average of all pairwise dif-
ferences. A blocking with many small pairwise differences and some relatively large pairwise
differences can have a small average pairwise difference but could also be a poor blocking.
This is because when different treatments are assigned to units that are further from each
other, the imbalance in the study will be large. Similar effect is seen with multiple blocks
where some blocks have units with larger differences. This is consistent with observations of
other researchers such as Cochran (1965). Under (1) such blocking is less likely as it does
not attempt to get the smallest average difference. On the other hand, if under a certain
distribution of cij there is a feasible blocking where the cij values of the in-block pairs are
almost all very small, then we are unlikely to see benefits of blocking by minimizing (1).
Still, we also do not expect a substantial loss in efficiency because largest in-block pairwise
differences in such blockings will also not be too large.
3.2. Some remarks on practical use of blocking. The discussions of §4 and §5 are broadly on
the methodological aspects of blocking units. Here we give some remarks on practical use of
blocked randomization.

Blocking is a fundamental strategy to constrain randomization in an experiment (Fisher,
1935; Bailey, 1987). Blocking may be incorporated, as indicated in §1, with different types
of randomized designs, such as clustered randomized design (Kelcey et al., 2017), factorial
design (Box and Hunter, 1961; Cheng and Mukerjee, 2001) and split-plot design (Federer,
2007; Robinson, 1970). Two methods for analyses of blocked designs are randomization or
design based analysis that bases the analysis on the randomization of the treatment assign-
ment mechanism and model based analysis that uses a statistical model for the outcomes.
Cox and Reid (2000) give a textbook discussion of these analyses methods. Many common
blocked designs may be analyzed with the R package ri2, while model based analyses of
most blocked studies are now common to standard statistical software.

Generally, a blocking will improve precision in treatment effect estimation when the co-
variates are correlated with the outcome. In our simulations we use Mahalanobis distance
based cost functions. With more knowledge on how the outcome depends on the covariates,
specific to a study, we can define a better cost function. Problem (1) proposes to minimize
the maximum in-block paired distances. There can be multiple blockings that give the op-
timal objective value of problem (1). This would not hinder the use of one of these several
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blockings in the design. But it would be useful to investigate a blocking prior to experimen-
tation. In an uncommon situation the blocking might be unacceptable because most in-block
distances are relatively much smaller than a few large in-block distances. The design, in this
situation, could be improved by removing a few units from the study that are far from the
others. A blocked design formed with a certain blocking objective can help only in increasing
precision in treatment effect estimation. Our numerical results in §6 and §7 highlight the
efficiency gain in statistical inference due to blocking over completely randomized designs
and blocking using the proposed objective (1).

4. Two arm experiments: blocks of size two
4.1. Non-bipartite pair matching problem to minimize the largest pairwise difference. Consider
two treatment arms, or a treatment arm and a control arm, to be randomized in a paired
study design. In this special case with k = 2, the blocking problem (1) has a polynomial
time solution, and this section presents an efficient algorithm. Problem (1) is equivalent to
the problem of finding a perfect match M∗, on a complete graph G of 2n vertices and cost
function c, that solves

M∗ = argM min
M

max
(i,j)∈M

cij. (2)

The blocks are the resulting matched pairs. This formulation of the blocking problem opens
up opportunities to use results from graph theory to solve the problem.

The MAPD algorithm of Greevy et al. (2004) and Lu et al. (2011) solves a different non-
bipartite matching problem that minimizes

∑
(i,j)∈M cij or n−1

∑
(i,j)∈M cij, rather than the

maximum objective in (2). This nonbipartite matching problem with the sum of weights
objective can be solved using the shortest path method of Derigs (1988). For practitioners,
Derigs’ algorithm has been made available in the R package nbpMatching (Beck et al., 2016).
4.2. An algorithm to solve the non-bipartite matching problem. Before presenting the algorithm
to solve (2), it is useful to provide the pieces that lead to such algorithms for solving non-
bipartite matching problems. A fundamental theorem of matching in a graph due to Berge
states that, a matching M is a maximum cardinality matching if and only if it admits no
alternating path. The simple proof of Berge’s theorem can be found in any textbook on
graph theory. Although this theorem characterizes all perfect matchings in a graph, it does
little to help build an algorithm to solve for a matching that satisfies a property, which in
our case is to find the matching with the minimum of maximum within pair difference. The
following theorem alludes us to a more practical algorithm. For any matching M of the
graph with edge cost cij define

c(M) = max
(i,j)∈M

cij.

Theorem 2. Call an alternating cycle R with respect to a matching M a negative alternating
cycle if c(M ⊕ R) < c(M). For an unmatched vertex s ∈ V = {1, . . . , n} with respect to
M , let Ps(M) be the set of all augmenting paths with respect to M . We call P0 ∈ Ps(M) a
shortest augmenting path if

c(M ⊕ P0) ≤ c(M ⊕ P ) for all P ∈ Ps(M).

With these definitions, we have:
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(a) A maximum cardinality matching, equivalently a perfect matching, M∗ solves (2) if
and only if it allows no negative alternating cycle.

(b) If M is a matching of G that permits no negative alternating cycle, then for any
shortest augmenting path P0, the augmented match M ⊕ P0 permits no negative
alternating cycle.

This theorem is the backbone of Algorithm 1 below. The starting point of the algorithm
is an empty match and the goal is a maximum cardinality matching that allows no negative
alternating cycle, which by part (a) of the theorem solves (2). Theorem 2 is adopted from
Derigs (1988) for the maximum objective. The only if implication of part (a) of the theorem
follows by a proof by contradiction argument: in case the implication is incorrect, one notes
that the matching M that solves (2) can be found by adding a few alternating cycles to M∗.
The complete proof of the theorem is given in the supplement.

The smallest matching M = {} does not allow any negative alternating cycle. Immediately,
for any s if we let P0 = {(s, t)} such that cst ≤ cst′ for all t′, then by Theorem 2(b), M ⊕ P0

is a matching, now with one pair, that permits no negative alternating cycle.
If there is an algorithm that finds a shortest augmenting path for any given matching, then

an algorithm that at each step augments the current matching by the shortest augmenting
path, will find the optimal matching M∗ that solves (2) in exactly n steps; since each step
increases the size of the matching by one. Algorithm 1 is such an algorithm.

Algorithm 1. Initialize: M = ∅, idx = 0.
while: idx < n:

do (i) t = 1, . . . , 2n
if: t is unmatched in M .
s← t; break.

(i) continue.
Find P0 ∈ Ps(M) which is a shortest augmenting path.
M = M ⊕ P0

idx = idx+ 1
end while.
Return M.

A shortest augmenting path for a matching M that starts at an unmatched node s can
be solved in polynomial time by building a tree rooted at s in a depth first manner and
using a certain kind of labeling strategy. A shortest path finding algorithm is given in the
supplement.

Remark 3. Search for value algorithms. One strategy of solving minimization problems
with the maximum objective as in (2) is an iterative approach (Derigs, 1984; Gabow and
Tarjan, 1988). This approach searches for the optimal value of the objective rather than
the optimal matching which Algorithm 1 does. Let c⋆ = minM max(i,j)∈M cij. Then this
algorithm would first guess a lower bound of c⋆, say c̄. With this value, one checks whether
there is a perfect matching when the edge set of the graph is restricted to {(i, j) : cij ≤ c̄}.
If such a matching exists, c⋆ ≤ c̄. If unsuccessful, it would have to make a better guess of
c⋆. The performance of such a ‘search for value’ algorithm depends on the starting guess. A
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bad guess can lead to a long search for the solution. Compare this to Algorithm 1, which is
a one stop algorithm for finding the best match using Theorem 2.

Remark 4. Computational complexity. The linear search to find an unmatched unit
in each step of Algorithm 1 requires O(n) comparisons. An efficient way to encode M is to
use a binary valued sparse matrix whose non-zero value M(i, j) = 1 indicates that (i, j) is a
match in M . Whereas, an efficient data structure for P0 is a sequence of alternating edges. If
one uses these data structures, the augmenting step also requires O(n) operations. Finally,
the algorithm to find the shortest augmenting path requires an O(n2) computation time.
Hence, as Algorithm 1 loops for n times, it has an overall computation time requirement
of O(n3), which is same as that of finding the maximum of a sequence of length n3, or of
inverting a square matrix of size n by using Gauss-Jordan elimination method. This is also
the computational time complexity of the MAPD algorithm.

4.3. Comparison with the standard pair blocking algorithm. In this section Algorithm 1 is
compared with the standard Minimize Average Paired Difference (MAPD) algorithm. Using
two scenarios we compare these two algorithms in their abilities to create homogeneous pairs.
In each scenario there are 100 units, and either algorithm creates 50 pairs. Results are given
in Table 1 and in Figure 1.

Scenario 1 simulates the differences in the following way. For every pair of units, i and
j, let the difference cij = (c

(1)
ij + c

(2)
ij )/2, where c

(1)
ij and c

(2)
ij are simulated independently

from a mixture of two uniform distributions. One component of this mixture distribution is
uniform on [0, 2] and has weight 0.90. This component indicates that the units are similar in
a certain covariate. The other component of the mixture is a uniform distribution on [4, 5]
and has weight 0.10. This component indicates that the units are different in the value of
the covariate. A value of cij less than 2 indicates that both c

(1)
ij and c

(2)
ij are from a uniform

distribution on [0, 2]. On the other hand, if the distance cij is more than 4 then both c
(1)
ij

and c
(2)
ij are from a uniform distribution on [4, 5]. A value between 2 and 4 is also possible, if

the two numbers c(1)ij and c
(2)
ij are from the two different components of the uniform mixture.

In each simulated instance, 100× 99/2 = 4950 differences are simulated — on an average, in
each instance, 0.12× 4950 ≈ 50 of these differences are larger than 4 and 0.92× 4950 ≈ 4010
are smaller than 2. Either Algorithm 1 or MAPD selects 50 of these differences.

The second simulation scenario calculates the differences by simulating two random vari-
ables X1i and X2i for each unit i, and defines cij =

√
(X1i −X1j)2 + (X2i −X2j)2, the Eu-

clidean distance of the covariates for units i and j. The random variables are independently
sampled from mixture normal distributions. The first variable X1i is simulated indepen-
dently from mixture of three normal distributions with means 0, 2 and 5, each with variance
1, with weights 1/2, 3/8 and 1/8. The second variable, X2i, has the same distribution as
X1i. Since both X1i and X2i have the same variance and they are independent, cij is also
proportional to the Mahalanobis distance between (X1i, X2i) and (X1j, X2j).

The boxplots in Figure 1 show the differences of the pairs selected by the two algorithms.
Compared to Algorithm 1, the MAPD algorithm is aggressive in finding many pairs which are
very close to each other, as it finds, in each simulated instance, the 50 pairs that minimizes
the average difference. This algorithm does poorly in ensuring that all the pairs are close.
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Figure 1. Boxplots of the pair differences from the two simulation scenarios, com-
paring MAPD with Algorithm 1. In each boxplot, 50× 100 paired differences from
100 simulated instances are plotted. MAPD overemphasizes very small differences
and creates many pairs with very large differences. Algorithm 1 balances the most
largest paired differences and the average difference.

Table 1. Comparison of MAPD with Algorithm 1 on the worst pairs. This ta-
ble shows the summary statistics of the two largest differences in each simulated
instances, i.e., of a total of 2 × 100 distances based on 100 iterations. The final
column is the average of the ratios of the largest differences from Algorithm 1 over
the largest differences from MAPD in the same simulated instance.

Simulation Quantiles of the 2 largest differences Avg. ratio of
Scenario Method 50% 75% 95% 99% 100% the max. (%)

Scenario 1 MAPD 2.23 2.32 4.15 4.22 4.24 100
Algorithm 1 2.15 2.18 2.23 2.26 2.30 82

Scenario 2 MAPD 1.89 2.22 2.84 3.29 3.85 100
Algorithm 1 1.76 2.05 2.59 2.87 3.29 89

In 40% of the instances the largest pairwise difference for the pairs selected by the MAPD
algorithm was more than 4. Compare this to Algorithm 1, where in only 10% of the simulated
instances the maximum pairwise difference is more than 2; the largest of all of them is 2.30.
When designing an experiment, a practitioner might be lucky to find themself in a situation
where the maximum of the differences for the pairs created by MAPD is not extremely
large. But, when in Scenario 1, in a large number of the instances the design would include
a few unacceptable pairs. A similar observation is made from the boxplots for Scenario 2,
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albeit the worse pairs for MAPD are less pronounced. Overall, a small value of the average
difference of the pairs can give a false impression of all the blocks being homogeneous in the
design. Table 1 further zooms in on the large pairwise differences of Figure 1. From each
simulated instance the two largest paired differences each from the pairings created by the
two algorithms are collected, and the five quantiles of these values are reported. Algorithm
1 consistently finds pairings with the largest difference that is never worse than MAPD, and
it is often considerably better — the average improvement is 18% for Scenario 1 and 11%
for Scenario 2 in the simulations.

We coded Algorithm 1 completely in R, and MAPD has been coded in Fortran. In Scenario
2, the average runtime for MAPD was 4/100-th of a second, while the average runtime for
Algorithm 1 was 0.83 seconds with a standard computer (a controlled environment was not
used for this benchmarking). This difference in the runtimes is most likely because our
coding is less than efficient.

5. Blocking with block sizes larger than two
5.1. An approximation algorithm. Of the two simulation scenarios considered in §4.3, the cost
function for the second scenario is a proper distance; it is non-negative, with cii = 0, cij = cji,
and cij ≤ cij′ + cjj′ , for any three units i, j and j′. The cost function for Scenario 1 does
not satisfy the triangle inequality. Algorithm 1 does not require that the cost function be
a proper distance. In this section we consider the blocking problem for blocks of size larger
than 2. This problem, problem (1) with k > 2, is a hard problem. More than that, without
any restriction on the cij values, it is a hard problem to find an efficient algorithm that
guarantees a blocking α close to the optimal blocking (see, Definition 1, §1.2).

We first discuss the blocking problem where the blocks are of size k = 2J for some J > 1;
later, in §5.3, we show that the algorithm proposed to solve this special case of the problem
can be modified slightly to solve the problem for any k. Algorithm 2 below takes the
n2J(n2J −1)/2 differences between n2J units as input and outputs a blocking with n blocks.
The first call by Algorithm 2 is to Algorithm 1 to create a partition of the units into n2J−1

pairs. Let’s call them V = (ν1, . . . , νn2J−1). Next, it projects the complete graph G of the
n2J units into the partition V to define G(V), which is a complete graph of |V| = n2J−1

vertices. Define the cost function for G(V) as
cν1ν2(V) = max

i,j∈ν1∪ν2
cij. (3)

For the consistency of the notation, let cij(V) = cij and G(V) = G if V = {1, . . . , n2J}. For
a perfect matching M of a graph on V , let VM := {νM = {ν, ν ′} : (ν, ν ′) ∈ M} denote a
partition of V with respect to M .

Algorithm 2. Initialize: V = {1, . . . , n2J}, j = 0.
while: j < J :

M ← Output of Algorithm 1 with arguments G(V) and {cν,ν′(V) : ν, ν ′ ∈ V}.
Update V = VM and correspondingly G(V).
Update cν1ν2(V) using (3).
j = j + 1

end while.
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Return B ← V .
This algorithm calls Algorithm 1 J times. The first call creates n2J−1 blocks of size 2, i.e.,

pairs, such that the maximum paired distance is minimized. Each subsequent call halves the
number of blocks by pairing the previous set of blocks so that the maximum of the paired
within block distances is minimized in this local problem.

We now present a theoretical analysis of Algorithm 2. We study the performance of the
algorithm in creating a blocking close to the optimal blocking that solves problem (1) and
to the locally optimal blocking. When J = 1, k = 2, Algorithm 2 collapses to Algorithm 1,
thus it creates the optimal blocking. Let c⋆ be the value of the objective for B, the blocking
created by Algorithm 2.
Theorem 3. Suppose the cost function cij satisfies the triangle inequality: cij ≤ cij′ + cjj′
for any i, j and j′. Let c̃ be the smallest value of (1) attained by the optimal blocking. Then,
c⋆ ≤ (k−1)c̃, with equality when k = 2. In other words, Algorithm 2 is a (k−1)-approximation
algorithm for the blocking problem (1).

Theorem 3 requires a minimal structural assumption on c, that it satisfies the triangle
inequality. For an intuition of the proof consider the case k = 4, where the approximation
factor is k − 1 = 3. In the proof of the theorem the approximation factor 3 appears from a
possible mispairing (i, j) and (i′, j′) by the first call to Algorithm 1, which are then put into
the same block by Algorithm 2. When this mispairing happens, the value of c⋆ is at least
cjj′ , and a worst value of cjj′ comes from the following implication of the triangle inequality

cjj′ ≤ ci,j + ci,i′ + ci′,j′ . (4)
Algorithm 2 does not correct for this mispairing which leads to the approximation factor 3.
Under this structural assumption, part (b) of Proposition 4 shows that, no efficient algorithm
can do better than what Algorithm 2 guarantees. Part (a) of Proposition 4 does not assume
the triangle inequality of the cij and concludes that no approximation algorithm exits.
Proposition 4. Let J > 1 and c̃ as in Theorem 3. Unless P=NP,

(a) there does not exist any polynomial time algorithm so that if c⋆⋆ is the objective value
of the solution produced by the algorithm then for every instance of the problem,
c⋆⋆ ≤ (1 + α)c̃ for some α > 0.

(b) if the cost function satisfies (4), there does not exist any polynomial time algorithm
so that, if c⋆⋆ is the objective value of the solution produced by the algorithm then for
every instance of the problem, c⋆⋆ ≤ (3− α)c̃+ β, for some α, β > 0.

Proving the hardness results of Proposition 4 requires establishing a reduction of problem
(1) to another problem that is known to be hard. The reduced problem is such that, an
algorithm that can solve the original problem can be used to solve the reduced problem. The
provable extent of hardness of a problem depends on this reduction, and on the structure on
the original problem. Therefore, the two reductions in part (a) and part (b) of Proposition 4
are different, as they assume different structures of the cost function. The blocking problem
(1) is reduced to the following problem: Given two graphs G = (V,E) and H = (V ′, E ′) with
|V | = n|V ′|, can the vertices of G be partitioned into n disjoint sets V1, . . . , Vn such that, for
1 ≤ i ≤ n, the subgraph G induced by Vi is isomorphic to H? Kirkpatrick and Hell (1978)
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i1

i2
i3

i4
j1

j2

j3

j4

Figure 2. An example with two blocks of size four; total 8 units. A solid
line between two units indicates a cost of 1, a dashed line indicates a cost of
(1 − ϵ), and a dotted line indicates a cost of 2(1 − ϵ), and absence of a line
between two units indicates a cost of 2− ϵ; 1 > ϵ > 0 is an arbitrary constant.

proved that this is a hard problem for any graph H = (V ′, E ′) with |V ′| > 2. A complete
proof of Proposition 4 is given in the supplement.

In the remaining of this section we analyze the local performance of Algorithm 2. For a
blocking B = {B1, . . . , Bn}, define the local neighborhood of B as

L(B) = {B′ = {B′
1, . . . , B

′
n} :|B′

j| = 2J , B′
j ∩B′

j′ = ∅,
|Bσ(j)∆B′

j| ≤2 for all j ̸= j′ = 1, . . . , n, for some σ ∈ Sn}. (5)
Here Sn denotes the permutation group of {1, . . . , n} and ∆ denotes the symmetric difference
operator of two sets. A blocking B′ in L(B) is also a feasible blocking for problem (1), i.e.,
B′ consists of n non-overlapping blocks of size k, but it can be different from B by at most
one unit in each block. For simplicity, suppose σ in (5) is the identity permutation, σ(j) = j
for all j. Then, |B′

j∆Bj| = 0 means that the two blocks are identical, and |B′
j∆Bj| = 2

implies that all but one unit in B′
j is in Bj. Because |B′

j| = |Bj|, 0 and 2 are the only
two possible values of |B′

j∆Bj|. When J = 1, any local neighborhood L(B) is the set of all
feasible blockings of problem (1). Theorem 5 analyzes the local performance of Algorithm 2.

Theorem 5. Let B be the output of Algorithm 2. Suppose the cost function satisfies the
triangle inequality. Then, for any J > 1,

max
b∈B

max
i,j∈b;i ̸=j

cij ≤ 2 · min
B′∈L(B)

max
b∈B′

max
i,j∈b;i ̸=j

cij. (6)

Theorem 5 says that Algorithm 2 is locally a 2-approximation algorithm. Further, the
constant 2 cannot be improved as we shall show formally using the example in Figure 2.
In this example, the value of cij is either 1 − ϵ, 1, 2(1 − ϵ) or 2 − ϵ. The eight solid lines
have cost 1, the four dashed lines have cost 1 − ϵ, the two dotted lines have cost 2(1 − ϵ),
and all other costs are 2 − ϵ. The optimal blocking is B̃ = {{i1, i2, i3, i4}, {j1, j2, j3, j4}}
which has the corresponding maximum cost in any block c̃ = 1. Algorithm 2 creates the
blocking B = {{i1, i2, j3, i4}, {j1, j2, i3, j4}}. This is because it first creates the partition
V = {{i1, i4}, {i2, j3}, {j1, j2}, {i3, j4}} which minimizes its objective for pairs. Note that, (i)
the left hand side of (6) for this example is 2(1 − ϵ), and (ii) the optimal blocking B̃ is in
L(B). Thus, in (6), equality holds for B′ = B̃, if 2 is replaced by 2(1− ϵ). Since, 1 > ϵ > 0
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is arbitrary, this example shows that for n = 2 and J = 2 the constant 2 in Theorem 5 is
the best possible. The example in Figure 2 can be extended to larger block sizes by adding
more nodes to the structure and to larger number of blocks by introducing the structure in
different positions in the space. Section 5.2 discusses local improvement of Algorithm 2.

5.2. An extension and local improvements. In a paired study design the difference between
the units in a pair is the cost of the block. In a block with k units, there are k(k − 1)/2
pairwise differences. It might make sense in practice to define the cost of the block as the
average of these k(k − 1)/2 differences. The blocking problem analogous to problem (1) for
average in-block differences is to find a blocking B that minimizes

max
b∈B

1

|b|
∑

i,j∈b;i ̸=j

cij. (7)

We propose to solve this problem by modifying Algorithm 2 that changes the update
operation for the cost function from (3) to cν1ν2(V) =

∑
i,j∈ν1∪ν2 cij. Let c⋆⋆ be the value of

(7) for B, the blocking created by this modification of Algorithm 2.
Theorem 6. Suppose, the cost function cij satisfies the triangle inequality: cij ≤ cij′ + cjj′
for any i, j and j′. Let c̃ be the smallest value of (7) attained by a design. Then, c⋆⋆ ≤ α c̃,
where α = O(k (k − 2)log2 k−3).
Remark 5. The supplement gives a more precise expression of the approximation factor
α in Theorem 6. When k = 4 the approximation factor is 8/3, which is smaller than
(4− 1) = 3, the approximation factor in Theorem 3. But for larger k the factor in Theorem
6 for (7) is larger than that in Theorem 3 for (1). Hochbaum and Shmoys (1986) make
similar observation while comparing average versus maximum objectives.

In the following we consider further local improvements of Algorithm 2 for problem (1)
and improvements of Algorithm 2’s modification for problem (7). In Figure 2, it is not
difficult to consider a few extra steps to improve the output of Algorithm 2, B = {B1 =

{i1, i2, j3, i4}, B2 = {j1, j2, i3, j4}}, to the optimal blocking, B̃ = {{i1, i2, i3, i4}, {j1, j2, j3, j4}}.
These steps could be as follows, (i) take out the two units, j3 from B1 and i3 from B2, by
redefining B1 = B1 \ {j3} and B2 = B2 \ {i3}, (ii) define the costs c̄j3,B1 = maxl∈B1 cj3l
and c̄j3,B2 = maxl∈B2 cj3l, and similarly define c̄i3,B1 and c̄i3,B2 , (iii) rematch, {i3, j3} to
{B1, B2} that minimizes the maximum cost. More formally, in last step we find the onto
function f : {i3, j3} → {B1, B2} that minimizes max{c̄i3f(i3), c̄j3f(j3)}. Step (iii) then chooses
f(i3) = B1 and f(j3) = B2, since the corresponding maximum cost is 1. In the following we
conform steps (i)–(iii) into an algorithm for improving a blocking B.

First recognize that step (iii) finds a perfect bipartite matching on the bipartite graph
whose two parts are {i3, j3} and {B1, B2}. Consider any bipartite graph with parts V ′ and
V , with |V ′| = |V |. Suppose, the cost on the edge (v, v̄) for v ∈ V ′ and v̄ ∈ V is c̄vv̄. Then,
the formulation of step (iii) involves finding a perfect bipartite matching, f , that solves

min
f :V ′→V ,
f is onto

max
v∈V ′

c̄vf(v). (8)

To find this f efficiently, one may use either of the two algorithms proposed by Derigs (1984).
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Algorithm 3. Find the cost of blocking B, say c⋆.
while: TRUE:
B = ∅; B′ = ∅.
do (i) j = 1, . . . , J

Select ij ∈ argij∈Bj
minij∈Bj

obj({cll′ : l, l′ ∈ Bj \ ij}).
Bj ← Bj \ {ij}; B ← B ∪ {ij}; B′ ← B′ ∪Bj.

(i) continue.
(ii) Define c̄bb̄ between b ∈ B′ and b̄ ∈ B.

do (iii)
Find f that solves (8) with V ′ = B′ and V = B.

(iii) Redefine Bj ← Bj ∪ {f(Bj)}, for j = 1, . . . , n in B′.
Find the cost of the blocking B′, say c⋆⋆.
if c⋆ = c⋆⋆:

break.
else: Redefine B ← B′; c⋆ ← c⋆⋆.

end while.
Return B.

Algorithm 3 works as a template for improving the output of Algorithm 2 for either
problem (1) or (7). It repeats steps (i)–(iii) as long as it sees there is an improvement. The
function obj in step (i) of the algorithm is the ‘maximum’ function for the first problem
and is the ‘average’ function for the second problem. We define c̄bb̄, in step (ii), for the first
problem as maxi∈b,j∈b̄ cij and for the second problem as

∑
i∈b,j∈b̄ cij. Finally, c⋆ and c⋆⋆ for

the corresponding blockings in Algorithm 3 are calculated according to (1) or (7), for the
two problems respectively.

The simulation section §7.2 (and additional results in the supplement) shows that the
improvement by Algorithm 3 is beneficial.

5.3. Blocking with blocks of size k. We can use Algorithm 2 to create a blocking where k may
be not equal to 2J . This is achieved by including additional chameleon units or fake units in
V . Additional units such as these are often used to create flexible designs in observational
studies, for example, optimal subset selection in a pair matching (Rosenbaum, 2012), near
fine balancing (Yang et al., 2012) and matching a treated unit to a variable number of
controls in different strata (Lu et al., 2011; Pimentel et al., 2015a).

Recall that Algorithm 2 calls Algorithm 1 J times and after each call it updates the vertex
set V of G(V). Suppose there are nk units and 2J − k =

∑J−1
l=0 al2

l where al is either 0 or
1. Let L =

∑
l al. Suppose k1 < · · · < kL are such that akl = 1. In that case we include L

types of chameleon units to V , one type after each of the (k1− 1)th, . . ., and (kL− 1)th call
to Algorithm 1. More specifically, n additional chameleon units of type kl are introduced
to V as n new vertices after the (kl − 1)th call to Algorithm 1. The difference between two
chameleon units of the same type is set to ∞ and the difference between a chameleon unit
and any of the study nk units or any other type of chameleon units is set to 0. Algorithm 2
modified in this way creates n blocks, where in each block there are L chameleon units. Post
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Algorithm 2 we remove all these chameleon units to create the blocking of kn units into n
blocks of size k. Algorithm 3 can then be used to find an improved blocking.

To illustrate this method suppose k = 3 and there are 3n units. Algorithm 2 creates n
blocks of size 3 by including n chameleon units of the same type, say 1̃, . . . , ñ, at the start of
the algorithm. The cost function is extended as cij̃ = 0 and cj̃′j̃ =∞, for i = 1, . . . , 3n and
j̃, j̃′ = 1̃, . . . , ñ, j̃ ̸= j̃′. When k = 5, n more chameleon units of a new type are included after
the 5n study units and the n units 1̃, . . . , ñ have been paired in the first loop Algorithm 2.
Call these additional units ˜̃1, . . . , ˜̃n. We extend the definition of the cost function as c

i˜̃j
= 0,

c
j̃˜̃j

= 0, and c ˜̃
j′˜̃j

= ∞, for i = 1, . . . , 5n, j̃ = 1̃, . . . , ñ and ˜̃j, ˜̃j′ = ˜̃1, . . . , ˜̃n, ˜̃j ̸= ˜̃j′. When
k = 6 only the second type of n chameleon units ˜̃1, . . . , ˜̃n are used by the method.

6. Analysis of a synthetic data set
6.1. Data description and efficiency gain in hypothesis testing. Using a study on the effect
of Morphine on mental activity score, we compare two paired randomization studies. The
first creates pairs by minimizing the average of the paired differences of the covariates using
MAPD, and the second creates pairs by minimizing the worst of paired differences of the
covariates using Algorithm 1.

We use a synthetic data set created from the data provided by Smith and Beecher (1962).
This data set was also analyzed by Snedecor and Cochran (1967) to illustrate regression
adjustment. The details of the synthetic data are given in a remark later. Briefly, we created
100 individuals by sampling with replacement from the 24 subjects in the original study. In
this study, there are two covariates, X1 and X2, two measurements of mental activity scores of
the study individuals; see Smith and Beecher (1962) for details. Both MAPD and Algorithm
1 use the same cost function, which is the rank based robust Mahalanobis distance of the
two covariates (Rosenbaum, 2010, §8.3). In the respective designs, the average of the paired
differences are 0.15 for MAPD and 0.17 for Algorithm 1; the largest of the pair differences
are 1.72 for MAPD and 1.27 for Algorithm 1.

In each of these two sets of 50 pairs, the treatment, Morphine use, was randomized to one
subject within each pair. The control unit is given a placebo. We analyze the null hypothesis
of no effect twice for each design, once by testing the symmetry of treated minus control
differences in the mental activity scores using the paired randomization test and also by
testing the symmetry of treated minus control differences in the regression adjusted mental
activity scores using the paired randomization test. In our tabulation of the results, we fix
an additive effect of Morphine use (a decrease in mental activity score) and calculate the
proportion of times a method rejects the null hypothesis of no effect of Morphine use in 4000
simulations, each simulation creating a paired randomized treatment assignment.

The results are given in Table 2. The power of detection of a treatment effect is consistently
higher using Algorithm 1, for every simulated value of the treatment effect. Notably for a
treatment effect of 0.5 the power of the paired design of Algorithm 1 is 44% higher (.37
vs .24) than the paired design of MAPD and 143% higher (.37 vs .12) than the completely
randomized design; for treatment effect of 1, these numbers are 20% and 84% respectively.

In Table 2 a regression adjustment increases the power compared to the usual randomiza-
tion test for both paired and the completely randomized designs. Results in Table 2 show
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Table 2. The proportion of rejects of the null hypothesis of no effect for
different additive treatment effects; based on 4000 randomized designs.

Randomization test
Regression adjustment +

Randomization test
Treatment Completely Paired design Completely Paired design
effect randomized design MAPD Algorithm 1 randomized design MAPD Algorithm 1
0 0.05 0.05 0.05 0.05 0.05 0.05
0.5 0.12 0.24 0.37 0.16 0.27 0.39
0.75 0.22 0.47 0.67 0.31 0.53 0.71
1 0.36 0.75 0.93 0.51 0.78 0.94
1.25 0.54 0.91 0.99 0.70 0.93 1.00

Table 3. Root Mean Squared Error (RMSE) for estimating the ATE in syn-
thetic data from the Morphine study. Lowest RMSE in each row is in bold.

MAPD w/ Completely
ATE Algorithm 1 caliper MAPD randomized design

Model 1 0.25 0.58 0.62 0.62 0.78
Model 2 0.49 1.02 1.05 1.05 1.14
Model 3 0.80 0.89 0.92 0.92 1.03

that gain due to regression adjustment is much higher for completely randomized design
(a 40% increase in power at effect size 0.75) than for the MAPD based paired design (a
13% increase in power at effect size 0.75) and the smallest for the Algorithm 1 based paired
design (a 6% increase in power at effect size 0.75). This is consistent with findings related to
treatment effect estimation from randomized designs that efficiency gain due to regression
adjustment is higher when the design has been less than adequate to balance the covariate
(Lin, 2013). But, here, MAPD based design with regression adjustment still has lower power
than Algorithm 1 based design without regression adjustment.

Remark 6. Details of the synthetic data. For the above analysis we simulated 100
individuals based on the data on 24 subjects in Smith and Beecher (1962). Increasing the
sample size helps in presenting moderate power of both methods for the treatment effects
considered. To create the 100 individuals we simulated 60 subjects with replacement from
20 subjects with X = (X1 + X2)/2 ≤ 10, the rest were simulated with replacement from
the other 4 subjects. This was done to slightly exaggerate the variability of the distribution
of the covariates; variance of X1 for the 24 subjects is 16.6 and the variance is 21.6 for the
simulated 100 subjects, similarly for X2, the variance is increased from 13.4 in for the 24
subjects to 17 for the 100 subjects (see Remark 2). For each subject, the original study
recorded the mental activity score two hours after a placebo treatment. We used these
scores as control potential outcomes. The treated potential outcomes for Table 2 and Table
3 (discussed below) are generated following the treatment effect model specified.
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6.2. Comparison of accuracy in treatment effect estimation. Based on the data from the above
synthetic example we next consider estimation of the average treatment effect. We compare
four designs. The first two are paired designs of Algorithm 1 and MAPD as before. The third
method uses MAPD to create a blocking (i.e., pairing) but uses a caliper on the distance,
cij, so that the MAPD algorithm is not allowed to form dissimilar pairs while minimizing
the average in-block weights (Rosenbaum, 1989; Rubin and Thomas, 2000; Austin, 2011).
The caliper value is chosen as 1.6 so that the most extreme pair is disallowed in the design.
The final design is the completely randomized design.

We consider three treatment effect models in our comparison. These are labelled as Model
1, Model 2 and Model 3 respectively in Table 3. Model 1 is a constant treatment effects
model where Morphine use decreases mental activity score by 0.25 for every individual in the
study. Thus, the average treatment effect (ATE) for Model 1 is 0.25. In Model 2 Morphine
use decreases mental activity by an amount of X1/15 to a minimum of 0. Recall, X1 is a
baseline mental activity score. Hence, Model 2 implies that Morphine use decreases mental
activity score more according to higher baseline activity of the individual. The ATE for
Model 2 is 0.49. Model 3 assumes that decrease in mental activity score due to Morphine
use is

√
X2/60. The ATE for Model 3 is 0.80.

In Table 3, Algorithm 1 gives the smallest RMSEs for estimating the ATE using the
unbiased difference-in-means estimator for these three models for each model. Also, caliper
here did not improve the RMSEs at two decimal points.

7. Comparison of accuracy in treatment effect estimation: simulation studies
In this section we present simulation studies to evaluate treatment effect estimation ac-

curacy of the difference-in-means estimator in blocked designs using the proposed methods
and compare the performances of the proposed methods to their competitors.

7.1. Paired randomization. We studied paired designs in §6 using a synthetic data set. Using
simulated data sets we again consider paired designs where a blocking corresponds to n = 50
pairs. We compare Algorithm 1, MAPD and also a modification of the MAPD algorithm
that uses a caliper to discourage pairing of very dissimilar units. The caliper is set so that
the extreme pair is not allowed when using MAPD matching.

Simulation scenario 2 from §4.3 is used to generate the covariate data (scenario 1 is not
used since the cost function is not associated with any covariate). Next, the control potential
outcome for all the models is Yi(0) = exp{(X1i+X2i)/2}+ϵi where ϵi is drawn i.i.d. from the
standard normal distribution. The treatment potential outcomes for the four outcome models
are Yi(1) = Yi(0)+0.5 for Model 1, Yi(1) = Yi(0)+X1iX2i/2 for Model 2, Yi(1) = Yi(0)+|X1i|
for Model 3, and Yi(1) = Yi(0) +X2

1i/2 for Model 4.
We considered 100 simulated data sets. In each data set we used the 3 blocking methods

to create paired designs. Then for each paired design we calculated the RMSE of estimat-
ing the ATE using the difference-in-means estimator in that dataset by considering 10000
randomizations. The RMSE values in Table 4 are the average RMSEs across different data
sets. Table 4 also shows the ATEs for the models. As the baseline for the comparison we
include the completely randomized design.
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Table 4. Root Mean Squared Error (RMSE) for estimating the ATE in paired
designs. Lowest RMSE in each row is in bold.

MAPD w/ Completely
Outcome Model ATE Algorithm 1 caliper MAPD randomized design
Model 1 0.50 2.49 2.63 2.65 6.34
Model 2 0.99 2.55 2.69 2.71 6.57
Model 3 1.81 2.51 2.64 2.66 6.42
Model 4 2.90 2.55 2.69 2.71 6.61

In Table 4, the proposed algorithm consistently provides more accurate estimate of the
ATE compared to any other method. Using caliper on the cost function only slightly improves
the accuracy in treatment effect estimation from a MAPD based design.

7.2. Blocked randomization with k = 4 and four treatments. Here we consider a third simula-
tion scenario with n = 50 and k = 4. Simulation scenario 3 has two binary and four continu-
ous variables. To simulate such a structure, a 6 dimensional random vector is simulated from
a mixture of three multivariate normal distributions with the same equi-correlation matrix of
correlation 0.3 with mixing proportions 1/2, 3/8 and 1/8 respectively. The normal mean vec-
tors for the three components are (0, 0, 0, 0, 0)⊤, (0, 0, 2, 2,−2,−2)⊤, and (0, 0, 5, 5,−6,−6)⊤,
respectively. Finally, the first two values of the vector, say x1 and x2, are discretized as:
x∗
1 = 1 if x1 < 0.1 and x∗

2 = 1 if x2 > 0.1, and 0 otherwise. The cost function used is the
square root of rank based robust Mahalanobis distance.

We consider a blocked randomization design that assigns 4 treatments 1, . . . , 4 randomly
within each block. We compare six blocking methods. The first four methods are: Algorithm
2 with and without its improvement using Algorithm 3 for the two problems (1) and (7).
Next, the ‘Random templating and assignment’ method is the randomized algorithm of
Karmakar (2018) that creates many blockings by randomly selecting one template unit for
each block, and outputs a blocking that is the best among those. The last method is the
‘optimal greedy’ heuristic blocking method of Moore (2012).

Each unit has four potential outcomes Yi(a) for a = 1, . . . , 4 and let τab =
∑200

i=1{Yi(b) −
Yi(a)}/200 denote the sample ATE of treatment b over a. We consider:
Outcome Model 1: In this model Yi(1) = X2

3iX2i +X2
4iX1i +X5i +X6i + ϵi, where ϵi is drawn

i.i.d. from the standard normal distribution. The other potential outcomes are Yi(2) =
Yi(1) +X6i, Yi(3) = Yi(1) +X4i and Yi(4) = Yi(1) +X3i.

Outcome Model 2: In this model, same as before, Yi(1) = X2
3iX2i +X2

4iX1i +X5i +X6i + ϵi,
where ϵi is drawn i.i.d. from the standard normal distribution. The other potential outcomes
are Yi(2) = Yi(1) + 3X1iX2i, Yi(3) = Yi(1) + 3X1i and Yi(4) = Yi(1) + 3X2i. Recall, X1i and
X2i are binary variables. So, a treatment changes the outcome only for some units, but when
it does change the outcome, the amount of change is the same (3 units).

Results of our simulation comparison are given in Table 5. To calculate this table, we
considered the difference-in-means estimator in 100 simulated data sets under Scenario 3.
For each data set, the RMSE values are calculated based on 10000 randomizations for each
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Table 5. Root Mean Squared Error (RMSE) for estimating the sample ATE
in a blocked randomized design with 50 blocks of size 4. Four treatments are
randomized in each block. Lowest (best) RMSE in each column is in bold.

Outcome Model 1 Outcome Model 2
τ21 τ31 τ41 τ21 τ31 τ41

ATE -1.516 1.394 1.394 0.593 1.620 1.372
Completely randomized design 1.823 1.941 1.974 1.905 1.876 1.937
Algorithm 2 for (1) 1.412 1.373 1.347 1.448 1.403 1.372
Algorithm 2+3 for (1) 1.340 1.164 1.290 1.366 1.179 1.302
Algorithm 2 for (7) 1.484 1.436 1.411 1.442 1.399 1.370
Algorithm 2+3 for (7) 1.404 1.206 1.349 1.367 1.175 1.303
Random templating and assignment 1.405 1.438 1.417 1.375 1.410 1.378
Heuristic blocking 1.487 1.208 1.354 1.454 1.182 1.300

blocking method. The reported RMSE values are the average RMSEs across the data sets.
Table 5 also shows the average sample ATE across the data sets.

We did not consider the threshold blocking method of Higgins et al. (2016) in this simu-
lation study because this method does not create equal sized blocks such that we can use a
randomized design with 4 treatments randomly assigned to 4 units in each block.

The simulation results in Table 5 show that all blocking strategies provide efficiency gain
over the completely randomized design. The proposed methods give more accurate estimates
of the ATEs. Finally, Algorithm 3 provides robust improvement over Algorithm 2.

8. Conclusion
The methods presented in this paper can be used to create blocked randomized designs, for

any block size, that blocks on many covariates. These methods require that the difference,
according to those covariates, of any two units be written as a cost function. Some exper-
imental designs may require solutions of other blocking problems which impose additional
constraints. One such constraint could state that the value of a covariate must be within
a given range in each block. It would be possible to solve this problem using the proposed
methods by appropriately defining the cost function, e.g., by using a caliper for the range of
the covariate. But there could be other constraints that are more difficult to incorporate.

Acknowledgment
The work was supported by a grant from the National Science Foundation, USA. The author
thanks the Editor, the Associate Editor and the three referees for their detailed comments
and suggestions which led to significant improvement of the paper.

References
Austin, P. C. (2011). Optimal caliper widths for propensity-score matching when estimating

differences in means and differences in proportions in observational studies. Pharmaceutical
Statistics, 10, 150–161.



REFERENCES 23

Bailey, R. A. (1987). Restricted randomization: A practical example. J. Am. Statist. Ass.,
82, 712–719.

Beck, C., Lu, B. and Greevy, R. (2016). nbpMatching: Functions for optimal non-bipartite
matching. CRAN, package version 1.5.1.

Bondy, J. A. and Murty, U. S. R. (1976). Graph Theory with Applications. New York: Else-
vier.

Box, G. E.P. and Hunter, J. S. (1961). The 2K−p fractional factorial designs, Technometrics,
3, 311–351.

Cheng, C. S. and Mukerjee, R. (2001). Blocked regular fractional factorial designs with
maximum estimation capacity. Annals of Statistics, 29, 530–548.

Cochran W. G. (1965). The planning of observational studies of human populations.
J. R. Statist. Soc. A, 128, 234–266.

Cox, D. R. (1958). Planning of Experiments. Oxford, England: Wiley.
Cox, D. R. and Reid, N. (2000). The Theory of the Design of Experiments. Chapman &

Hill/CRC.
Derigs, U. (1984). Alternate strategies for solving bottleneck assignment problems – Analysis

and computational results. Computing, 33, 95–106.
Derigs, U. (1988). Solving nonbipartite matching problems via shortest path techniques.

Ann. Oper. Res., 13, 225–261.
Ellickson, P. L., McCaffrey, D. F., Ghosh-Dastidar, B. and Longshore, D. L. (2003). New

inroads in preventing adolescent drug use: Results from a large-scale trial of Project
ALERT in middle schools. Am. J. Public Health, 93, 1830–1836.

Federer, W. T. and King, F. (2007). Variations on split plot and split block experiment
designs. John Wiley & Sons, Hoboken, NJ.

Fisher, R. A. (1935). The Design of Experiments. Edinburgh: Oliver and Boyd.
Flay, B. R., Brannon, B. R., Johnson, C. A., Hansen, W. B., Ulene, A. L. and Whit-

ney‐Saltiel, D. A. (1988). The television, school and family smoking prevention and ces-
sation project. I Theoretical basis and program development. Prev. Med., 17, 585–607.

Fogarty, C. (2018). On mitigating the analytical limitations of finely stratified experiments.
J. R. Statist. Soc. B, 80, 1035–1056.

Gabow, H. N. and Tarjan, R. E. (1988). Algorithms for two bottleneck optimization prob-
lems. Journal of Algorithms, 9, 411–417.

Greevy, R., Lu, B., Silber, J. H. and Rosenbaum, P. R. (2004). Optimal multivariate match-
ing before randomization. Biostatist., 5, 263–275.

Hansen, B. B. and Klopfer, S. O. (2006). Optimal full matching and related designs via
network flows. J. Comp. Graph. Statist., 15, 609–627.

Higgins, M. J., Sävjeb, F. and Sekhon, J. S. (2016). Improving massive experiments with
threshold blocking. Proc. Natl. Acad. Sci., 113, 7369–7376.

Hochbaum, D. S. and Shmoys, D. B. (1986). A unified approach to approximation algorithms
for bottleneck problems. J. ACM, 33, 533–550.

Hu, W., Chan, C. W., Zubizarreta, J. R. and Escobar, G. J. (2018). Incorporating longitu-
dinal comorbidity and acute physiology data in template matching for assessing hospital
quality: an exploratory study in an integrated health care delivery system. Med. Care.,
56, 448–454.



24 REFERENCES

Karmakar, B. (2018). blockingChallenge: Create blocks or strata which are similar within.
CRAN, R package version 1.0.

Kernan, W. N., Viscoli, C. M., Makuch, R. W., Brass, L. M. and Horwitz, R. I. (1999).
Stratified randomization for clinical trials. J. Clin. Epidemiol., 52, 19–26.

Kelcey, B., Spybrook, J., Phelps, G., Jones, N. and Zhang, J. (2017). Designing large-scale
multisite and cluster-randomized studies of professional development, THe Journal of
Experimental Education, 85, 389–410.

Kirkpatrick, D. G. and Hell, P. (1978). On the completeness of a generalized matching
problem. In Proceedings of the tenth annual ACM symposium on Theory of computing, pp.
240–245.

Lin, W. (2013). Agnostic notes on regression adjustments to experimental data: Reexamining
Freedman’s critique. Ann. Appl. Stat., 7, 295–318.

Lu, B., Greevy, R., Xu, X. and Beck, C. (2011). Optimal nonbipartite matching and its
statistical applications. Am. Statist., 65, 21–30.

Moore, R. T. (2012). Multivariate continuous blocking to improve political science experi-
ments. Political. Anal., 20, 460–479.

Moore, R. T. and Schnakenberg, K. (2016). blockTools: Block, Assign, and Diagnose Poten-
tial Interference in Randomized Experiments. CRAN, package version 0.6-3.

Morgan, K. L. and Rubin, D. B. (2012). Rerandomization to improve covariate balance in
experiments. Ann. Stat., 40, 1263–1282.

Moulton, L. H. (2004). Covariate-based constrained randomization of group-randomized tri-
als. Clinical Trials, 1, 297–305.

Papadimitriou, C. H. and Steiglitz, K. (1998). Combinatorial Optimization: Algorithms and
Complexity. New York: Dover.

Pimentel, S. D., Kelz, R. R., Silber, J. H. and Rosenbaum, P. R. (2015). Large, sparse
optimal matching with refined covariate balance in an observational study of the health
outcomes produced by new surgeons. J. Am. Statist. Ass., 110, 515–527.

Pimentel, S. D., Page, L. C., Lenard, M. and Keele, L. (2018). Optimal multilevel matching
using network flows: An application to a summer reading intervention. Ann. Appl. Statist.,
12, 1479–1505.

Robinson, J. (1970). Blocking in incomplete split plot designs, Biometrika, 57, 347–350.
Rosenbaum, P. R. (1989). Optimal Matching in Observational Studies. J. Am. Statist. Ass.,

84, 1024–1032.
Rosenbaum, P. R. (2010). Design of Observational Studies. New York: Springer.
Rosenbaum, P. R. (2012). Optimal matching of an optimally chosen subset in observational

studies. J. Comp. Graph. Statist., 21, 57–71.
Rosenbaum, P. R. (2017). Imposing minimax and quantile constraints on optimal matching

in observational studies. J. Comp. Graph. Statist., 26, 66–78.
Rubin, D. B. (1979). Using multivariate matched sampling and regression adjustment to

control bias in observational studies. J. Am. Statist. Ass., 74, 318–328.
Rubin, D. B. and Thomas, N. (2000). Combining propensity score matching with additional

adjustments for prognostic covariates. Journal of the American Statistical Association, 95,
573–585.



REFERENCES 25

Silber, J. H., Rosenbaum, P. R., Ross, R. N., Ludwig, J. M., Wang, W., Niknam, B. A.,
Mukherjee, N., Saynisch, P. A., Even‐Shoshan, O., Kelz, R. R. and Fleisher, L. A. (2014).
Template matching for auditing hospital cost and quality. Health Serv. Res., 49, 1446–
1474.

Smith, G. M. and Beecher, H. K. (1962). Subjective effects of heroin and morphine in normal
subjects. J. Pharmacol. Exp. Ther., 136, 47–52.

Snedecor, G. W. and Cochran, W. G. (1967). Statistical methods, 6th edn., Ames., Iowa
State College Press, IA.

Williamson, D. P. and Shmoys, D. B. (2011). The Design of Approximation Algorithms.
Cambridge University Press.

Yang, D., Small, D. S., Silber, J. H. and Rosenbaum, P. R. (2012). Optimal matching
with minimal deviation from fine balance in a study of obesity and surgical outcomes.
Biometrics, 68, 628–636.

Zubizarreta, J. R. (2012). Using mixed integer programming for matching in an observational
study of kidney failure after surgery. J. Am. Statist. Ass., 107, 1360–1371.

Zubizarreta, J. R. and Keele, L. (2017). Optimal multilevel matching in clustered obser-
vational studies: a case study of the effectiveness of private schools under a large-scale
voucher system. J. Am. Statist. Ass., 112, 547–560.
226 Griffin-Floyd Hall, Department of Statistics, University of Florida, Gainesville,

FL 32611, USA. Email: bkarmakar@ufl.edu



Supplement: An approximation algorithm for blocking of an ex-
perimental design
Bikram Karmakar
Department of Statistics, University of Florida, Gainesville, FL 32611, USA.

1 Proof of Theorem 1

We first show that

ÂTE−ATE =
1

kk1(k − k1)

k∑
i=1

k∑
j=1

Zi(1−Zj) {(k − k1)(Yi(1)− Yj(1)) + k1(Yi(0)− Yi(0))} .

(S1)
Start form the left hand side

ÂTE−ATE =
1

k1

k∑
i=1

ZiYi −
1

k − k1

k∑
i=1

(1− Zi)Yi −
1

k

k∑
i=1

(Yi(1)− Yi(0))

=
1

k1

k∑
i=1

ZiYi(1)−
1

k − k1

k∑
i=1

(1− Zi)Yi(0)−
1

k

k∑
i=1

(Yi(1)− Yi(0))

=
k∑

i=1

ZiYi(1)

(
1

k1
− 1

k

)
−

k∑
i=1

(1− Zi)Yi(0)

(
1

k − k1
− 1

k

)
− 1

k

k∑
i=1

{(1− Zi)Yi(1)− ZiYi(0)}

=
1

k1k

k∑
i=1

ZiYi(1)(k − k1)−
1

(k − k1)k

k∑
i=1

(1− Zi)Yi(0)k1 −
1

k

k∑
i=1

{(1− Zi)Yi(1)− ZiYi(0)}

=
1

k1k

k∑
i=1

k∑
j=1

Zi(1− Zj)(Yi(1)− ij(1)) +
1

(k − k1)k

k∑
i=1

k∑
j=1

Zi(1− Zj)(Yi(0)− Yj(0))

=
1

kk1(k − k1)

k∑
i=1

k∑
j=1

Zi(1− Zj) {(k − k1)(Yi(1)− Yj(1)) + k1(Yi(0)− Yi(0))}

Part (a).
If maxb∈B={B1,...,Bn}maxi,j∈b,i ̸=j c(Xi, Xj) ≤ δ1 then using identity (S1)

sup
(Z1,...,Znk)∈Z

sup
g(·,0)∈Gα,M ,g(·,1)∈Gα,M

|ÂTE−ATE|

≤ sup
(Z1,...,Znk)∈Z

1

kk1(k − k1)

k∑
i=1

k∑
j=1

Zi(1− Zj) {(k − k1)Mδα1 + k1Mδα1 }

= Mδα1 .

Part (b).

1



We consider g(Xi, z) = Mc(Xi, x
⋆)α where x⋆ is a fixed vector. We first check that this

g(·, z) is in Gα,M . We use the shorthand c̃(x) := c(x, x⋆). Fix x and x′. Without loss of
generality assume c̃(x) ≥ c̃(x′).

|g(x, z)− g(x′, z)| = M |c̃(x)α − c̃(x′)α|
≤M

{
(c(x, x′) + c̃(x′))α − c̃(x′)α

}
≤M

{
c(x, x′)α + c̃(x′)α − c̃(x′)α

}
= Mc(x, x′)α.

The first inequality follows by triangle inequality and the second inequality follows since
α ∈ (0, 1].

Consider c̃(Xi) values that are either 0 or δ2(k − 1)/k1. There are k2 0s and k1 δ2(k −
1)/k1. Verify that these set of c(Xi, Xj) values control the average distance. Using triangle
inequality

1

k(k − 1)

∑
i ̸=j

c(Xi, Xj) ≤
1

k(k − 1)

∑
i ̸=j

{c̃(Xi) + c̃(Xj)}

=
1

k(k − 1)
k

k∑
i=1

c̃(Xi)

=
1

k − 1
{k2 × 0 + k1 × δ2(k − 1)/k1}

= δ2.

Throughout we let k2 = k − k1.
Let L ⊆ {1, . . . , k} be the set of l units where the treatment is assigned freely. Let L1 ⊆

L be the set of units that are assigned treatment and let L0 = L\L1. Let Lz = Lz0 ∪Lz1,
where Lz0 is the subset of Lz corresponding to c̃(Xi) = 0. By (S1)

ÂTE−ATE =
M

k1k2

∑
i∈L1

k2c̃(Xi)
α −

∑
j∈L0

k1c̃(Xj)
α

+
M

k1k2

∑
i ̸∈L

Zik2c̃(Xi)
α −

∑
j ̸∈L

(1− Zj)k1c̃(Xj)
α


=

M

k1k2
{k2|L11|(δ2(k − 1))α/kα1 − k1|L01|(δ2(k − 1))α/kα1 }

+
M

k1k2

∑
i ̸∈L

Zik2c̃(Xi)
α −

∑
j ̸∈L

(1− Zj)k1c̃(Xj)
α


=

M

k1k2

(δ2(k − 1))α

kα1
{k2|L11| − k1|L01|}

+
M

k1k2

∑
i ̸∈L

Zik2c̃(Xi)
α −

∑
j ̸∈L

(1− Zj)k1c̃(Xj)
α
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Among the Lc units, assign the rest possible untis to the treatment. We note that k1−
|L1| units remain to be treated, and k1−|L01−L11| of the units with c̃(Xi) = (δ2(k−1))α/kα1 .
Thus, (k1 − |L1|)∧ (k1− |L01| − |L11|) of the remaining units with c̃(Xi) = δ2(k− 1)/k1 in
Lc are assigned treatment. The other k1 − |L01| − |L11| − (k1 − |L1|) ∧ (k1 − |L01| − |L11|)
units from Lc with c̃(Xi) = δ2(k − 1)/k1 are assigned to control. Thus,

M

k1k2

∑
i ̸∈L

Zik2c̃(Xi)
α −

∑
j ̸∈L

(1− Zj)k1c̃(Xj)
α


=

M

k1k2

(δ2(k − 1))α

kα1
[k2(k1 − |L1|) ∧ (k1 − |L01| − |L11|)

−k1 {k1 − |L01| − |L11| − (k1 − |L1|) ∧ (k1 − |L01| − |L11|)}]

=
M

k1k2

(δ2(k − 1))α

kα1
[k2 {k1 − |L11| − |L10| ∨ |L01|}

−k1 {k1 − |L01| − |L11| − k1 + |L11|+ |L10| ∨ |L01|}]

=
M

k1k2

(δ2(k − 1))α

kα1
[k1k2 − k2|L11| − k1|L01| − k|L10| ∨ |L01|]

Thus, we get

|ÂTE−ATE| = M

k1k2

(δ2(k − 1))α

kα1

∣∣∣k1k2 − k|L10| ∨ |L01|
∣∣∣.

By definition of the set L’s the restriction on the sets L01 and L10 is that their sizes
are at most min{k1, l}. Hence the proof.

This inequality can be shapened by considering the other assignment where the remain-
ing possible control units are from the remaining units with c̃(Xi) = δ2(k − 1)/k1. The
sharpened lower bound is (i) if k1 ≤ l

inf
(Z1,...,Zk)∈Zl

sup
g(·,z)∈Gα,M ;z=0,1

|ÂTE−ATE| ≥ M{δ2(k − 1)}α

kα1
min

p∈{0,...,k1}

∣∣∣∣1− kp

k1(k − k1)

∣∣∣∣ ,
(ii) if k1 > l

inf
(Z1,...,Zk)∈Zl

sup
g(·,z)∈Gα,M ;z=0,1

|ÂTE−ATE|

≥ M{δ2(k − 1)}α

kα1
max

{
min

p∈{k1−l,...,k1}

∣∣∣∣1− kp

k1(k − k1)

∣∣∣∣ , min
p∈{0,...,l}

∣∣∣∣1− kp

k1(k − k1)

∣∣∣∣} .

We now consider a slight modification of the inequality. Assume that Xis are univariate
and c(x, y) is the absolute distance. Fix ϵ ≥ 0 small, a point x⋆ and pick k2 rather than
being exactly at x⋆ be in the interval [x⋆−ϵ/k2, x

⋆]. Pick the other k1 points in the interval
[δ2(k − 1)/k1 − ϵ/k1, δ2(k − 1)/k1]. It is easy to verify that

∑k
i=1 c(Xi, x

⋆) = (k − 1)δ2.
Thus, using triangle inequality the average pairwise distance between any two points is
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1
k(k−1)

∑
i ̸=j c(Xi, Xj) ≤ 1

(k−1)c(Xi, x
⋆) ≤ δ2.

Notice that the difference between the two sets of points is at least δ2(k − 1)/k1 −
ϵ/k1 − ϵ/k2. Next, as before let Yi(z) = Mc(Xi, x

⋆)α. But now notice that the error in
ATE estimation is at least as much as our calculation before except now previous imbalance
δ2(k−1)/k1 replaced by δ2(k−1)/k1−ϵ/k1−ϵ/k2. Hence we get the proof of the Theorem.

Lemma S1 This lemma gives a lower bound for the conditional probability of getting a
set of c(Xi, Xj)’s so that the lower bound of part (b) of Theorem 1 is attained given that
the average pairwise distance is at most δ2 when the c(Xi, Xj) = |Xi − Xj | and Xi’s are
sampled i.i.d. from a standard normal distribution.

Proof. We assume that Xi are sampled randomly from the standard normal distribution.
We want to find the conditional probability that we observe k2 of the units are in an interval
of length ϵ/k2 and the other k1 units are also in another interval of length ϵ/k1, and the
maximum distance between any two points is at most δ2(k − 1)/k1 given that the average
pairwise distance of any k pointst is at most δ2.

First we start by computing the denominator of the conditional expectation.

Pr(
1

k(k − 1)

k∑
i,j=1

|Xi −Xj | ≤ δ2)

≤ Pr(
1

k(k − 1)

√√√√ k∑
i,j=1

(Xi −Xj)2 ≤ δ2)

= Pr(
1

k(k − 1)

√√√√2k

k∑
i=1

(Xi − X̄)2 ≤ δ2)

= Pr(
k∑

i=1

(Xi − X̄)2 ≤ δ22k(k − 1)2/2)

= Pr(χ2
k−1 ≤ δ22k(k − 1)2/2)

Now consider the numerator which is the probability of observing k random samples
of a particular pattern. We calculate the probability that X1, . . . , Xk2 are in an interval of
length ϵ/k2 and the other k1 units are in another interval of length ϵ/k1, and the maximum
distance between any two points is at most δ2(k − 1)/k1. Then the numerator will be k!
times this probability.

The probability in question is calculated in four parts: (a) if all the points are in the
positive real line, (b) if all the points are in the negative real line, (c) the first set of points
are negative and the second set of points are positive, and (d) the first set of points are
postive and the next set of points are negative,

Notice that probability of (a) and (b) are the same since the distribution is symmetric
around 0. Let’s consider (a) then. We can split (a) in two parts: (a1) k2 points come first

4



and then the k1 points, and (a2) the k1 points come first then the k2 points. Throughout we
use ϕ() and Φ() denote the standard normal density and distribution function respectively.

We start by calculating probabilities for (a1) and (a2). Probability of (a1) is∫ ∞

0
ϕ(x) [Φ(x+ ϵ/k2)− Φ(x)]k2 [Φ(x+ δ2(k − 1)/k1)− Φ(x+ δ2(k − 1)/k1 − ϵ/k1)]

k1 dx

≥
∫ ∞

0
φ(x)(ϵ/k2)

k2ϕ(x+ ϵ/k2)
k2 × (ϵ/k1)

k1ϕ(x+ δ2(k − 1)/k1)
k1 dx

=

(
ϵ√
2π

)k

k−k1
1 k−k2

2

∫ ∞

0

1√
2π

e−
1
2
(1+k)[x+{ϵ+δ2(k−1)}/(k+1)]2 dxe−.5(ϵ2/k2+δ22(k−1)2/k1−(ϵ+δ2(k−1))2/(k+1))

=

(
ϵ√
2π

)k

k−k1
1 k−k2

2 (1 + k)−1/2

[
1− Φ

(
ϵ+ δ2(k − 1)

1 + k

)]
e−.5(ϵ2/k2+δ22(k−1)2/k1−(ϵ+δ2(k−1))2/(k+1))

Probability of (a2) is∫ ∞

0
ϕ(x) [Φ(x+ ϵ/k1)− Φ(x)]k1 [Φ(x+ δ2(k − 1)/k1)− Φ(x+ δ2(k − 1)/k1 − ϵ/k2)]

k2 dx

≥
∫ ∞

0
ϕ(x)(ϵ/k1)

k1ϕ(Φ(x+ ϵ/k1))
k1(ϵ/k2)

k2ϕ(x+ δ2(k − 1)/k1)
k2 dx

=

(
ϵ√
2π

)k

k−k1
1 k−k2

2

∫ ∞

0

1√
2π

e−
1
2
(1+k)[x+{ϵ+δ2(k−1)k2/k1}/(k+1)]2 dx

× e−.5(ϵ2/k2+δ22(k−1)2/k1−(ϵ+δ2(k−1)k2/k1)2/(k+1))

=

(
ϵ√
2π

)k

k−k1
1 k−k2

2 (1 + k)−1/2

[
1− Φ

(
ϵ+ δ2(k − 1)k2/k1

1 + k

)]
e−.5(ϵ2/k2+δ22(k−1)2/k1−(ϵ+δ2(k−1)k2/k1)2/(k+1))

It remains to calculate the lower bounds of the probabilities of (c) and (d).∫ −ϵ/k2

−δ2(k−1)/k1+ϵ/k1

ϕ(x) [Φ(x+ ϵ/k2)− Φ(x)]k2 [Φ(x+ δ2(k − 1)/k1)− Φ(x+ δ2(k − 1)/k1 − ϵ/k1)]
k1 dx

≥
∫ −ϵ/k2

−δ2(k−1)/k1+ϵ/k1

φ(x)(ϵ/k2)
k2ϕ(x)k2 × (ϵ/k1)

k1ϕ(x+ δ2(k − 1)/k1)
k1 dx

=

(
ϵ√
2π

)k

k−k1
1 k−k2

2

∫ −ϵ/k2

−δ2(k−1)/k1+ϵ/k1

1√
2π

e−1/2(k+1)[x+δ2(k−1)/(k+1)]2 dx× e−.5δ22(k−1)2(k−1
1 −(k+1)−1)

=

(
ϵ√
2π

)k

k−k1
1 k−k2

2 (k + 1)−1/2

[
Φ(− ϵ

k2
+

δ2(k − 1)

k + 1
)− Φ(−δ2(k − 1)

k1
+

ϵ

k1
+

δ2(k − 1)

k + 1
)

]
× e−.5δ22(k−1)2(k−1

1 −(k+1)−1)
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Finally, we have the probability of (d)∫ −ϵ/k1

−δ2(k−1)/k1+ϵ/k2

ϕ(x) [Φ(x+ ϵ/k1)− Φ(x)]k1 [Φ(x+ δ2(k − 1)/k1)− Φ(x+ δ2(k − 1)/k1 − ϵ/k2)]
k2 dx

≥
∫ −ϵ/k1

−δ2(k−1)/k1+ϵ/k2

φ(x)(ϵ/k1)
k1ϕ(x)k1 × (ϵ/k2)

k2ϕ(x+ δ2(k − 1)/k1)
k2 dx

=

(
ϵ√
2π

)k

k−k1
1 k−k2

2

∫ −ϵ/k1

−δ2(k−1)/k1+ϵ/k2

1√
2π

e−
1
2
[x+δ2(k−1)k2/(k1(k+1))]2 dxe−0.5δ22(k−1)2k2/k21(1−k2/(k+1))

=

(
ϵ√
2π

)k

k−k1
1 k−k2

2 (k + 1)−1/2

[
Φ(− ϵ

k1
+

δ2(k − 1)k2
k1(k + 1)

)− Φ(−δ2(k − 1)

k1
+

ϵ

k2
+

δ2(k − 1)k2
k1(k + 1)

)

]
× e−0.5δ22(k−1)2k2/k21(1−k2/(k+1))

Finally, we get the lower bound of the conditional probability by adding the lower bounds
for (a1), (a2), (b), (c) and (d) and then diving it by Pr(χ2

k−1 ≤ δ22k(k − 1)2/2).

We can calculate this lower bound numerically. Using this lemma we calculate, when
k = 3, k1 = 1, δ2 = .025 and ϵ = 0.01 the probability is 3.2%, when k = 4, k1 = 2, δ2 = .02
and ϵ = 0.01 the probability is at least 5%.

2 Proof of Theorem 2

(a) We first see the only-if part of the theorem. If M is a matching and it permits a negative
alternating cycle, R, then M ′ = M⊕R is another matching and c(M ′) = c(M⊕R) < c(M).
Thus, M cannot be an optimal matching.

Now we prove the if part of the statement. Suppose M is a matching that does not
permit any negative alternating cycle. We start by observing that any other matching of
the same set of matched vertices can be created from M by composing it with alternating
cycles. More specifically, if M ′ is any other matching on the same set of vertices as M and
|M ′| = |M |, then there are non-overlapping alternating cycles R1, R2, . . . , Rl with respect
to M so that M ′ = M ⊕ R1 ⊕ R2 ⊕ · · · ⊕ Rl.1 Since, M does not permit any negative
alternating cycles, we have c(M ⊕Ri) ≥ c(M).

We write, c(M ⊕Ri) = c(M \Ri) ∨ c(Ri \M), where we denote by x ∨ y = max{x, y}.
Also, c(M) = c(M \ Ri) ∨ c(Ri ∩M). Let δ1i = c(Ri ∩M), and δ2i = c(Ri \M). Thus
c(M ⊕Ri) ≥ c(M) implies, either δ1i ≤ δ2i, or δ1i, δ2i ≤ c(M \Ri). Further,

c(M \Ri) = c(M \ (R1 ∪ · · · ∪Rl)) ∨ {∨j ̸=ic(M ∩Rj)}
= c(M \ (R1 ∪ · · · ∪Rk)) ∨ {∨j ̸=iδ1j}.

1Note though that it is possible for two maximal matchings M and M ′ for the complete graph, M ′ ̸=
M ⊕R for any alternating cycle R, that is, for two matchings on the same set of vertices composition with
more than one alternating cycles may be necessary to transform one matching to the other.
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Now,

c(M ⊕R1 ⊕ · · · ⊕Rl) = c(M \ (R1 ∪ · · · ∪Rl)) ∨ c((R1 ∪ · · · ∪Rl) \M)

= c(M \ (R1 ∪ · · · ∪Rl)) ∨ c(R1 \M) ∨ · · · ∨ c(Rl \M)

= c(M \ (R1 ∪ · · · ∪Rl)) ∨ {∨li=1c(Ri \M)}
= c(M \ (R1 ∪ · · · ∪Rl)) ∨ {∨li=1δ2i} (S2)

For any i, we have either δ2i ≥ δ1i or δ2i ≤ c(M \ (R1 ∪ · · · ∪ Rk)) ∨ {∨j ̸=iδ1j}. In the
second case, we also have, δ1i ≤ c(M \ (R1 ∪ · · · ∪ Rk)) ∨ {∨j ̸=iδ1j}. Hence, in this case,
δ2i, δ1i ≤ max{c(M \ (R1 ∪ · · · ∪ Rl)),∨j:δ1j≤δ2jδ1j}. Using these relations, thus, in (S2)
we have

c(M ⊕R1 ⊕ · · · ⊕Rl) = c(M \ (R1 ∪ · · · ∪Rl)) ∨ {∨li=1δ2i}
≥ c(M \ (R1 ∪ · · · ∪Rl)) ∨ {∨li=1δ1i}
= c(M \ (R1 ∪ · · · ∪Rl)) ∨ {∨j ̸=iδ1j} ∨ δ1i

= c(M \Ri) ∨ c(Ri ∩M) = c(M).

This completes our proof of part (a).

(b) Let M be a matching of size m that permits no negative alternating cycle. Let P0 be
a shortest augmenting path of M , and define M ′ = M ⊕ P0.

The proof is by contradiction. If possible suppose, R is a negative alternating cycle of
M ′, i.e., R is an alternating cycle with respect to the matching M ′ and c(M ′⊕R) < c(M).

First consider the case when P0 ∩R = ∅. Note that

c(M ′ ⊕R) = c(M ′ \R) ∨ c(R \M ′)

= c((M ′ \ P0) \R) ∨ c(R \ (M ′ \ P0)) ∨ c((P0 \M ′) \R) ∨ c(R \ (P0 \M ′)).
(S3)

Where we use the notation x∨ y to shorthand max{x, y}. When P0 ∩R = ∅, we have the
following

(P0 \M) \R = (P0 ∩M c) ∩Rc

= (P0 ∩Rc) ∩M c = P0 ∩M c = P0 \M.

R \ (P0 \M) = R ∩ (P0 ∩M)c

= R ∩ (P c
0 ∪M c)

= (R ∩ P c
0 ) ∪ (R ∩M c)

= R ∪ (R ∩M c) = R.

Where we have used De-Morgan’s law and the distributive law for the second and the third
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equality respectively. Also

R \ (M \ P0) = R ∩ (M ∩ P c
0 )

c

= (R ∩M c) ∪ (R ∩ P0)

= (R ∩M c) ∪ ∅ = R \M.

Rewrite (S3) as

c(M ′ ⊕R) = c((M \ P0) \R) ∨ c(P0 \M) ∨ c(R \M) ∨ c(R). (S4)

Note that, as P0 ∩R = ∅

c(M ⊕R) = c(M \R) ∨ c(R ∨M)

= c((M \ P0) \R) ∨ c(M ∩ P0) ∨ c(R \M). (S5)

Also
c(M) = c(M \ P0) ∨ c(P0 ∩M), (S6)

and
c(M ′) = c(M \ P0) ∨ c(P0 \M). (S7)

Since R is a negative alternating cycle with M ′, from (S4) and (S7)

c((M \ P0) \R) ∨ c(R \M) ∨ c(R) < c(M \ P0). (S8)

This implies,

c((M \ P0) \R) ∨ c(R \M) ∨ c(M ∩ P0) ∨ c(R) < c(M \ P0) ∨ c(M ∩ P0).

The left hand side term above is at least c(M ⊕ R) by (S5) and the right hand side term
is c(M) by (S6). Thus c(M ⊕ R) < c(M). Which gives us a contradiction since, by our
assumption, M does not permit any alternating cycle.

Now consider the other case, P0∩R ̸= ∅. Define for this case P̃ = (P0∩Rc)∪ (R∩P c
0 ).

First we observe that c(M ′ ⊕R) = c(M ⊕ P̃ ). To see this, write

M ′ ⊕R = (M ′ ∩Rc) ∪ (R ∩M ′c)

= {(M ∩ P c
0 ) ∩Rc} ∪ {P0 ∩M ∩Rc} ∪ {R ∩ ( (M ∩ P c

0 ) ∪ (P0 ∩M c) )c}
= {(M ∩ P c

0 ) ∩Rc} ∪ {P0 ∩M ∩Rc} ∪ {R ∩ ( (M c ∪ P0) ∩ (P c
0 ∪M) )}

= {(M ∩ P c
0 ) ∩Rc} ∪ {P0 ∩M ∩Rc} ∪ {R ∩ ( (M c ∩ (P c

0 ∪M)) ∪ (P0 ∩ (P c
0 ∩M)) )}

= {(M ∩ P c
0 ) ∩Rc} ∪ {P0 ∩M ∩Rc} ∪ {R ∩ ( (M c ∩ P c

0 ) ∪ (P0 ∩M) )}
= {M ∩ P c

0 ∩Rc} ∪ {P0 ∩M ∩Rc} ∪ {R ∩M c ∩ P c
0} ∪ {R ∩ P0 ∩M} (S9)
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Also,

M ⊕ P̃ = (M ∩ P̃ c) ∪ (P̃ ∩M c)

= {M ∩ ( (P0 ∩Rc) ∪ (R ∩ P c
0 ) )

c} ∪ {((P0 ∩Rc) ∪ (R ∩ P c
0 )) ∩M c}

= {M ∩ ( (P0 ∩Rc) ∪ (R ∩ P c
0 ) )

c} ∪ {P0 ∩Rc ∩M c} ∪ {R ∩ P c
0 ∩M c}

= {M ∩ ( (P c
0 ∪R) ∩ (Rc ∪ P0) )} ∪ {P0 ∩Rc ∩M c} ∪ {R ∩ P c

0 ∩M c}
= {M ∩ ( (P c

0 ∩ (Rc ∩ P0)) ∪ (R ∩ (Rc ∩ P0)) )} ∪ {P0 ∩Rc ∩M c} ∪ {R ∩ P c
0 ∩M c}

= {M ∩ ( (P c
0 ∩Rc) ∪ (R ∩ P0) )} ∪ {P0 ∩Rc ∩M c} ∪ {R ∩ P c

0 ∩M c}
= {M ∩ P c

0 ∩Rc} ∪ {M ∩R ∩ P0)} ∪ {P0 ∩Rc ∩M c} ∪ {R ∩ P c
0 ∩M c} (S10)

Notice that (S9) and (S10) are identical. As R is a negative alternating cycle of M ′ we
have

c(M ⊕ P̃ ) = c(M ′ ⊕R) < c(M ′) = c(M ⊕ P0).

Finally, we shall show that P̃ is an augmenting path with respect to M that starts at s,
i.e., P̃ ∈ Ps(M). This will contradict the fact that P0 is the minimal augmenting path
with respect to P0.

We first argue that P̃ starts with s. Let (s, t) ∈ P0, an unmatched edge of M .
Consequently, (s, t) is a matched edge in the augmented match M ′. Also, no other edge in
P0 includes s. There are now two possibilities, either there is an edge in R that includes
s, or there is not. If there is no such edge, then (s, t) ∈ P̃ . Otherwise, (s, t) ∈ R, and
since R is an alternating cycle with respect to M ′, there is an edge (s, v) in R where u is
matched in M ′ and in M . Thus, P̃ starts at s. The same argument shows that if P0 ends
at u, which is an unmatched node in M then P̃ also ends at u.

Lastly, we show that P̃ is an augmenting path with respect to M . To show this, it
suffices to show that if (t1, t2) ∈ P̃ then (i) both t1 and t2 are matched in M , else one is
matched in M and the other is unmatched in M , i.e., s or u, and (ii) when t1 and t2 are
not s and u, there is exactly one t3(̸= t2) and one t4( ̸= t1), both of which are matched
nodes in M so that (t3, t1) ∈ P̃ and (t2, t4) ∈ P̃ .

We argue in two cases, and assume that neither of t1, t2 is s or u.
Case 1; suppose (t1, t2) ∈ P0 but (t1, t2) ̸∈ R. Consider two sub-cases. First, suppose

(t1, t2) ∈M ′. Then, as R is an alternating cycle, neither (t3, t1) or (t2, t4) are in R. Also,
the nodes t1 and t2 are not in R. Hence, (t3, t1) and (t2, t4) are in P0 \ R ⊆ P̃ . Next,
suppose, (t1, t2) ̸∈ M ′. Since (t1, t2) ∈ P0, (t1, t2) ∈ M . If possible, suppose (t1, t5) ∈ R
and (t1, t6) ∈ R. One is matched in M ′ and the other is unmatched in M ′. Wlog, suppose
(t1, t5) is matched in M ′. As M ′ is the augmented match M ⊕ P0, (t1, t5) must be in P0.
Which implies that (t1, t5) = (t1, t3). So, (t1, t3) ̸∈ P̃ and (t1, t6) ∈ P̃ . Similarly, there is
exactly one edge in P̃ , other than (t1, t2) with the node t2.

Case 2; (t1, t2) ∈ R but (t1, t2) ̸∈ P0. Since, R is a cycle, there is exactly one t3 and one
t4 so that (t3, t1) ∈ R and (t2, t4) ∈ R. At most one of them are in P0. For, (t1, t2) ̸∈ P0

implies either (t1, t2) is a matched edge in both M and M ′, or it is an unmatched edge in
both M and M ′. We consider these two sub-cases separately. If (t1, t2) is matched in
both M and M ′, neither (t3, t1) nor (t2, t4) are in P0. Because, if say (t3, t1) was in P0, as
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it is an unmatched edge in M ′, it would be matched in M . But, as P0 is an augmenting
path, there is also another t5 such that (t5, t1) is in P0 and matched in M ′. Which is a
contradiction to the fact that the matched edge of t1 in M ′ is not in P0.

Now suppose (t1, t2) is unmatched in both M and M ′. Then consider the two edges
(t3, t1) and (t2, t4). Suppose, if possible, there is an edge (t1, t5) in P0. Then there is also
another edge (t1, t6) ∈ P0. One of them, say the first one, is matched in M ′ and the other
is unmatched in M ′. As R is an alternating cycle and (t1, t2) is unmatched in R, it is true
that (t1, t5) is in R. So, (t1, t5) ̸∈ P̃ and (t1, t6) ∈ P̃ .

Thus, we have established that P̃ ∈ Ps(M), an augmenting path with respect to M
that starts at s. Thus, if R is a negative alternating cycle with respect to M , we have
established a contradiction to the fact that P0 is the shortest augmenting path with respect
to M by showing c(M ⊕ P̃ ) < c(M ⊕ P0).

3 Algorithm to find the shortest augmenting path

In this appendix we present the algorithm of finding the shortest augmenting path P0 ∈
Ps(M) used in Algorithm 1 of the main text.

1. Input: V a set of 2n nodes; the cost function c between any two vertices u and v
given by c[u, v]; node s in V that is unmatched in the existing match M .

2. Initialization: Define vectors, of size 2n each, l, m, p, p_org, dm, dp and Pseudo, and
a scalar Bls. Make a non-redundant copy of V as V ′ that would be modified within the
algorithm. Set

• l[v] = 'uncolored' for v ̸= s and l[s] = 'colored'.

• m[v] = NULL for all v.

• p[v] = s for all v; p_org = p.

• dm[v] = c[s, v] for all v and dm[s] = -Inf.

• dp[v] = Inf for all v.

• Pseudo[v] = FALSE for all v.

• Bls = s.

Interpretation of the variables:
The interpretation of these objects in the algorithm is as follows.

• This algorithm builds a tree rooted at s, and stops when it finds another node v that
is also unmatched in M and is the next best option to be added to the tree.

• l: As more nodes are added to the tree those nodes are labeled as colored by the
vector l.
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• p: In the tree if a node is added before its matched node is added, vector p is used
to find its parent node in the tree. If a node v has not been added to the tree yet,
thus l[v] = 'uncolored', p[v] labels the node in the tree so that if v were to be
added to the tree attaching it to p[v] would be the best.

• m: When a node v is added that already has its matched node in the tree, the value
of the vector m[v] is used to identify that matched node of v. The value of m[v] is
NULL for other nodes. Specifically, m[s] = NULL and m[Bls] = NULL (see the final
point about Bls).

• dm: For an uncolored node v the value dm[v] stores the best cost if v were to be
added to the tree at p[v].

• dp: When a node v is added to the tree, dp[v] is the best cost of the path traversed
from v to s along the tree.

• Pseudo: In the process of building the tree, the algorithm might find a cycle which
can be traversed any way with and the cost would remain the same. These would
be a cycle of an odd number of edges. The algorithm then collapses the nodes in
the cycle to one pseudo-node. When a pseudo-node is created the nodes in it are
removed from V ′. Initially, none of the nodes are pseudo nodes; thus, Pseudo[v] =
FALSE for all v.

• p_org: p_org tracks the parent nodes of v in the original nodes.

• Bls: Bls denotes the node or a pseudo-node in V ′ that includes the root node s.
At anytime, the tree is rooted at Bls.

In the following we use the notation x ∨ y to denote max(x, y).

3. A while(TRUE) loop, that exists at (⋆).
Define:

δ1 = min
v∈V ′: l[v]='uncolored'

dm[v],

δ2 = min
v∈V ′: l[v]='colored'

dp[v] ∨ dm[v].

Consider two switch cases — Case 1: δ1 < δ2 and Case 2: δ2 ≤ δ1.
First, for these two switch cases set

v = arg min
v∈V ′: l[v]='uncolored'

dm[v] when Case 1,

or, v = arg min
v∈V ′: l[v]='colored'

dp[v] ∨ dm[v] when Case 2.

Now for these two cases we do the following operations.

Case 1:
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If v is unmatched in M then exit the while loop, go to 4. (⋆)

Otherwise, do the following.

• Find u that is the matched vertex of v in M .

• Set l[u]='colored', m[u]=v, dp[u]= δ1, and l[v]='inline'.

• Check vertex u for possible reassignment of 'uncolored' nodes.

– Scan for each v′ ∈ {v′ | v′ ∈ V ′, v′ ̸= u, v′ ̸= v, l[v′] = 'uncolored'},
– if max{dp[u], c[u, v′]} < dm[v′] : set dm[v′] = max{dp[u], c[u, v′]},

and p[v′] = u.

Case 2: Find two paths, using a backward search method, Path 1 and Path 2 in V ′.

• Path 1 is a path that starts at v and ends at Bls so that when t1 → t2 → t3 → t4 in
the path, ti ∈ V ′ for all i and ti+1 = p[ti] or ti+1 = m[ti].

• Path 2 is a path that starts at p[v] and ends at Bls so that, as before, when
t1 → t2 → t3 → t4 in the path, ti ∈ V ′ for all i and ti+1 = p[ti] or ti+1 = m[ti].

In the path find the vertex u′ so that u′ is in both the paths and no other node that
proceeds u′ in Path 1 is a node that proceeds u′ in Path 2. Define a new path that
first traverses Path 1 backwards from u′ to v and then jumps to Path 2 and traverses
it forwards from p[v] to the node preceding u′ (so u′ is traversed). Call this path b.
Notice that b can also be thought of as a cycle. Also, starting from any node in b we
can find an alternating path to u′ that needs an odd number of edges.

The following steps are used to collapse the nodes in b into a new pseudo-node called
newnode. It assigns appropriate values to the vectors l, m, p, dm, dp and Pseudo for the
new node. The nodes in b are removed from V ′ and V prime adds newnode.

• Define a new node newnode and include it in V ′. Set B[newnode] = b.

• Remove the nodes in b from V ′.

• l[newnode] = 'colored'.

• m[newnode] = m[u′].

• p[newnode] = p[m[u′]].

• dm[newnode] = Inf.

• dp[newnode] = δ2.

• Pseudo[newnode] = TRUE.

• If m[newnode] = NULL set Bls = newnode.
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s = 56

b b b1 2 99

Figure S1: Initialization.

• p[t] = newnode for all t so that p[t] is a node in b.
The final step for Case 2 is a reassignment step for the 'uncolored' nodes within

the new pseudo-node. The steps, which is reminiscent of the reassignment step at the
end of the operations in Case 1, runs as follows

• For all v′ ∈ {v′ | v′ ∈ V ′, l[v′] = 'uncolored'} do the following.

– For t ∈ V ∩ {nodes in b} define dtemp[t] = max{dp[newnode], c[t, v′]}.
– If dt := mint∈V ∩{nodes in b} dtemp[t] < dm[v′], set

∗ dm[v′] = dt and p[v′] = newnode.
∗ p_org[v′] = argmint∈V ∩{nodes in b} dtemp[t].

4. Expanding the path from v to s along the tree:
Upon exiting 3 at (⋆), the final step of the algorithm is to find the path from v to s

in the tree. This can be done in two steps. First, one can find the path from v to Bls
through the nodes in V ′. This is done easily using the vectors p and m. Second, as many
of the nodes in V ′ might be pseudo-nodes, this path needs to be expanded to a path in V .
For the second step one can use a recursive algorithm similar one in Derigs (1988). All
the information required are stored in the variables Bls (the node/pseudo-node containing
s), p (the parents in V ′ for the nodes in the tree), p_org (the parents in V for the nodes in
the tree), m (the matched node for a node added to the tree after), and B (the structure of
each pseudo-node). The resulting path is the shortest augmenting path P0 ∈ Ps(M) from
s to v.

The proposed algorithm has been implemented in R. This has been made available
through the repository https://github.com/bikram12345k/BlockingAlgo.

3.1 An illustration.

In the following we give an illustration of a possible sequence of finding the shortest
augmenting path. The illustration is drawn from a simulated data in an intermediate step
of Algorithm 1 when the existing matched structure M has 35 matched pairs.

In Figure S1 the initialization step starts with s = 56, which is the root node of the tree.
Figures S2 and S3 show the following three steps. Each step correspond to one round of
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the while loop in the algorithm. In these two steps the tree grows from the root node to
3 nodes, from 3 nodes to 5 nodes and from 5 nodes to 7 nodes. In all these steps case 1
prevails over case 2. Figure S2, showing sub processes of step 1, highlights the growth of
the tree, on the left, and then, on the right, the reassignment of the 'uncolored' nodes
to new colored node u = 80. The colored nodes are shown in the filled black circles. The
nodes 'inline' are shown in hollowed black circles. The 'uncolored' nodes, that are
not in the tree, can be attached later only to a 'colored' node.

Later, in Figure S4, skipping a few steps, we show the tree after Step 7. The next
step, Step 8 in Figure S5, processes Case 2 with v = 44 and p[v] = 42. Path 1 is
44 → 21 → 84 → 4 → 42 → 33 → 24 → 59 → 80 → 16 → 56, and Path 2 is 42 → 33 →
24 → 59 → 80 → 16 → 56. So, b = 42 → 4 → 84 → 21 → 44. In the center figure, the
'uncolored' nodes are reassigned to the nodes {42, 4, 84, 21, 44}. These links are stored
in p_org. Finally, in the right-most figure, the nodes in b are removed from V ′ and b is
shrunk to a new pseudo-node.

The remaining steps of the algorithm are not shown. The algorithm creates eight
pseudo nodes. They are B1 = 42 → 4 → 84 → 21 → 44, B2 = B1 → 32 → 68 → 55 → 1,
B3 = B2 → 19 → 62 → 12 → 28, B4 = B3 → 6 → 72 → 23 → 50, B5 = B4 → 36 → 39 →
3→ 47, B6 = B537→ 49, B7 = 24→ B6→ 38→ 88, and B8 = B7→ 34→ 20→ 46→ 53.
The algorithm ends with finding the shortest path along the nodes/pseudo-nodes in V ′ as
57→ B8→ 59→ 80→ 16→ 56. This path is expanded to find the path along the original
nodes V as 57 → 49 → 37 → 21 → 44 → 42 → 33 → 24 → 59 → 80 → 16 → 56 = s.
For this expansion, three vectors m, p, and p_org are used. In this specific example these
vectors are shown below. Notice that in expanding the path, if a pseudo-node is traversed,
it is done in a direction that an even number the nodes/pseudo-nodes, equivalently, an odd
number of edges are traversed.
m =

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26
NA "52" NA NA NA NA NA "9" NA "30" "43" "28" NA NA NA NA NA NA NA "34" NA NA NA "59" NA NA
27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52

"18" NA "40" NA NA NA NA NA "13" NA NA NA "36" NA "7" "33" NA "21" NA NA "3" "14" "37" "23" NA NA
53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78

"46" "25" "1" NA NA NA NA NA NA "19" NA NA NA "26" NA "32" NA NA NA "6" NA NA "45" NA NA NA
79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 B1 B2 B3 B4

"22" "16" NA NA NA "4" NA NA NA "38" NA NA NA NA NA NA NA NA NA NA NA NA "33" "33" "33" "33"
B5 B6 B7 B8

"33" "33" "59" "59"

p =
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26

"B8" "B8" "B8" "B8" "35" "B8" "B8" "80" "B8" "B8" "B8" "80" "B8" "B8" "B8" "56" "B8" "80" "B8" "B8" "B8" "B8" "B8" "27" "79" "79"
27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52

"80" "B8" "B8" "B8" "29" "B8" "B8" "B8" "80" "B8" "B8" "B8" "B8" "B8" "35" "80" "B8" "B8" "B8" "B8" "B8" "B8" "B8" "B8" "B8" "B8"
53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78

"B8" "B8" "B8" NA "B8" "66" "80" "2" "B8" "B8" "11" "66" "79" "B8" "79" "B8" "10" "B8" "27" "B8" "B8" "B8" "8" "B8" "B8" "79"
79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 B1 B2 B3 B4

"B8" "56" "B8" "10" "B8" "B8" "B8" "54" "66" "B8" "B8" "54" "B8" "75" "41" "B8" "B8" "B8" "B8" "B8" "B8" "B8" "B8" "B8" "B8" "B8"
B5 B6 B7 B8

"B8" "B8" "80" "80"

p_org =
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26

"4" "23" "39" "42" "35" "62" "21" "80" "39" "21" "50" "80" "42" "55" "68" "56" "47" "80" "68" "72" "84" "50" "72" "27" "79" "79"
27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52

"80" "21" "24" "12" "29" "84" "24" "44" "80" "32" "21" "3" "44" "23" "35" "80" "24" "42" "12" "20" "21" "4" "4" "42" "28" "50"
53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78

"21" "6" "4" NA "49" "66" "80" "2" "19" "12" "11" "66" "79" "19" "79" "55" "10" "21" "27" "62" "28" "47" "8" "62" "68" "79"
79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100

"4" "56" "88" "10" "42" "24" "20" "54" "66" "24" "1" "54" "68" "75" "41" "49" "12" "47" "68" "20" "36" "47"
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Case 1: Re-assign the 'uncolored'v = 16, u = 80
nodes to new colored node u = 80

Figure S2: Step 1. The 'colored' nodes are shown in solid black circle. The 'inline'
nodes are shown in hollowed black circle. The 'uncolored' nodes are shown in hollowed
gray circle. The tree built has a solid edge encoded in p, and a dashed edge encoded in m.
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Step 2. Case 1. v = 18, u = 27. Step 3. Case 1. v = 59, u = 24.

Figure S3: Step 2 and 3.
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Figure S4: Step 7.

4 Proofs of other results

Proof of Theorem 3. Consider the following characterization of Algorithm 1 and Al-
gorithm 2. Starting with cost matrix, square matrix of size 2m, Algorithm 1 creates the
matching M . If the nodes were labeled 1, . . . , 2m then a matching is characterized by a
bijective function, say ζ on {1, . . . , 2m} so that ζ creates a permutation of {1, . . . , 2m}, i
is matched to ζ(i), and ζ ◦ ζ =Id; ζ has m transpositions.

The input to Algorithm 2 be the cost function on pairs of N = n2J units. Algorithm
2 calls Algorithm 1 J times. Let these J calls output the J mappings ζ1, . . . , ζJ . Then,
ζ1 permutes {1, . . . , N} so that i is matched to ζ1(i) and ζ1 ◦ ζ1 =Id. For x ∈ {1, . . . , N},
write

{x}ζ1 := {x, ζ1(x)}.

Suppose, ζ2, the output to the second call to Algorithm 1, induces a permutation of {{x}ζ1 :
x ∈ {1, . . . , N}}. This permutation has degree N and consists of N/2 transpositions. Write

{x}ζ2◦ζ1 = {x}ζ1 ∪ ζ2({x}ζ1).

Continuing this way suppose, ζj , the output to the second call to Algorithm 1, induces
a permutation to {{x}ζj−1◦...◦ξ1 : x ∈ {1, . . . , N}}. The degree of ζj is N/2j−1 so that
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{x}ζj−1◦...◦ξ1 is matched to ζl({x}ζj−1◦...◦ζ1). Write

{x}ζj◦...◦ζ1 = {x}ζj−1◦...◦ζ1 ∪ ζl({x}ζj−1◦...◦ζ1).

For a set A ⊆ {1, . . . , N}, define

c(A) := max
i,j∈A

cij .

Selection step. Let B̃ = {b̃1, . . . , b̃n} be the optimal design that minimizes (1). For
each b̃ ∈ B̃, we do the following set of operations. Select 2J−1 distinct units x

b̃1
, . . . , x

b̃2J−1 ∈
b so that ζ1(xb̃j) ̸= x

b̃j′
for any j and j′. It is possible to make this selection. First select x

b̃1

arbitrarily from b̃. Select x
b̃2

from b̃\{x
b̃1
}ζ1 , and so on. Note that |∪2J−1−1

j=1 {x
b̃j
}ζ1 | = 2J−2,

so number of choices for {x
b̃2J−1}ζ1 is |̃b \ ∪2J−1−1

j=1 {x
b̃j
}ζ1 | ≥ 2J − (2J − 2) = 2. Let

S
(1)

b̃
:= {x

b̃j
: j = 1, . . . , 2J−1}. Define a one-to-one function

κ
b̃
: S

(1)

b̃
→ b̃ \ S(1)

b̃
, (S11)

arbitrarily. Notice that, by construction, b̃ = S
(1)

b̃
∪ {κ

b̃
(x) : x ∈ S

(1)

b̃
}.

Select a subset of S(2)

b̃
⊆ S

(1)

b̃
in the following way. There are 2J−2 units in S

(2)

b̃
. For

any two units x
b̃
, x′

b̃
∈ S

(2)

b̃
we have {x

b̃
}ζ2◦ζ1 ̸= {x′b̃}ζ2◦ζ1 . This selection can be done in

a similar way as we did for S
(1)

b̃
. Select one unit of S(1)

b̃
arbitrarily and select the second

unit from {x : x ∈ S
(1)

b̃
, x ̸∈ {x}ζ2◦ζ1}. Notice that, for any x ∈ S

(1)

b̃
, since for any other

y ∈ S
(1)

b̃
, by construction, y ̸∈ {x}ζ1 , S

(1)

b̃
∩ {x}ζ2◦ζ1 has at most one unit. Thus, after

the selection of l units for S
(2)

b̃
from S

(2)

b̃
there are (l + 1)th unit is selected from at least

2J−1 − 2l units. Continue next to select S
(3)

b̃
from S

(2)

b̃
of 2J−2 units so that for any two

units x
b̃
, x′

b̃
∈ S

(3)

b̃
we have {x

b̃
}ζ3◦ζ2◦ζ1 ̸= {x′b̃}ζ3◦ζ2◦ζ1 . Having selected S

(j−1)

b̃
, select S

(j)

b̃so that

(1) S
(j)

b̃
⊆ S

(j−1)

b̃
,

(2) |S(j)

b̃
| = 2J−j , and

(3) for x
b̃
, x′

b̃
∈ S

(j)

b̃
with x

b̃
̸= x′

b̃
, we have {x

b̃
}ζj◦···◦ζ1 ̸= {x′b̃}ζj◦···◦ζ1 .

The sequence of subsets
S
(J)

b̃
⊆ · · · ⊆ S

(1)

b̃
⊆ b̃,

creates a connection between the optimal design B̃ and the output of Algorithm 2, B.
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Comparison step. |S(J)

b̃
| = 1 for all b̃ ∈ B̃. Design B has the form {{x}ζJ◦···◦ζ1 : x ∈

S
(J)

b̃
, b̃ ∈ B̃}. Thus, the cost of design B is

c⋆ = max
b∈B

max
i,j∈b

cij = max
b̃∈B̃

max
x∈S(J)

b̃

c({x}ζJ◦···◦ζ1).

To prove the theorem we need the following lemma.

Lemma S2 For any j = 2, . . . , J

max
b̃∈B̃

max
x∈S(j)

b̃

c({x}ζj◦···◦ζ1) ≤ 2max
b̃∈B̃

max
x∈S(j−1)

b̃

c({x}ζj−1◦···◦ζ1) + max
b̃∈B̃

max
x,x′∈S(j−1)

b̃

cxx′ .

We complete the proof of the theorem using this lemma. Proof of Lemma S2 is given
after. Using the lemma repeatedly we have that

c⋆ = max
b̃∈B̃

max
x∈S(J)

b̃

c({x}ζJ◦···◦ζ1)

≤ 2max
b̃∈B̃

max
x∈S(J−1)

b̃

c({x}ζJ−1◦···◦ζ1) + max
b̃∈B̃

max
x,x′∈S(J−1)

b̃

cxx′

≤ 4max
b̃∈B̃

max
x∈S(J−2)

b̃

c({x}ζJ−2◦···◦ζ1) + 2max
b̃∈B̃

max
x,x′∈S(J−2)

b̃

cxx′ +max
b̃∈B̃

max
x,x′∈S(J−1)

b̃

cxx′

· · · · · · · · ·

≤ 2J−1max
b̃∈B̃

max
x∈S(1)

b̃

c({x}ζ1) +
J∑

j=2

2J−j max
b̃∈B̃

max
x,x′∈S(j−1)

b̃

cxx′ .

Recall b̃ from (S12). Consider a pairing of units M ′ = {(x, κ
b̃
(x)) : x ∈ S

(1)

b̃
, b̃ ∈ B̃}.

Since, κ
b̃

maps into b̃ \ S(1)

b̃
and κ

b̃
is one to one from S

(1)

b̃
, M ′ is a matching of the units

{1, . . . , N}. Now, as the first call to Algorithm 1 by Algorithm 2 finds the matching that
is minimizes (1) and this matching is characterized by ζ1, we get that

max
b̃∈B̃

max
x∈S(1)

b̃

c({x}ζ1) ≤ max
b̃∈B̃

max
x∈S(1)

b̃

c({x, κ
b̃
(x)}).
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Since S
(1)

b̃
⊆ b̃, if c̃ is the cost of the optimal matching

c⋆ ≤ 2J−1max
b̃∈B̃

max
x∈S(1)

b̃

c({x}ζ1) +
J∑

j=2

2J−j max
b̃∈B̃

max
x,x′∈S(j−1)

b̃

cxx′

≤ 2J−1max
b̃∈B̃

max
x∈S(1)

b̃

c({x, κ
b̃
(x)}) +

J∑
j=2

2J−j max
b̃∈B̃

max
x,x′∈S(j−1)

b̃

cxx′

≤ (2J−1 +

J∑
j=2

2J−j) ·max
b̃∈B̃

max
i,j∈b̃

cij

= (2J−1 +
J∑

j=2

2J−j) · c̃

= (2J − 1) · c̃ = (k − 1) · c̃.

This completes the proof.

Proof of Lemma S2. Fix j, 2 ≤ j ≤ J . Note that, ζj creates an optimal matching of
{{x

b̃
}ζj−1◦···◦ζ1 : x ∈ S

(j−1)

b̃
, b̃ ∈ B̃}. This is true by construction of S

(j−1)

b̃
, that S

(j−1)

b̃

are nonoverlapping for different b̃ and for x
b̃
, x′

b̃
∈ S

(j−1)

b̃
, {x

b̃
}ζj−1◦···◦ζ1 ̸= {x′b̃}ζj−1◦···◦ζ1 .

In B̃, there is another matching of {{x
b̃
}ζj−1◦···◦ζ1 : x

b̃
∈ S

(j−1)

b̃
, b̃ ∈ B̃}. Within each b̃,

simply arbitrarily pair the units of S(j−1)

b̃
. Call this function k

b̃j
, which is a bijection on

{{x
b̃
}ζj−1◦···◦ζ1 : x

b̃
∈ S

(j−1)

b̃
}, so that {x

b̃
}ζj−1◦···◦ζ1 is matched to k

b̃j
({x

b̃
}ζj−1◦···◦ζ1). Thus,

we get, by the optimality of ζj ,

max
b̃∈B̃

max
x∈S(j)

b̃

c({x}ζj◦···◦ζ1) ≤ max
b̃∈B̃

max
x∈S(j−1)

b̃

c({x}ζj−1◦···◦ζ1 ∪ k
b̃j
({x}ζj−1◦···◦ζ1))

= max
b̃∈B̃

max{A(̃b), B(̃b)}.

Where
A(̃b) = max

x∈S(j−1)

b̃

c({x}ζj−1◦···◦ζ1),

B(̃b) = max
(x,x′)∈T (j−1)

b̃

max
y∈{x}ζj−1◦···◦ζ1
y′∈{x′}ζj−1◦···◦ζ1

cyy′ ,

with T
(j−1)

b̃
= {(x, x′) ∈ S

(j−1)

b̃
× S

(j−1)

b̃
: k

b̃j
({x}ζj◦···◦ζ1) = {x′}ζj◦···◦ζ1 , x ̸= x′}. The term

B(̃b) is the term that ζj does not control for directly. It is the maximum difference across
units that are in different blocks after the (j − 1)th call to Algorithm 1 by Algorithm 2.
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Now, we control this term using the triangle inequality of the cost function.

B(̃b) ≤ max
(x,x′)∈T (j−1)

b̃

max
y∈{x}ζj−1◦···◦ζ1
y′∈{x′}ζj−1◦···◦ζ1

(cxy + cxx′ + cx′y′)

≤ 2 max
x∈S(j−1)

b̃

c({x}ζj−1◦···◦ζ1) + max
(x,x′)∈T (j−1)

b̃

cxx′

≤ 2A(̃b) + max
x,x′∈S(j−1)

b̃

cxx′ .

The proof of the lemma is thus complete by noting that the cost function is nonnega-
tive, thus, A(̃b) ≤ 2A(̃b) + max

x,x′∈S(j−1)

b̃

cxx′ .

Proof of Proposition 4.
(a) First consider the blocking problem without and structure on the costs. We’ll show

a reduction of to the following problem.
Q1. Suppose G = (V,E) is any graph with |V | = nk nodes, and H = (V ′, E′) is another

graph with |V ′| = k. Can the vertices of G be partitioned into k disjoint sets V1, . . . , Vn

such that, for each i, the subgraph of G induced by Vi is isomorphic to H?
This is a problem whose answer is either ‘Yes’ or ‘No’. Kirkpatrick and Hell (1978)

showed that for any fixed H with |V ′| = k > 3, the problem is NP-complete. In other
words, given any fixed H there is no polynomial time algorithm that can answer this binary
question for all graphs G.

Let H be a complete graph of k vertices. For a graph G we consider the following
blocking problem of nk units. These nk units are identified with the nk vertices of G. Let
the cost cij between two units i and j be 1 is the corresponding nodes are connected in E
and be (1 + 2α) is they are not connected in E. Notice that, the solution to the blocking
problem is 1, the maximum in-block differences, when and only when the answer to Q1 is
‘Yes’. Only only other possible value of the blocking problem is (1 + 2α).

Suppose, there is a polynomial time algorithm that can solve the blocking problem at
an approximation factor (1 + α). Suppose c̃ = 1, i.e., the answer to Q1 is ‘Yes’, then
c⋆⋆ ≤ (1 + α) × 1. Since only two possible values of c⋆⋆ are 1 and (1 + 2α), when c̃ = 1
the approximation algorithm finds c⋆⋆ = 1. Also, when c̃ = (1 + 2α), we cannot have
c⋆⋆ = 1. Thus, the approximation algorithm will output c⋆⋆ = 1 if and only if the answer
to Q1 is ‘Yes’. Now using NP-completeness of the problem of finding the answer to Q1,
we conclude that the blocking problem cannot be solved by a polynomial time algorithm,
with an approximation factor (1 + α).

(b) Now consider the blocking problem with structure (4). As before, let H be a
complete graph with k vertices. For any graph G = (V,E) with |V | = nk vertices, consider
the correspondences of the nk vertices to nk units. The cost, cij , between two units i and
j is 2β/α if they are connected in E and it is 6β/α be they are not connected in E. As
before note that answer to Q1 is affirmative if and only if the solution to this blocking
problem is c̃ = 2β/α. Only two possible values are 2β/α and 6β/α.
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Now suppose an approximation is available so that the solution to the blocking problem
by the approximation algorithm is c⋆⋆ ≤ (3− α)c̃+ β. Then, c̃ = 2β/α implies

c⋆⋆ ≤ (3− α)c̃+ β = (3− α)2β/α+ β = 6β/α− β < 6β/α.

Hence, when the answer to Q1 is 1 or equivalently, c̃ = 2β/α, the approximation algorithm
will also achieve the solution c⋆⋆ = 2β/α. On the other hand, c⋆⋆ ̸= 2β/α when c̃ ̸= 2β/α.
Thus, if such an approximation algorithm exits to solve the blocking problem, then using
the above reduction, we can answer Q1 for any graph G. But, Q1 is a NP-complete prob-
lem. Hence the proof.

Proof of Theorem 5. We borrow the notation in the proof of Theorem 3. Suppose
the locally optimal design is B′ ∈ L(B), where B is the output of Algorithm 2. Suppose
xb′ ∈ B′ is such that xb′ is not in the same block as the rest of the units of b′ in B. Make
the selection of S(1)

b′ such that xb′ ̸∈ S
(1)
b′ . This is always possible, since, as discussed in the

proof of Theorem 3, there are two choices for the selection of the last unit of the set S
(1)
b′ .

max
b∈B

max
i,j∈b;i ̸=j

cij = max
b′∈B′

max{ max
x∈S(1)

b′

cx,ζ1(x), max
x,x′∈S(1)

b′

cx,x′ , max
x,x′∈S(1)

b′

cζ1(x),ζ1(x′)}.

Suppose, x⋆b′ ∈ S
(1)
b′ is such that ζ1(x

⋆
b′) ̸∈ b′. We have, by the triangle inequality

cx,ζ1(x⋆
b′ )
≤ cx,x⋆

b′
+ cx⋆

b′ ,ζ1(x
⋆
b′ )
.

Finally, using this fact and the optimality of ζ1 we get that

max
b∈B

max
i,j∈b;i ̸=j

cij ≤ 2 ·max
b′∈B′

max
i,j∈b′;i ̸=j

cij .

Proof of Theorem 6. The first step to prove the theorem is to follow the ‘selection step’
of the proof of Theorem 3. Following that discussion let ξ1, . . . , ξJ be the functions that
characterizes the outputs to the J calls to Algorithm 1 by Algorithm 2 for (7).

Let, N = n2J . Write for x ∈ {1, . . . , N}

{x}ξ1 := {x, ξ1(x)},

{x}ξj◦...◦ξ1 = {x}ξj−1◦...◦ξ1 ∪ ξj({x}ξj−1◦...◦ξ1).

For a set A ⊆ {1, . . . , N}, define

cs(A) :=
∑
i,j∈A

cij .

Selection Step. Let B̃ = {b̃1, . . . , b̃n} be the optimal design that minimizes (7). For
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each b̃ ∈ B̃, we do the following set of operations. Select 2J−1 distinct units x
b̃1
, . . . , x

b̃2J−1 ∈
b so that ξ1(xb̃j) ̸= x

b̃j′
for any j and j′. Let S

(1)

b̃
:= {x

b̃j
: j = 1, . . . , 2J−1}. Define a

one-to-one function
κ
b̃
: S

(1)

b̃
→ b̃ \ S(1)

b̃
, (S12)

arbitrarily. Notice that, by construction, b̃ = S
(1)

b̃
∪ {κ

b̃
(x) : x ∈ S

(1)

b̃
}. Having selected

S
(j−1)

b̃
, for j = 2, . . . , J , select S

(j)

b̃
so that

(1) S
(j)

b̃
⊆ S

(j−1)

b̃
,

(2) |S(j)

b̃
| = 2J−j , and

(3) for x
b̃
, x′

b̃
∈ S

(j)

b̃
with x

b̃
̸= x′

b̃
, we have {x

b̃
}ξj◦···◦ξ1 ̸= {x′b̃}ξj◦···◦ξ1 .

Optimality of ξj. For each b̃, arbitrarily pair the units of S(j−1)

b̃
. Call this function

k
b̃j

, which is a bijection on {{x
b̃
}ξj−1◦···◦ξ1 : x

b̃
∈ S

(j−1)

b̃
}, so that {x

b̃
}ξj−1◦···◦ξ1 is paired to

κ
b̃j
({x

b̃
}ξj−1◦···◦ξ1). Using these k

b̃j
’s define κj , a pairing of the units of ∪

b̃∈B̃{{xb̃}ξj−1◦···◦ξ1 :

x
b̃
∈ S

(j−1)

b̃
} so that κj pairs units in {{x

b̃
}ξj−1◦···◦ξ1 : x

b̃
∈ S

(j−1)

b̃
} for all b̃ ∈ B̃ according

to κ
b̃j

.
Since ξj optimaly pairs the units in ∪

b̃∈B̃{{xb̃}ξj−1◦···◦ξ1 : x
b̃
∈ S

(j−1)

b̃
} we have

max
b̃∈B̃

max
x
b̃
∈S(j−1)

b̃

cs({xb̃}ξj◦···◦ξ1)

= max
b̃∈B̃

max
x
b̃
∈S(j−1)

b̃

cs(
{
{x

b̃
}ξj−1◦···◦ξ1 ∪ ξj({xb̃}ξj−1◦···◦ξ1)

}
)

≤ max
b̃∈B̃

max
x
b̃
∈S(j−1)

b̃

cs(
{
{x

b̃
}ξj−1◦···◦ξ1 ∪ κj({xb̃}ξj−1◦···◦ξ1)

}
). (S13)

Comparison step. Since |S(J)

b̃
| = 1 and for x, x′ ∈ ∪

b̃∈B̃S
(J)

b̃
with x ̸= x′, by construc-

tion {x}ξj◦···◦ξ1 ̸= {x′}ξj◦···◦ξ1 . Thus, if B is the output of Algorithm 2 for (7) then

c⋆⋆ := max
b∈B

1

|b|
cs(b) = max

b̃∈B̃

1

|b|
cs({{x}ξJ◦···◦ξ1 : x ∈ S

(J)

b̃
}). (S14)

This establishes the connection between the cost of the design B and the optimal design
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B̃. By (S14) and (S13)

c⋆⋆ ≤ max
b̃∈B̃

1

|̃b|
cs(∪x

b̃
∈S(J−1)

b̃

{
{x

b̃
}ξJ−1◦···◦ξ1 ∪ κJ({xb̃}ξJ−1◦···◦ξ1)

}
)

= max
b̃∈B̃

1

|̃b|

[ ∑
x
b̃
∈S(J−1)

b̃

cs({xb̃}ξJ−1◦···◦ξ1)+

1

2

∑
x
b̃
,x′

b̃
∈S(J−1)

b̃
x
b̃
̸=x′

b̃

{cs({xb̃}ξJ−1◦···◦ξ1 ∪ {x
′
b̃
}ξJ−1◦···◦ξ1)− cs({xb̃}ξJ−1◦···◦ξ1)− cs({x′b̃}ξJ−1◦···◦ξ1)}

]

≤ max
b̃∈B̃

1

|̃b|

∑
x
b̃
∈S(J−1)

b̃

cs({xb̃}ξJ−1◦···◦ξ1)+

max
b̃∈B̃

1

2|̃b|

∑
x
b̃
,x′

b̃
∈S(J−1)

b̃
x
b̃
̸=x′

b̃

{cs({xb̃}ξJ−1◦···◦ξ1 ∪ {x
′
b̃
}ξJ−1◦···◦ξ1)− cs({xb̃}ξJ−1◦···◦ξ1)− cs({x′b̃}ξJ−1◦···◦ξ1)}

By the triangle inequality for x
b̃
, x′

b̃
∈ S

(J−1)

b̃
, x

b̃
̸= x′

b̃

cs({xb̃}ξJ−1◦···◦ξ1 ∪ {x
′
b̃
}ξJ−1◦···◦ξ1)

≤ (2J−1)2cx
b̃
,x′

b̃
+ (1 + 2J−1){cs({xb̃}ξJ−1◦···◦ξ1) + cs({x′b̃}ξJ−1◦···◦ξ1)}
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Thus

c⋆⋆ ≤ max
b̃∈B̃

1

|̃b|

∑
x
b̃
∈S(J−1)

b̃

cs({xb̃}ξJ−1◦···◦ξ1)+

max
b̃∈B̃

1

2|̃b|

∑
x
b̃
,x′

b̃
∈S(J−1)

b̃
x
b̃
̸=x′

b̃

{(2J−1)2cx
b̃
,x′

b̃
+ 2J−1cs({xb̃}ξJ−1◦···◦ξ1) + 2J−1cs({x′b̃}ξJ−1◦···◦ξ1)}

≤ max
b̃∈B̃

2J−2 + 1

|̃b|

∑
x
b̃
∈S(J−1)

b̃

cs({xb̃}ξJ−1◦···◦ξ1) + max
b̃∈B̃

(2J−1)2

2|̃b|

∑
x
b̃
,x′

b̃
∈S(J−1)

b̃
x
b̃
̸=x′

b̃

cx
b̃
,x′

b̃

≤ max
b̃∈B̃

2J−2 + 1

|̃b|
2J−(J−1) max

x
b̃
∈S(J−1)

b̃

cs({xb̃}ξJ−1◦···◦ξ1) + max
b̃∈B̃

(2J−1)2

2|̃b|

∑
x
b̃
,x′

b̃
∈S(J−1)

b̃
x
b̃
̸=x′

b̃

cx
b̃
,x′

b̃

=
(2J−1 + 2)

|̃b|
max
b̃∈B̃

max
x
b̃
∈S(J−1)

b̃

cs({xb̃}ξJ−1◦···◦ξ1) + max
b̃∈B̃

(2J−1)2

2|̃b|

∑
x
b̃
,x′

b̃
∈S(J−1)

b̃
x
b̃
̸=x′

b̃

cx
b̃
,x′

b̃

· · · · · · · · ·

≤
∏J−1

j=1 (2
j + 2J−j)

|̃b|
max
b̃∈B̃

max
x
b̃
∈S(1)

b̃

cs({xb̃}ξ1) +
J−1∑
j=1

max
b̃∈B̃

p(J − j; J)4j
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∑
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b̃
,x′
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x
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(S15)

where p(j; J) =
∏j−1

j1=1(2
j1 + 2J−j1), and p(1; J) = 1. In the first term now use (S13) to

replace {x
b̃
}ξ1 by {x

b̃
, κ1(xb̃)}.
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For the coefficient for the first term in (S15) we write

J−1∏
j=1

(2j + 2J−j)

≤
[ 1

J − 1

J−1∑
j=1

(2J−j + 2j)
]J−1

=
[ 1

J − 1
{2J(1− 2−J+1) + 2(2J−1 − 1)}

]J−1

=
[ 1

J − 1
{k(1− 2/k) + 2(k/2− 1)}

]J−1

= (k − 2)J−1(2/(J − 1))J−1 ≤ 8(k − 2)J−1/k

The inequality above follows from the fact that geometric mean ≤ arithmetic mean. The
last inequality follows since (2/(J − 1))J−1 ≤ 8 · 2−J . This term can by dispersed into
(k − 1) terms, which gives us a factor

8(k − 2)J−1/(k(k − 1)) ≤ 8(k − 2)J−3.

The jth term in (S15) in the sum can be dispersed into (2J − 2J−j + 1)/(2J−j − 1) =
2J+j/(2J − 2j)− 1 ≥ 2j − 1 terms. Use the GM ≤ AM inequality to write

p(j; J)1/(j−1) ≤ 1

j − 1
(2j−2+2J−2J−j+1) ≤ 1

j − 1
(3·2J−1−6) = 1

j − 1
(3/2)(k−4). (S16)

To get the second inequality above we have used j = J − 1.
Using (S16) and that (1/(j − 1))j−1 ≤ 2 · 2−(j−1) we get

J−1∑
j=1

p(J − j; J)4j

2j − 1
≤

J−1∑
j=1

2 · 2J{(3/8)(k − 4)}j−1

≤ 2 · 2J (3/8)
J−1(k − 4)J−1

(3/8)(k − 4)− 1

= 2 · 2J(3/8)J−2 (k − 4)J−1

(k − 20/3)

≤ 2 · 4 · (3/4)J−2 (k − 4)J−1

(k − 7)

≤ 2 · 4 · (3/4)2 · 1 · (k − 4)J−1

(k − 7)

= 9/2
(k − 4)J−1

(k − 7)

≤ 9/2 · k(k − 4)J−3
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For k = 4, from (S15) and with the dispersion terms, the approximation factor is

{(21 + 22−1)/(4− 1) + 41/(4− 1)} = 8/3.

For k = 8,

{(21 + 23−1)2/(8− 1) + ((21 + 23−1)41/(5/3) + 42/(8− 1))} = 20.11429.
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5 Comparison using simulations

In this section we evaluate the performance of the proposed methods and compare them to
the available methods in different simulation scenarios. Including Scenario 1 and Scenario
2 of §4.3, three simulation scenarios are considered. The third simulation scenario has two
binary and four continuous variables, and these variables are correlated. To simulate such a
structure a 6 dimensional random vector is simulated from a mixture of three multivariate
normal distributions with mixing proportions 1/2, 3/8 and 1/8 respectively. Each mixing
component has the same covariance structure: the variance of each variable is 1 and the
covariance of any two variables is 0.3. The normal mean vectors for the three components
are (0, 0, 0, 0, 0)⊤, (0, 0, 2, 2,−2,−2)⊤, and (0, 0, 5, 5,−6,−6)⊤, respectively. Finally, the
first two values of the vector, say x1 and x2, are discretized as: x∗1 = 1 if x1 < 0.1 and
x∗2 = 1 if x2 > 0.1, and 0 otherwise. The cost function used in this scenario is the square
root of rank based robust Mahalanobis distance (Rosenbaum, 2010, §8.3).

We compare eight methods for k = 4, as listed in Table S5 and Table S6. The first
four are: Algorithm 2 with and without its improvement using Algorithm 3 for the two
problems (1) and (7). The other four methods are the available methods in the literature,
see §1.3. The ‘Random templating and assignment’ method is the randomized algorithm
of that creates many blockings by randomly selecting one template unit for each block, and
outputs a blocking that is the best among those. The number of blockings it creates is a
parameter of the algorithm. In the simulations, we set this number to 30, a suggestion by
Karmakar (2018). The next two methods, method 6 and 7 in the tables, are the ‘threshold
blocking’ method. For a given threshold k, this method finds a blocking of the units into
blocks of at least k units. In the simulation, the threshold blocking method is evaluated for
two threshold values, k = 3 and k = 4. The last of the methods in the tables is the ‘optimal
greedy’ method. As of the latest available implementation of this method, unless a data
set is provided this method cannot create a blocking. Thus, for Scenario 1 the results of
this method are not available.

In the tables, two measures are reported. The first measure is the maximum of largest
in-block paired differences. Second is the maximum of the average in-block paired differ-
ences. They correspond to the objective functions of problems (1) and (7) respectively.

In Table S5, the numbers are percentages with respect to the baseline algorithm, Al-
gorithm 2 for problem (1), in the first row. A smaller value in Table S5 represents a
better performance by the method. Consider first Scenario 1. In this scenario, compared
to Algorithm 2 for (1) we do not see any improvement by additionally using Algorithm 3.
Although, we do observe improvements in both the measures for Algorithm 2 for (7) by
using Algorithm 3. The threshold blocking method shows identical performance for both
choices of the threshold. Further, they are considerably poorer compared to the random
templating method, which is closer to the methods proposed in this paper, but still inferior
to all of them.

Scenarios 2 and 3 create Mahalanobis distances from two different kinds of multivariate
data sets. In these two scenarios using Algorithm 3 shows a marginal improvement over
Algorithm 2 for (1) — a comparatively better improvement for Scenario 3 over Scenario 2.
The ranking of the last four methods by their performances is the same order in which they
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Table S1: Table of the values. Shows the performance in percentage terms, compared to the base-
line, the first row averaged over 500 simulations in each scenario. Two performance measurements
are considered, and three simulation scenarios are considered (described in the text). The pair of
numbers in parenthesis are the 10% and the 90% quantiles. A smaller value in the table represents
better performance; the smallest one(s) in each column is highlighted in bold.

Measurement Max largest in-block differences Max average in-block differences
Scenario Scenario

1 2 3 1 2 3
Algorithm 2 for (1) 100 100 100 100 100 100
(baseline)
Algorithm 2+3 for (1) 100 99 97 100 100 100

(100, 100) (98, 100) (91, 100) (100, 100) (100, 100) (96, 103)
Algorithm 2 for (7) 121 104 111 85 96 94

(100, 131) (100, 114) (101, 121) (79, 90) (88, 100) (86, 100)
Algorithm 2+3 for (7) 119 106 116 82 94 89

(110, 130) (100, 119) (104, 127) (77, 88) (83, 100) (81, 96)

Random templating 143 133 131 103 123 117
and assignment† (127, 184) (101, 170) (114, 148) (88, 136) (97, 158) (103, 132)
Threshold blocking†† 202 139 139 265 139 136
with k = 3 (194, 209) (96, 193) (114, 166) (248, 284) (97, 189) (112, 164)
Threshold blocking†† 202 168 152 265 146 138
with k = 4 (194, 209) (119, 225) (127, 180) (248, 284) (104, 189) (118, 163)

Heuristic blocking††† – 320 194 – 309 181
(206, 431) (158, 233) (198, 435) (148, 218)

† Karmakar (2018); †† Higgins et al. (2016); ††† Moore (2012).

are listed in the table. The very last method, the heuristic blocking method (the optimal
greedy method of Moore, 2012), performs very poorly; in certain instances the values are
430% of the baseline, on an average 320% and 309% of the baseline for the maximum
largest in-block difference and maximum average in-block difference respectively. The
randomized blocking method again performs better than the threshold blocking method
— only marginally better in the first but considerably better in the second measurement.

In the simulation, for the three scenarios, the threshold blocking method with threshold
k = 3 has average block sizes 5.8, 3.9 and 4 respectively, and with k = 4 has average block
sizes 9.1, 5.4 and 5.7 respectively.

Algorithm 2 for (7) with improvements using Algorithm 3, gives the best performance
in the simulation, when we look at the maximum average in-block difference. This method
also fares well for the maximum largest in-block difference, compared to the best algorithm.

Table S6 complements Table S5. In each scenario, this table reports the percentage
of the simulation instances a method is the winner, in the corresponding measure, among
the 8 methods compared. The columns in the table do not sum to 100% because multiple
methods can have the best value of a measurement in a simulated instance. It is clear from
Table S6 that proposed Algorithm 2 with 3 for (1), the second method in the table, has the
most wins for the maximum of the largest in-block differences and the proposed Algorithm
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Table S2: Table of the winners. In each scenario and for the two measurements, the percentage
of times the method performs the best among all the methods. In each column the best one(s) are
highlighted in bold.

Measurement Max. largest Max. average
in-block difference in-block difference

Scenario Scenario
1 2 3 1 2 3

Algorithm 2 for (1) 100 70 56 0 28 2
Algorithm 2+3 for (1) 100 82 99 0 29 2
Algorithm 2 for (7) 0 41 4 15 58 22
Algorithm 2+3 for (7) 0 34 2 100 88 100
Random templating 0 7 0 0 6 0
Threshold blocking with k = 3 0 15 0 0 8 0
Threshold blocking with k = 4 0 1 0 0 3 0
Heuristic blocking – 0 0 – 0 0

2 with 3 for (7), the fourth method in the table, has the most wins for the maximum of
the average in-block differences. Only in scenario 2, we see a few wins for the random
templating method and the threshold blocking method; no wins for the heuristic blocking
method. In scenarios 2 and 3, we can see noticeable improvements by using Algorithm 3.
In scenario 2, Algorithm 3 improves Algorithm 2 for (1) in at least (82−70)=12% of the
instances, and in scenario 3, in at least (99−56)=43% of the instances. Algorithm 3 also
improves Algorithm 2 for (7), in at least (100−22)=78% of the instances in Scenario 3, in
at least (88−58)=30% of the instances in Scenario 2, and in at least (100−15)=85% of the
instances in Scenario 1.

6 Additional simulation results

This section compares the different methods of blocking to create blocks of size k = 3 and
k = 8, while the main text presented the results for k = 4. Three simulation scenarios are
considered and they have been discussed in the main text. The conclusions of the simu-
lation results of for k = 4 still holds. Algorithm 3 provides a sufficient improvement over
Algorithm 2 in all three simulation scenarios, more for Scenarios 2 and 3. For minimizing
the maximum of the block-wise worst pair, Algorithm 2+3 for (1) outperforms all other
methods in all but one situation. The randomized templating method of Karmakar (2018)
performs best for k = 3 and scenario 2. In this case, the random templating method also
outperforms other methods in the measure of maximum of the average in-block differences.
This simulation is an exception in some of the remarks below as well.

The heuristic blocking method Moore (2012) fairs very poorly in every simulation in-
stance and measure of comparison. Thresholds blocking method comes close second in all
but the above one exception. We note that for k = 3 the threshold blocking algorithm
with threshold 3 created blockings with average block size 5.4, 3.9 and 4 for the three sim-
ulation scenarios respectively. For the other set of simulations with k = 8, the threshold
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blocking algorithm with threshold 8 creates blockings with average block size 31.3, 11.6 and
13.1 for the three simulation scenarios respectively. In the same simulations, a threshold
of 7 creates blockings with average block size 25.3, 10 and 11.2 for the three simulation
scenarios respectively. These averages are over 500 simulated instances for each scenario.

Table S3: k=3. Table of the values. Compared to the baseline, the first row, the value of
the measurement in percentage terms, averaged over 500 simulations in each scenario. Two
performance measurements are considered, and three simulation scenarios are considered
(described in the text). The pair of numbers inside a parenthesis represents the 10% and
the 90% quantile of the value out of the 500 iterations. A smaller value in the table
represents better performance; the smallest one(s) in each column is highlighted in bold.

Measurement Max largest in-block difference Max average in-block difference
Scenario Scenario

1 2 3 1 2 3
Algorithm 2 for (1) 100 100 100 100 100 100
(baseline)
Algorithm 2+3 for (1) 98 91 95 98 91 97

(93, 100) (69, 100) (83, 100) (94, 100) (69, 100) (87, 100)
Algorithm 2 for (7) 108 104 101 100 103 97

(100, 121) (85, 124) (89, 109) (94, 107) (85, 125) (87, 105)
Algorithm 2+3 for (7) 107 91 98 97 91 93

(99, 120) (69, 101) (85, 106) (92, 100) (68, 100) (83, 100)
Random templating 138 80 112 124 84 119
and assignment† (116, 181) (53, 109) (92, 133) (105, 177) (56, 115) (99, 137)
Threshold blocking†† 192 94 127 272 92 133
with k = 3 (181, 201) (58, 136) (104, 155) (252, 284) (56, 134) (108, 164)

Heuristic blocking††† – 187 169 – 205 185
(108, 276) (130, 209) (112, 303) (144, 228)

† Karmakar (2018); †† Higgins et al. (2016); ††† Moore (2012).
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Table S4: k=3. Table of the winners. In each scenario and for the two measurement
criterion, the percentage of times the method performs the best among all the methods. A
larger value implies better performance, and in each column the best one(s) are highlighted.

Measurement Max. largest Max. average
in-block difference in-block difference

Scenario Scenario
1 2 3 1 2 3

Algorithm 2 for (1) 68 9 51 15 9 20
Algorithm 2+3 for (1) 100 16 91 19 15 20
Algorithm 2 for (7) 9 6 17 52 10 63
Algorithm 2+3 for (7) 10 11 18 100 20 98
Random templating 0 60 8 0 46 2
Threshold blocking with k = 3 0 27 1 0 37 0
Heuristic blocking – 0 0 – 0 0

Table S5: k=8. Table of the values. Compared to the baseline, the first row, the value of the
measurement in percentage terms, averaged over 500 simulations in each scenario. Two performance
measurements are considered, and three simulation scenarios are considered (described in the text).
The pair of numbers inside a parenthesis represents the 10% and the 90% quantile of the value
out of the 500 iterations. A smaller value in the table represents better performance; the smallest
one(s) in each column is highlighted in bold.

Measurement Max largest in-block difference Max average in-block difference
Scenario Scenario

1 2 3 1 2 3
Algorithm 2 for (1) 100 100 100 100 100 100
(baseline)
Algorithm 2+3 for (1) 100 98 97 100 99 100

(100, 100) (92, 100) (92, 100) (100, 100) (95, 100) (98, 104)
Algorithm 2 for (7) 121 105 117 85 94 90

(111, 131) (96, 117) (107, 128) (80, 90) (81, 103) (84, 97)
Algorithm 2+3 for (7) 122 129 130 84 87 84

(113, 131) (100, 158) (117, 146) (79, 89) (74, 100) (78, 91)
Random templating 129 129 126 99 113 111
and assignment† (120, 135) (100, 164) (112, 142) (90, 107) (90, 141) (100, 123)
Threshold blocking†† 175 169 153 147 146 141
with k = 8 (163, 188) (123, 220) (132, 178) (87, 198) (106, 193) (123, 163)
Threshold blocking†† 175 180 158 134 150 143
with k = 7 (162, 189) (133, 232) (137, 183) (85, 181) (113, 194) (126, 163)

Heuristic blocking††† – 308 192 – 297 178
(231, 382) (162, 220) (200, 389) (149, 206)

† Karmakar (2018); †† Higgins et al. (2016); ††† Moore (2012).
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Table S6: k=8. Table of the winners. In each scenario and for the two measurement criterion, the
percentage of times the method performs the best among all the methods. A larger value implies
better performance, and in each column the best one(s) are highlighted in bold.

Measurement Max. largest Max. average
in-block difference in-block difference

Scenario Scenario
1 2 3 1 2 3

Algorithm 2 for (1) 100 59 49 0 11 2
Algorithm 2+3 for (1) 100 81 100 0 12 0
Algorithm 2 for (7) 0 34 0 46 26 5
Algorithm 2+3 for (7) 0 12 0 91 92 100
Random templating 0 9 0 0 4 0
Threshold blocking with k = 3 0 0 0 5 0 0
Threshold blocking with k = 4 0 0 0 4 1 0
Heuristic blocking – 0 0 – 0 0
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