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Abstract

Amid increasing awareness regarding opioid addiction, medical marijuana has emerged as an alternative for pain

management. Concurrently, opioid manufacturers are putting significant research into making opioids safer yet

effective. Interactions between these manufacturers and physicians are critical to advance existing pain manage-

ment protocols. Direct payments from opioid manufacturers to physicians are established conduits to facilitate such

interactions. We study the effects of passage of a medical marijuana law (MML) on these direct payments to physi-

cians. To draw causal conclusions, we develop a novel penalized synthetic control (SC) method that accommodates

the zero-payment related latent structures inherent in these payments. Under a truncated flexible additive mixture

model, we show that the SC method has uncontrolled maximal risk without the penalty; by contrast, the proposed

penalized method provides efficient estimates. Our analysis finds a significant decrease in direct payments from

opioid manufacturers to pain medicine physicians as an effect of MML passage. We provide evidence that this

decrease is due to the availability of medical marijuana as a substitute. Additionally, physicians in states with an

MML are prescribing fewer opioids. Finally, the substitution effect is comparatively higher for female physicians

and in localities with higher white, less affluent, and more working-age populations.

Keywords: Access to medication; average treatment effect; latent structure; pain management; penalized

estimation;

1 Introduction

Opioids are a class of drugs used to reduce pain. Opioids can be prescribed by physicians to treat moderate

to severe pain but may also involve serious risks and side effects (DHAS, 2022). Misuse and overuse of

opioids have led to significant increase in opioid addictions and deaths. Opioid overdose-related deaths

in the US rose from 21, 088 in 2010 to 68, 630 in 2020 (NIDA, 2022). As such, opioid consumption and
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its effects are highly debated objects in the current public discourse as well as a topic of vibrant academic

research (Blanco et al., 2007, Cohn and Zubizarreta, 2022, Jacobs et al., 2022, Nam et al., 2020, Neuman

et al., 2020, Prochaska et al., 2021, Zhang et al., 2020).

We consider two notable consequences in light of the opioid epidemic. First, advocacy of marijuana as

a substitute for opioids gained traction (Boehnke et al., 2019, Cooper et al., 2018, Hollenbeck and Uetake,

2021), arguing for its effectiveness as a painkiller while lower the chances of addiction and overdose

death than opioids (NIDA, 2021). Many states have legalized medical consumption of marijuana, which

in part is aimed at reducing opioid-induced harm (Bachhuber et al., 2014, Powell et al., 2018, Shi, 2017).

However, there is no consensus on whether marijuana use is altogether effective or harmless. Second,

opioid manufacturers are continually putting significant effort into research and development to make

opioids safer, e.g., by including an abuse-deterrent formulation (Evans et al., 2019, FDA, 2015).

In the wake of this evolving pain management paradigm, physicians must remain updated on drugs

for appropriate patient care. Without the latest information regarding the drugs, physicians may be unable

to prescribe opioids appropriately for pain management (Guo et al., 2021). There is significant concern

that a subsequent decrease in opioid prescription could lead to opioid being a niche product or, in the

extreme, could potentially lead to severely diminished usage of opioids (Feinberg, 2019, Szalavitz, 2023).

Further, as a cascading effect, it can negatively affect research and development on opioids as well as

decrease in the number of opioid manufacturers. Therefore, opioid manufacturers use different forms of

interactions to engage with physicians on a regular basis. One of the most common conduits to facilitate

such interactions is through direct payments to physicians from opioid manufacturers (Jones and Ornstein,

2016, Schwartz and Woloshin, 2019). These direct payments may be in the form of consulting and speaker

fees, conference travel reimbursements, or meal vouchers.

In this paper, we study the effects of legalization of medical marijuana on these direct payments made

by opioid manufacturers to opioid-prescribing physicians. In 2021, the direct payments to physicians

made by US pharmaceutical companies amounted to $10.88 billion.2 While some have criticized such

payments on ethical grounds, these payments serve as a medium of interaction between physicians and

pharmaceutical companies through which physicians get introduced to new drugs, get updated about

2Based on OpenPayment data from CMS: https://openpaymentsdata.cms.gov/summary
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existing drugs, augment funding of residency and other programs, and gain significant insights through

discussions with fellow physicians in sponsored conferences (Korenstein et al., 2010, Rosenbaum, 2015).

Here, we study the impact that passage of marijuana legalization laws (MML) in different US states

had on the opioid ecosystem by analyzing the changes in these direct payments to opioid prescribers over

time. To derive causal conclusions, we follow the popular synthetic control (SC) method (Abadie et al.,

2010, Abadie and Gardeazabal, 2003). The widely used SC criterion of Abadie et al. (2010) cannot be

directly applied in our context due to an idiosyncratic nature of the physicians’ payment data, which we

describe in details later. To provide consistent inference we develop a novel penalized SC method akin to

Abadie et al. (2015) and Ben-Michael et al. (2021b). In addition to the overall effect of MML passage on

direct payments to opioid prescribing physicians, we also explore the disparities in the said effect across

physicians’ speciality, tenure, and gender as well as the communities these physicians are serving.

1.1 Causal Study of Marijuana Legalization Effects on Direct Payments to Physi-

cians by Opioid Manufacturers

Our exposure of interest is the passage of a law legalizing medical marijuana consumption (MML). We

study its impact on the direct payments made to physicians by opioid manufacturers. Since pharmaceu-

tical companies care about their returns-on-investment, these direct payments by the manufacturers are

strategic, and usually targeted to physicians based on their patient type, practice area, and type of drugs

they tend to prescribe (Angell, 2018, Schwartz and Woloshin, 2019). Therefore, availability of opioid

substitutes in the market can affect these payments. In states that have passed MML, a physician may

recommend medical marijuana for pain (Black, 2022). In such cases, marijuana becomes a substitute for

opioids and consequently, opioid manufacturers may reduce payments to physicians whose patients are

likely to use marijuana for pain management.

Our research looks at how the direct payments from opioid manufacturers to physicians change in

the states where a law legalizing medical marijuana was passed. We use a synthetic control method to

match a physician from a state with MML to physicians in states that have not passed MML. However,

some care in the use of SC methods is warranted. These payments received by a physician are typically

discontinuous; there are often significant periods of time when no payments are made to the physician.
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Nonetheless, controlling for these no-payment periods in our estimation is critical. For example, maybe

a physician receives payment periodically, every six months, while another physician receives payments

every five months. Direct use of a SC method while comparing these two physicians ignores these distinct

latent patterns and thus will result in interpolation bias in the estimated effect (Abadie et al., 2015). We

customize the synthetic control method (Abadie et al., 2010, Abadie and Gardeazabal, 2003) to pay

attention to these varied patterns in physician payments when matching.

As we work with fine-grained datasets containing information at physician-level granularity, we are

able to investigate the heterogeneity in the effect based on physicians’ specialties and their genders. We

also study the heterogeneity in the effect on physician payments based on income, age, and racial compo-

sition of their respective patient communities by merging demographic and socioeconomic information

of the zip codes that each physician serves. We describe the main contributions of our work below.

1. We develop a novel penalized synthetic control method to accommodate the zero-payment related

idiosyncrasies of our physician payments data set. Most physicians’ payment histories contain

instances of no payments, which do not allow direct application of the widely used synthetic control

(SC) method of Abadie et al. (2010). Motivated by penalized SC (PSC) approaches suggested

in Abadie et al. (2015), Ben-Michael et al. (2021a), we develop a novel penalty that can prevent

interpolation biases and can capture the varied patterns of non-payments in the pre-treatment period.

2. We explain the role of the penalty and the working principle behind the developed PSC method

in a truncated flexible additive mixture model that consists of a latent factor model and a mix-

ture process. The model is more complex than the models for which operating characteristics of

SC methods have been studied in the existing literature (Abadie et al., 2010, Ben-Michael et al.,

2021a,b). The truncation is for non-negative payments and the mixture accommodates varying

patterns of zero-payments among the physicians. In Section 3.3, we rigorously explain how the

proposed penalty produces efficient SC estimates by accurately learning the factor model coeffi-

cients as well as mixture group memberships (see Theorem 1). Further, we illustrate the necessity

of the penalty by showing that unpenalized SC method will have uncontrolled maximal risk in the

concerned additive mixture models (see Lemma 3). These results may be of independent interest

in understanding the role of SC methods in mixture models.
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3. We present a primary analysis of the effect on direct payments to pain-medicine physicians using

the proposed PSC method. In each quarter 5%–15% of the physicians had no payments. Physicians

in the MML states (‘treated’ states) and the non-MML (‘control’ states) had no payments on an

average of 0.99 and 1.04 quarters respectively during the pre-treatment period (see Section 2). We

show that the penalized SC method provides a good match for each physician and their synthetic

counterpart during this pre-treatment period. Assuming the validity of the synthetic control method,

we find a statistically significant decrease in payments because of the MML passage.

4. We stress-test our estimated effect of MML passage by testing a possible substitution mechanism

that could explain the inference from the PSC method. First, we find a consistent effect in Florida,

although it passed the MML in 2016 Q4, two quarters after the other treated states in our pri-

mary analysis. Second, for Anesthesiologists, who are less likely to switch to marijuana from

opioids, we observe an immediate negative effect after MML passage, but it later bounces back to

a non-significant effect. Third, we find a negative correlation between increase in marijuana patient

registration and opioid-prescribing physician payments.

5. Finally, we investigate the variability in the MML effect on payments across different subgroups.

This heterogeneity analysis uses the estimated individualized treatment effect of the pain-medicine

physicians. The effect varies between areas with comparatively higher white and black popula-

tions and seems more substantial in areas with more lower-income and working-age populations.

Additionally, the effects of MML passage are lower in magnitude on female physicians.

1.2 Organization of the paper

Section 2 elaborates on our data sets. We develop our PSC method aimed at varied zero-payment pat-

terns and study its theoretical properties in Section 3. In Section 4, we present simulation experiments

comparing the PSC method with the existing methods. Section 5.1 presents the primary analysis result

for pain-medicine physicians. Section 5.2 provides the mechanism analysis. Section 6 probes the hetero-

geneity of the effect across physicians’ gender, experience, and their serving communities’ age, income,

and racial composition. Finally, Section 7 has additional discussion. The supplement contains all the

proofs and computer code to reproduce the numerical results.
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2 Data Description

To operationalize our research objectives, we needed access to the details on direct payments by opioid

manufacturers to opioid prescribing physicians. While these payments are endogenous decisions made

by each manufacturer, due to the “Sunshine Act,” pharmaceutical manufacturers are now mandated by

law to report such payments (Richardson et al., 2014). The act was a federal response to concerns of

potential conflict of interest in physicians accepting these payments, the subsequent possibility of bias in

treatment, and rising health-care costs (Carey et al., 2021, DeJong et al., 2016, Engelberg et al., 2014,

Jones and Ornstein, 2016). In September 2014, the first batch of data was made public. This dataset

contains the dollar value of the gift/payment that transpired between a named physician and a named

pharmaceutical manufacturer, associated products for their interaction, and payment date.

We aggregated the payment information for each physician in our treated and control states for each

of the 16 quarters from 2014 to 2017. In 2016, six states passed a medical marijuana law: Pennsylvania

(PA), Ohio (OH), North Dakota (ND), Louisiana (LA), Florida (FL) and Arkansas (AR). We excluded

the two small states, ND and AR, which had less than three eligible physicians for our primary analysis.

Three out of these four states, PA, OH, and LA passed an MML in the second quarter of 2016, while FL

passed the law in the last quarter of 2016. Since the passage of MML in PA, OH, and LA can confound

the estimated effect of MML on direct payments to Florida physicians, we analyze the treatments effects

on physicians in the former three states separately from physicians in Florida. We use 10 control states

which did not did not pass an MML till 2017.

Against any payment made to a physician, the data lists the drug category or therapeutic area of each

drug promoted during that interaction. Notably, a single payment entry could enlist up to five drugs.

For identifying the payments related to opioids, any payment that mentioned “pain” was marked and

subsequently, those payments were retained which mentioned opioid as one of the drugs. Further, we

only chose those opioid manufacturer–drug combinations against which direct payments were made to

physicians in our pre-MML (pre-treatment) period, i.e., between 2014 and 2016. After this data pre-

processing, we had 15 opioid brands promoted by 5 manufacturers.3 Thus, more precisely, our analysis

3Different dosages of the same drug are considered as a single brand of opioid.
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looks at the effect of an MML passage on payments to physicians related to these 15 opioid brands.

Since multiple drugs, including a mix of opioids and non-opioids, are often associated with a single

payment, there is no logical way to attribute a fraction of the payment to only the opioids. Therefore, to

be conservative, we attributed any financial transaction to opioid-related payment if one or more opioids

were mentioned in that payment. Figure 1 shows the distribution of the proportion of opioids promoted

during each payment and the corresponding average payment amount. The figure shows that the most

common payment type in our data is when only one opioid is promoted, followed by the case where

two drugs are promoted within which one or both might be opioids. Also, between these two types of

payments, higher payments occur when only one opioid is promoted.

Figure 2 describes the payments to physicians in the states we include in our study. Although not iden-

tical, the payments do not look very different between our treated and control states in the pre-treatment

period. The payments however vary with physician specialities. In 2015, the year prior to our treat-

ment year, ‘Anesthesiologists’ received the highest proportion of payments in dollar value, about 30%,

while ‘Pain Medicine’ physicians received the second-highest proportion, about 19%. Anesthesiologists

and pain medicine physicians likely prescribe opioids for different purposes. Pain medicine physicians

primarily deal with chronic pain management. Anesthesiologist, on the other hand, deal with pre- and

post-operative acute pain management. Since marijuana drugs are not yet federally approved (FDA,

2020), anesthesiologists are less likely to be able to recommend or prescribe marijuana as an alternative

medium for acute pain management. Consequently, if medical marijuana were to work as a substitute for

opioid in pain management, we are likely to see a more pronounced effect of MML passage on direct pay-

ments to pain medicine physicians than Anesthesiologists. Therefore, we primarily study pain medicine

physicians to explore the causal effect of MML passage on direct payments, and subsequently include the

effect on Anesthesiologists as part of the mechanism analysis behind the causal effect.

Table 1: Percent of physicians by the number of quarters with zero payments

Number of quarters 0 1 2 3 4 5 6 Total
Control states 50 26 8 7 6 3 0 100
Treated states 53 23 10 9 2 2 2 100

Combining Anesthesiologists or pain medicine physicians, our analysis had 138 and 356 physicians

from the four treated and ten control states, respectively, after removing 11 and 28 physicians from the
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treatment states and control states for extreme and irregular values. Figure 2 shows that in each quarter,

5%–15% of the physicians had no payments. Physicians in the treated and control states had zero pay-

ments on an average of 0.99 and 1.04 quarters, respectively, between 2014 Q1 and 2016 Q2. An incidence

of zero payment during a period between an opioid manufacturer and a physician is informative about the

latent behaviors of both parties. Clearly, the latent behaviors vary across physicians. Thus, our method,

described in the next section, includes an additional penalty to closely match these zero-payment related

latent patterns for a physician and its synthetic counterpart.

We supplement the payments data with the corresponding prescription data for each physician from

the Medicare Part D Prescriber Public Use File.4,5 To calculate the number of opioid-related prescriptions,

we separated the opioid and non-opioid drugs prescribed by the pain-medicine physicians. Figure 3 shows

the yearly average opioids related payments and number of opioids related prescriptions. The figure

shows a decrease in payments, while the average number of prescriptions increase marginally, although

not significantly, from 2015 to 2017. Later, we look at a difference-in-differences comparison for opioid

vs non-opioid prescription patterns for the treated and control states across the years.

We use additional data for further analysis to determine and subsequently elaborate on the heterogene-

ity in the effect of MML passage. Our supplementary analyses use zip-code level data on demographics

and income characteristics from the US census bureau’s American Community Survey. Additionally, we

use information on physicians’ years of experience, gender, and the size of their practice. Finally, we use

longitudinal data on the number of medical marijuana patients in Florida after it passed its MML. For

parsimony, further details on these datasets used for heterogeneity analysis are provided in Section 6.

3 Methodology
3.1 Set-up and notations

Let b be arbitrary unit that received treatment. The set C of all control units is indexed by c = 1, . . . , C.

We observe payments yct, c = 1, . . . , C and t = 1, . . . , T received by units in C. For simplicity, assume

4The Part D Prescriber PUF is from CMS’s Chronic Conditions Data Warehouse, which contains Prescription Drug Event
records submitted by Medicare Advantage and stand-alone Prescription Drug Plans (https://www.cms.gov/Research-Statistics-
Data-andSystems/Statistics-Trends-and-Reports/Medicare-Provider-Charge-Data/ PartD2013.html).

5Unlike the detailed payments dataset, the prescription dataset only gives yearly aggregated information per physician.
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that the treatment was applied between time T − 1 and T . We observe payments ybt, t = 1, . . . , T − 1

received by unit b in the pre-treatment period and the payment y̌bT received by unit b post-treatment.

Noting that unit b would have received ybt if they were not in the treatment set, the treatment effect is

given by TEb = y̌bT − ybT .

Now, if B be a set of treated units indexed by b = C + 1, . . . , C + B, the average treatment effect on

the treated (ATT) over the set B is given by ATTB = B−1
∑C+B

b=C+1 TEb. Our goal is to estimate ATTB as

well as the subgroup average treatment effect ATTA = |A|−1
∑

b∈A TEb over various interesting subsets

of A ⊆ B, where |A| denotes the cardinality of A. For that purpose we next develop a synthetic control

method to estimate the unknown ybT for each b ∈ B. The estimates ŷbT are then used to estimate ATTA

by ÂTTA = |A|−1
∑

b∈A(y̌bT − ŷbT ).

3.2 Proposed Penalized Synthetic Control Method

For unit b ∈ B, we estimate ybT by using the synthetic control (SC) method (Abadie, 2021, Abadie et al.,

2010, Abadie and Gardeazabal, 2003) that prescribes estimating ybT by linearly aggregating the payments

received by the controls ŷbT =
∑C

c=1wbcycT where the weights wbc ≥ 0 and
∑C

c=1wbc = 1 for all b ∈ B.

Let wb be the C dimensional vector (wb1, . . . , wbC) and W denote the B × C matrix whose row b is w′
b.

Define

f(W ;λ, ν) =
1

B

∑
b∈B

[ T−1∑
t=1

(
ybt −

C∑
c=1

wbc yct

)2

+
C∑
c=1

wbc exp

{
λ

( T−1∑
t=1

(
ybt + yct

)
I
{
ybt · yct = 0

})}]

+ ν
T−1∑
t=1

{
1

B

∑
b∈B

ybt −
C∑
c=1

(
1

B

∑
b∈B

wbc

)
yct

}2

, (1)

where I{} denotes the indicator function. For any fixed λ, ν ≥ 0 consider the following minimization:

argmin
W

f(W ;λ, ν) such that wb ≥ 0 and ||wb||1 = 1 for all 1 ≤ b ≤ B. (2)

The objective criterion produces a penalized synthetic control (PSC) estimator. Penalized synthetic con-

trols are increasingly being used (Abadie, 2021, Abadie et al., 2015, Ben-Michael et al., 2021a) to incor-

porate relevant structural constraints particularly while dealing with disaggregate level data. See Section
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1 of Ben-Michael et al. (2021a) for a comprehensive review on usages of penalized synthetic controls.

Here, we have two penalty parameters λ and ν which imparts two different types of regularization on the

estimators. We next elaborate on the motivation behind (1) and the role of the penalization parameters.

We are interested in not only estimating the average treatment effect on the treated ATTB over dif-

ferent concerned subsets of physicians B but also in studying the heterogeneity among the individual

treatment effects TEb. For the first goal, it is best to use pooled SC based criterion that minimizes the

average pre-treatment imbalance across members in B. However, for the second goal it is optimal to use

separate SC criterion which estimates weights by separately minimizing the pre-treatment imbalance for

each treated unit b ∈ B. The estimators from the pooled SC and the separate SC based criteria often

significantly disagree and subsequently producing highly sub-optimal inference in either one of the two

goals. Partially pooled SC (Ben-Michael et al., 2021b) provides a framework for construction of SC esti-

mator whose risk can be simultaneously well-controlled in both the aforementioned inferential goals. We

consider a partially pooled SC framework. The ν hyper-parameter in (1) balances the sum of squared im-

balances (Im) from the individual SC and the pooled SC criteria. As such, note that the objective criterion

minimized here is the sum of three components. Denote the three terms in (1) respectively by

(a) Imsep, which is the sum of squared pre-treatment imbalances for each separate treated units,

(b) Pensep(λ), which is an additive penalty that is separable across treated units, and

(c) Impool, which is the sum of squared pre-treatment imbalances for the average payment in B.

Thus, we have: f(W ;λ, ν) = Imsep + Pensep(λ) + ν Impool. When ν = 0, f(W ;λ, ν) decouples into

B separate unit-level minimization problems. Also, as yit ≥ 0 for all i and t in our data application,

Pensep(λ) is an increasing function of λ. At λ = 0, Pensep(0) = 1. When both λ = 0 and ν = 0,

f(W ;λ, ν) is the canonical SC criterion prescribed in Abadie et al. (2010). When λ = 0 and ν > 0, it

is the partially pooled SC criterion where ν balances the separate unit level and pooled sum of squared

imbalances between the treated unit and their synthetic controls in the pre-treatment period.

We develop and use the penalty Pensep(λ) in (1) to prevent interpolation biases particularly when the

control set is large and have highly heterogeneous members. Such uses of penalties in SC methods were

suggested in Abadie et al. (2015) and later further developed in Ben-Michael et al. (2021b). However,

Pensep(λ) differs in fundamental aspects from penalties that have been prescribed in the existing literature
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on PSC. This is because we have developed Pensep(λ) so that the resulting estimators are adaptive to the

following important structural characteristics of the physicians’ payment data set that we analyze here.

This adaption in the proposed PSC method is crucial (explained later in Section 3.3) in controlling the

error rates of the synthetic control based estimators of TE in this application.

While the observed payment yit is non-negative, we witness (see Table 1 and Figure 2) non-significant

proportion of zero-payments, i.e., yit = 0. As the event of a zero-payment is intrinsically much different

from the event of a positive payment, considering a uniform metric such as L2 distance used in Imsep

across all time points can lead to erroneous estimation. To mitigate the severe interpolation bias that

can happen due to using sum of squared differences between treated and its estimates, we append the

penalty Pensep(λ) to the minimization criterion. A natural choice of penalty is the weighted L1 distance

between the treat unit b and each of the control units: Pen(ℓ1)
sep(λ) = λ{

∑C
c=1wbc (

∑T−1
t=1 |ybt− yct|)} . The

proposed penalty Pensep(λ) differs from it by emphasizing the difference between the treated and control

units in the occurrence of zero-payments. Unlike this L1 penalty, the proposed penalty is not linear but

exponential and it only considers the gaps between the treated and control units when one of them is zero

and the other positive: Pensep(λ) =
∑B

b=1

∑C
c=1wbc exp

(∑T−1
t=1 {λ yctI(ybt = 0) + λ ybtI(yct = 0)}

)
.

Heuristically, the penalty helps in the construction of SC estimates by restricting estimates for treated

unit b to only corresponding control units that have similar patterns of zero-payments; subsequently, the

ν-weighted sum of separate and pooled imbalances are minimized producing SC estimates for any treated

unit b ∈ B that (a) have controlled imbalances for positive ybt in t = 1, . . . , T − 1, and (b) are based on

control units Cb ⊂ C such that supc∈C yct ≈ 0 whenever ybt = 0 for any t = 1, . . . , T . We show below in

Section 3.3 that not only the former but the second condition is also needed in our application to produce

good estimates of ybT for b ∈ B. Thus, the role of the penalty is very important in (1). Next, we formally

explain the role of the penalty function and then provide the implementation details for constructing the

proposed PSC estimates in Section 3.4.

3.3 Risk properties and the role of the penalties

An additive mixture model. To study the risk properties of the proposed PSC estimators we consider

a flexible additive mixture model. Readers interested in the implementation of the PSC method and our
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empirical study may skip ahead to Section 3.4.

Without loss of generality, consider yit as truncated observations from unobserved pay-offs zit that

varies over R, i.e., yit = max(zit, 0). Consider an additive model for the pay-offs:

zit = fit + δit + ϵit, for i = 1, . . . , C, C + 1, . . . , B + C and t = 1, . . . , T, (3)

where, fit is a low-dimensional factor model and ϵit are independent noise with E(ϵit) = 0, E(ϵ2it) = σ2

and E(ϵi1t1 · ϵi2t2) = 0 whenever i1 ̸= i2 or t1 ̸= t2. Let fit be a K dimensional latent factor model as in

Abadie et al. (2010), i.e., fit =
∑K

k=1 ϕki µkt. The coefficient ϕi = (ϕik : 1 ≤ k ≤ K) varies across units

but is invariant across time whereas the factor µt = (µkt : 1 ≤ k ≤ K) is invariant across units but varies

across time.

For each i, let ∆i = (δi1, . . . , δiT ) be a dampening sequence, i.e, ∆i ≤ 0. If ∆i = 0 for all i in (3),

and T − 1 ≫ K, then for any treated unit b ∈ B the parameters ϕb and {µt : 1 ≤ t ≤ T} can be well

approximated leading to good SC based estimates of ybT (see appendix B of Abadie et al., 2010 and the

proof of Thm. 1 in Ben-Michael et al., 2021a).

When δit is highly negative for some t, it would dominate the other terms in (3) producing negative

pay-off zit and so, the observation yit would be a zero-payment. Represent the support of the negative

spikes of this dampening process by the vector qi = I{∆i < 0}. There can be 2T different types of qis.

However, for our application the qis are not random sequences but are based on specific temporal patterns.

As such, we can impose further constraints on the model and assume that there are only L different types

of dampening sequences where L is an unknown but fixed number. The presence of such regularity

structures among the zero-payment patterns is important for consistent estimation. Under this constraint,

∆i is generated from a mixture model, i.e., ∆i = ∆̄h(i) where h : {1, . . . , B + C} → {1, . . . , L} is an

unknown function that maps the units to groups containing on similar dampening sequences.

We observe yit = max(zit, 0) for i ∈ B ∪ C and t = 1, . . . , T − 1 and yiT = max(zit, 0) for

i ∈ C and the goal is to estimate yiT = max(zbT , 0) for b ∈ B. The factors µt in the factor model are

global (invariant across units) whereas ∆̄h = (δ̄h(c),t : 1 ≤ t ≤ T ) varies between groups with different

dampening patterns. Compared to the latent factor model analyzed in Abadie et al. (2010), it is more
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challenging to construct efficient SC estimates in the presence of these complex, additive structures in

∆s. See supplement for an illustrative example. Equipping (1) with the penalty Pensep(λ) helps us in

correctly learning the coefficients ϕb for any treated unit b. Next, we explain the risk properties of the

proposed PSC method in an asymptotic regime where T → ∞ and λ is large. In practice, the tuning

parameter λ is chosen by cross validation and the penalized criterion is seen to produce good estimates

across varied non-asymptotic regimes which are presented later in Section 4.

Risk analysis of the proposed estimator. To facilitate a formal but intuitive understanding on the role of

the aforementioned penalty for producing consistent SC based estimates, henceforth in this subsection,

we assume that the noise component ϵit in (3) are generated from Gaussian distribution. All the results

in this subsection can be easily extended to additive mixture models with sub-gaussian noise. To provide

rigorous mathematical proofs of the risk properties, we consider T → ∞ and impose the following

assumptions on (3):

A1. The factor model has significant signal strength. Let γ = (2 logC + 4 log T )1/2σ. Assume f∗ :=

inf{fit : 1 ≤ i ≤ B + C, 1 ≤ t ≤ T} ≥ γ.

A2. For any two dampening sequences ∆̄g, ∆̄h, if q̄g = I{∆̄g < 0} and q̄h = I{∆̄h < 0} are such

that
∑T−1

t=1 |q̄g,t − q̄h,t| = 0 then qq,T = qh,T . This is a benign assumption that ensures that two

distinct dampening sequences must differ at least once in the pre-treatment era. It is essential for

identifiable estimate of ybT in (3) based on observing yit for t = 1, . . . , T −1 and i = 1, . . . , B+C.

A3. There is at least one instance where the dampening sequence has large enough negative signal to

dominate the factor model. For any h, assume inft δ̄h,t ≤ −f ∗ − γ where f ∗ := sup{fit : 1 ≤ i ≤

B + C, 1 ≤ t ≤ T}.

A4. Two distinct dampening sequences must differ significantly in at least one time point in the pre-

treatment era, i.e., sup1≤t<T |∆̄g,t − ∆̄h,t| I{∆̄g,t∆̄h,t = 0} ≥ f ∗ + γ. Note that, by assumption

A3, if two distinct dampening sequences have disjoint supports, i.e.,
∑T−1

i=1 q̄g,t q̄h,t = 0, then this

condition is trivially satisfied.

A5. Each dampening sequence has a non-trivial fraction of zeros: infh limT→∞ T−1
∑T

t=1(1− q̄h,t) > 0.

This implies each treated unit can have a non-trivial proportion of non-zero payments in (3). This
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is a benign assumption mainly set to prevent degeneracy in the proof. Estimates of any treated unit

not satisfying the condition can be just set to 0. We further assume that for any treated unit b, the

sum of squared imbalances based on controls with same dampening sequences is well-controlled:

min
w≥0, ||w||1=1

T∑
t=1

(
ybt −

∑
c∈Cb

wc yct
)2
I{δbt = 0} ≤ O(T log T ) as T → ∞, (4)

where, Cb = {1 ≤ c ≤ C : ∆c = ∆b}. This again is a very flexible assumption as the asymptotic

behavior of the square error of imbalances from any reasonable model in the pre-treatment period is

typically linear in T and we allow a poly-log margin over it. It holds as long as we have a sensible

control set such that no group in (3) that has too few or no control units.

A6. Our final assumption is not on the model but on criterion (6). We restrict the weight corresponding

to each control unit to be either 0 or at least 1/(CT ). Let W be the set of all such weight vectors

which satisfy
∑C

c=1wc = 1 and wc = {0} ∪ [(CT )−1, 1] for all c. We assume (4) also holds for the

reduced weight space W .

Under these assumptions, we concentrate on estimating YbT where YbT is generated from (3) and b /∈ C.

We consider estimators of the form ŷbT (w) = max(ẑbT (w), 0) where ẑbT (w) =
∑C

c=1wc ycT where the

weights wc ≥ 0 for all c and
∑

cwc = 1. We concentrate on criterion (1) with ν = 0. The effect of the

pooling penalty parameter has been extensively studied in Ben-Michael et al. (2021a) and similar impact

will be seen here. With ν = 0, the optimization of (1) decouples in optimization for each treated unit

separately. For constructing ŶbT , consider only controls in the following subset of the control set C:

Ĉb = {c ∈ C : yct ≤ κ−1 if ybt = 0 and yct > 0 if ybt ≥ κ−1 for all t = 1, . . . , T − 1}, (5)

for some κ > 0. Note that, unlike Cb which depends on the model parameters, Ĉb depends only on the

observations. Next, consider the sequence of penalty parameter {λT : T ≥ 1} with λ2T = 2κ(log(CT ) +

log log T ). We have an additional off-shoot term in the penalty akin to hard thresholding penalty in

Donoho and Johnstone (1994). Our first results show that with very high probability for any treated unit

b the PSC estimate based on λT is solely based on control units in Ĉb. As such, the probability is at least

1− T−2 as T → ∞.
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Lemma 1. Under assumptions A1–A6, for any treated unit b, the optimal weight vector ŵ(b) for the

minimization (2) with λ ≥ λT satisfies

lim
T→∞

T 2 P
(
ŵ(b)

c ̸= 0 for some c ∈ C \ Ĉb
)
= 0.

The proofs of all the results stated in this section and additional discussion are given in the supplement.

Next, we use the naive upper bound on the estimation error of the target ybT by PSC estimates:

|ybT − ŷbT | ≤ |zbT − ẑbT |, and concentrate on the estimation error for the non-truncated pay-offs from (3).

The residual of PSC estimates ẑbT decomposes into three constituents corresponding to the factor model,

the dampening sequence and the noise respectively. For any PSC estimate based on weights w,

zbT − ẑbT (w) = Rf (w) +Rδ(w) +Rϵ(w), where, Rf (w) =
K∑
k=1

µkT

(
ϕkb −

∑
c

wcϕkc

)
,

Rδ(w) =
∑
c

wc(δ̄h(b),T − δ̄h(c),T ), and Rϵ(w) = ϵbT −
∑
c

wcϵcT . (6)

Any weight vector w that is trained on the pretreatment period as in (1) is independent of {ϵcT : c =

1, . . . , C} and so, Rϵ(w) is stochastically dominated by N(0, v) where, v = σ2(1 + ||w||2) ≤ 2σ2 as

||wb||1 = 1. Thus, we concentrate on controlling the two other terms.

Controlling Rδ is critical since if there exists d with positive weight wbd and ∆̄h(c) ̸= ∆̄h(b) then

Rδ(b, T ) can be very large as the dampening sequence can have very large spikes. We next show that if

we restrict ourselves to controls in Ĉb, then Rδ = 0 with probability at least 1− T−1 as T → ∞.

Lemma 2. Under assumptions A1–A6, for any b ∈ B and α < 1/2

lim
T→∞

T (log T )α P
(
sup
c∈C

T∑
t=1

|δct − δbt| · I{c ∈ Ĉb} > 0

)
= 0. (7)

Next, consider the term Rf in (6), which can be well-controlled if the PSC method learns the factor

model coefficients {ϕkb : 1 ≤ k ≤ K} pertaining to treatment b well, i.e.,
∑

c ŵbcϕkc ≈ ϕkb. For any

weight vector w define Φ(b;w) = (ϕkb−
∑

cwcϕkc : 1 ≤ k ≤ K). Then, |Rf (w)| ≤ ||µT ||2||Φ(b;w)||2.

In the latent factor model where δit = 0 for all i, t in (3), it follow directly from Appendix B of Abadie
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et al. (2010), that ||Φ(b;w)||2 is upper bounded by a multiple of the imbalance between the treated unit

and the PSC estimates in the pre-treatment period. The multiplier is proportional to the lowest eigenvalue

ofH whereH =
∑T−1

t=1 µtµ
′
t. Using lemma 2 and applying similar derivations for SC estimates restricted

to the class Ĉb of controls, we obtain an analogous upper bound for |Rf (w)|. Combining these bounds

on the three terms on the right side of (6) we arrive at our main result which states a probabilistic upper

bound on the estimation error of the proposed PSC estimates. For PSC estimate ŷbT (w) of the bth treated

unit based on weight w, the upper bound depends on the sum of squared imbalances from positive time

points Imp(w, b) =
∑T−1

t=1 (ybt −
∑C

c=1wcyct)
2 as well as on the parameters of the factor model in (3).

Theorem 1. Under assumptions A1–A6, for any treated unit b ∈ B and for any weight w ∈ Wb := {w ∈

W : wi = 0 for i /∈ Ĉb}

|ybT − ŷbT (w)| ≤ m
−1/2
b ||µT ||2

(
κb {s−1

b Imp(w, b)}1/2 + 8σ
√
s−1
b log T

)
+ 2σ

√
log T , (8)

with probability at least 1− 1/T where mb and κb are respectively the smallest eigenvalue and condition

number of s−1
b

∑T−1
t=1 µtµ

′
tI{ybt > 0} and sb =

∑T−1
t=1 I{ybt > 0}.

Note that in Theorem 1 Wb is the weight space with support concentrated on the control subset Ĉb.

For moderately large T , the non-coverage probability of (8) is very small. Also, with K fixed as T → ∞

when the factor loadings are well-regulated, we have mb = O(1), κb = O(1). Thus, in this case (8) gives

|ybT − ŷbT (w)| ≤ K||µT ||∞ {s−1
b Imp(w, b)}1/2 + 2σ

√
log T . (9)

By assumptions A5 and A6, the right side above for the optimal weighted PSC estimate is O(
√
log T ).

Now, to illustrate the importance of the penalty Pensep(λ) we show that the SC estimator based on

minimizing criterion (1) with λ = 0 have extremely high maximal risk as compared to the proposed PSC

estimator. Consider the set ΘT of all parameters θ = (µk, ϕik, ∆̄l : k = 1, . . . , K; i = 1, . . . , B +C; l =

1, . . . , L) of (3) which along with assumptions A1–A4 also satisfy supk |µk| ≤ ψ for some prefixed

ψ > 0 and inf{|ϕb − ϕc|∞ : c ∈ C and ∆c = ∆b} ≤ log T . The following asymptotic result shows that

with probability 1 − 1/T , the worst case risk over ΘT of the PSC estimate is O(
√
log T ) whereas the

worse case risk of the SC estimate is higher than T .
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Lemma 3. Consider the PSC estimator ŷbT (ŵpsc) and the SC estimator ŷbT (ŵsc) where the two weight

vectors are selected by the minimization problem (2) with λ ≥ λT and with λ = 0 respectively. For any

a > 1/2, there exists C > 0 such that,

lim
T→∞

min
θ∈ΘT

T

[
1− Pθ

(
(log T )−a

∣∣ybT − ŷbT (ŵpsc)
∣∣ < C

)]
= 0.

lim
T→∞

max
θ∈ΘT

T

[
1− Pθ

(
T−1

∣∣ybT − ŷbT (ŵsc)
∣∣ > C

)]
= 0.

3.4 Implementation of the method for analysis of physician payments data

We discuss implementation details of the method, specifically regarding the calculations of ν, λ and

confidence interval. First, we follow Ben-Michael et al. (2021b)’s guide for the calculation of ν. We

calculateW separately by minimizing Imsep and Impool. Then ν is set as
√

Imsep/(
√

Impool−
√

Imsep).

Next, we use a cross-validation method to calculate λ. The cross-validation method leaves one of the pre-

treatment time periods out at a time and fits the penalized synthetic control for a given λ. The λ is chosen

as the one that minimizes the penalized partial sum of squared imbalance of the left out time period to the

synthetic control fit.

In our payments data analysis, we analyze the average treatment effect on the treated (ATT) and the

overall average treatment effect (ATE). The ATE calculation finds a synthetic control physician for each

of the physicians from the states passing an MML as well as a synthetic counterpart physician from the

pool of treated physicians for each of the physicians from the control states. We fit two W matrices for

this purpose by solving two minimization problems, one finding a vector of weights of length equal to the

number of control physicians for each treated state physician and the second finding a vector of weights

of length equal to the number of treated physicians for each control state physician.

Finally, the confidence interval calculations use a leave-one-out calculation where one at a time each

physician is left out; the penalized synthetic controls/counterparts are calculated by solving the minimiza-

tion problem using the remaining physicians and ATE/ATT calculation is done. The 2.5% and 97.5%

quantiles of these leave-one-out effect estimates give a 95% confidence interval to the corresponding

estimand.
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4 Simulation

This section evaluates the relative performance of the proposed penalized synthetic control method to

the existing methods. Our simulation model generates 30 units observed for T = 55 periods. Three

of these 30 units are exposed to a treatment at time 45 and the rest 37 units remain unexposed. The

original synthetic control method of Abadie and Gardeazabal (2003) and Abadie et al. (2010) is developed

for a single exposed unit. This method is adapted when there are multiple exposed units by separately

calculating the synthetic controls for each of the exposed units from the pool of all control units. Ben-

Michael et al. (2021b) show that this method of separate calculations of the synthetic controls can be

inefficient and propose a new method for simultaneous calculation of synthetic controls. We compare our

method to these two state-of-the-art methods for synthetic control analysis.

In the notation introduced in the previous section, we generate data for unit i at time t as

yit = max(zit + τiWit, 0); where zit = ai + (t− 1)/4 + ⌊(t− 1)/4⌋+ δit + ϵit,

where ai are iid uniform on [10, 60], Wit are the treatment indicator which is 1 only when t > 45 and

unit i is exposed, and τi is the treatment effect. The noise ϵit are independently drawn for each i, t from

a normal distribution with mean 0 and standard deviation 5. We consider three clusters of the units and

each cluster is specified by its units’ common dampening sequence δit. How similar or different these

dampening sequences are determine how similar or different these clusters are. One unit from each cluster

is selected to be treated where the probability of treatment for unit i is proportional to
∑45

t=20 yit.

We specified three models for the δits in the three clusters in our simulations, varying the similarity of

the clusters. Specifically, we set δit = −80× qit where qit is 0 or 1, indicating the time when the process

is dampened. The first two models are probabilistic and use exponential waiting time processes. Consider

one of the three clusters, c. Starting at time t = 0, it waits for an exponential time with the rate θc when

a dampening starts. After that, the process is dampened for an exponential time length with the rate ηc.

Following this, the first process starts again to find the next starting time for dampening. This model can

be thought of as physicians and drug manufacturers following a similar exponential waiting process to

decide when they would interact.
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Our first dampening model sets θc = 1/10 for all c = 1, 2, 3 and η1 = η2 = η3 = 1/3; the second

model sets θ1 = 1/10, θ2 = 1/15, θ3 = 1/7 and η1 = η2 = η3 = 1/3. The last model sets deterministic

qi = 1 for i = 20, . . . , 24, 40, . . . , 44 in cluster 1, qi = 1 for i = 30, . . . , 34, 45, . . . , 49 in cluster 2, and

qi = 1 for i = 40, . . . , 44, 50, . . . , 54 in cluster 3. Figure 4 provides plots of data generated from these

models.

Table 2: Simulation comparison for different synthetic control methods when τi = 0 for all: best performance in
each row is in bold. Results are based on averaging over 500 simulations; standard errors are in the parentheses

Synthetic control Pooled SC Proposed Penalized SC
clusters are probabilistically similar

l2 Imbalance 19.14 (0.26) 5.50 (0.08) 4.04 (0.03)
RMSE for ITT 20.69 (0.36) 5.87 (0.09) 5.35 (0.11)

RMSE for ATT 13.16 (0.39) 3.61 (0.11) 2.36 (0.11)
clusters are probabilistically different

l2 Imbalance 19.40 (0.27) 5.58 (0.10) 4.07 (0.03)
RMSE for ITT 21.33 (0.37) 5.81 (0.10) 5.81 (0.18)

RMSE for ATT 14.03 (0.37) 3.63 (0.13) 2.89 (0.16)
clusters are deterministic and different

l2 Imbalance 16.65 (0.17) 6.61 (0.08) 4.50 (0.02)
RMSE for IIT 26.30 (0.31) 6.56 (0.08) 5.38 (0.04)

RMSE for ATT 13.89 (0.22) 4.01 (0.10) 2.54 (0.05)

Table 3: Simulation comparison for different synthetic control methods when τi = 15, 25 and −10 in the three
exposed units respectively: best performance in each row is in bold. Results are based on averaging over 500
simulations; standard errors are in the parentheses

Synthetic control Pooled SC Proposed Penalized SC
clusters are probabilistically similar

l2 Imbalance 19.50 (0.26) 5.50 (0.08) 4.07 (0.03)
RMSE for ITT 21.18 (0.36) 5.80 (0.09) 5.33 (0.11)

RMSE for ATT 13.74 (0.39) 3.52 (0.11) 2.42 (0.11)
clusters are probabilistically different

l2 Imbalance 19.54 (0.27) 5.64 (0.10) 4.07 (0.03)
RMSE for ITT 21.24 (0.37) 5.96 (0.10) 5.81 (0.18)

RMSE for ATT 13.41 (0.37) 3.81 (0.13) 2.81 (0.16)
clusters are deterministic and different

l2 Imbalance 16.33 (0.17) 6.79 (0.08) 4.53 (0.02)
RMSE for IIT 25.88 (0.31) 6.67 (0.08) 5.38 (0.04)

RMSE for ATT 13.70 (0.22) 4.15 (0.10) 2.55 (0.05)

The simulation results are summarized in Tables 2 and 3 which report three performance measures.
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The ‘l2 imbalance’ is the average of the three euclidean distances of the pre-treatment outcomes of the

three treated units and their synthetic controls. The ‘RMSE for ITT’ is the average of simulation-based

root mean squared errors for estimating the individual treatment effect τi for each of the three treated

units. Finally, the ‘RMSE for ATT’ is the simulation-based root mean squared error for estimating the

average treatment effect
∑

iWiT τi/3 of the three treated units.

These simulation results show that the original synthetic control method adapted to this situation

performs very poorly in all measures. Comparatively, the pooled SC method performs better than the

original method. Still, the proposed method has the best performance among all the methods in better fit

and estimation. Further, the performance of pooled SC becomes progressively worse with three structures

of the clusters that create increasing distinctions between the latent structures in the clusters. By contrast,

the proposed method provides consistently good performance across different cluster structures.

5 Results

5.1 Synthetic control analysis of the MML passage on physician payments

Our primary analysis considers all pain medicine physicians from 13 states, of which three (PA, OH,

LA) were ‘treated’ states that passed an MML in the second quarter of 2016. The method, described in

Section 3.4, produces synthetic controls for each physician in the treated states using physicians in the

control states, and likewise produces synthetic counterparts for each physician in the control states using

physicians in the treated states.

The accompanying Figure 5 in its left panel shows the average of the differences in the payments of

190 pain-medicine physicians against their synthetic counterparts. The difference in payments is nearly

0, with a confidence interval between −$27.0 and $0.3, in the pre-treatment periods. Thus, the match

provides a good fit, which is an important requirement to draw causal conclusions from the calculated

differences during the post-treatment period (Abadie, 2021, Abadie et al., 2010).

Assuming there is no endogeneity that could have affected the analysis, Figure 5 shows an estimate of

the average treatment effect (ATE) of the passage of an MML on payments to physicians. In the left panel

of this figure, we observe a negative and significant ATE for pain medicine physicians, indicating that the
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payments to these physicians go down post-passage of MML. The negative effect on payments to these

physicians continues to increase over time, except for a small kink from the first to the second quarter of

2017. This shows a changing dynamic in the interaction between pain medicine physicians and opioid

manufacturers. The estimated decrease in payments is also substantial and estimated to be $1217.41 in

the third quarter of 2017.

Unlike the treated states in the above analysis, Florida passed an MML in the last quarter of 2016. We

explore whether the payment activities in Florida were affected by the laws passed in other states (PA,

OH and LA) in the quarter before Florida passed its own law. A potential spillover effect, stemming from

MML passed in other states in the second quarter of 2016, can bias the treatment effect on Florida’s pain

medicine physicians estimated by the synthetic control method (Schuler et al., 2021).

We performed two analyses on physician payments in Florida. In our first analysis, for each physician

in Florida, we create synthetic control from a pool of physicians residing in the 10 control states using their

payment history till the second quarter of 2016. In our second analysis, we create synthetic controls using

physicians’ payment history till the fourth quarter of 2016. Figure 6 shows the difference in payments

to Florida physicians and their synthetic controls from these two analyses. The estimates from the first

analysis have a similar pattern to the estimates from the earlier analysis shown in the left panel of Figure

5. The first analysis on payments to Florida physicians post-passage of MML shows a negative effect even

during the third and fourth quarters of 2016. This effect is likely attributable to a spillover effect from the

passage of MMLs in the other states. However, the spillover effect only amplifies the negative effect of

MML. Thus even after controlling for concurrent passage of MML in other states, estimated in our second

analysis on Florida physicians, we still find a significant negative effect of the law on physician payments

in Florida. This effect could be because opioid manufacturers could have anticipated the passage of MML

in Florida, leading to a decrease in their interactions with physicians.

5.2 Mechanism

We now elaborate on the possible mechanism behind the declining payments to pain medicine physicians

due to MML passage. We attribute that this decline in direct payments from opioid manufacturers to the

evolution of marijuana as a superior substitute in states that have legalized medical marijuana consump-

21



tion. As noted earlier, medical marijuana, although not federally regulated for treating pain, is perceived,

both by physicians and patients, to be a viable substitute to manage chronic pain (Powell et al., 2018).

Further, marijuana is arguably less addictive compared to opioids (Okusanya et al., 2020). Therefore,

under circumstances where marijuana is perceived equally effective as opioids, the former becomes a

superior alternative to the latter. This would lead to a decline in opioid prescriptions when marijuana is

a potential substitute and the state decriminalizes medical marijuana consumption. Consequently, opioid

manufacturers, being profit maximizing enterprises, would decrease direct payments to physicians when

faced with a potential irreversibly-declining opioid market in those states (Ingraham, 2017).

However, the declining opioid payments in the treated states can potentially happen due to factors

other than MML passage. For example, some states might have stricter laws to curb opioid usage, such as

through stricter PDMPs or Pill Mill laws (Moyo et al., 2017). In those states, the pressure on physicians

to move away from opioids can lead to opioid manufacturers strategically decreasing their presence and

thus investing less on financial inducements to physicians. And if those states pass MML, it might be

difficult to identify the substitution effect that can be attributed to MML passage separately from the

effect induced by opioid-restricting policies of those states. However, such identification issue will arise

only if the MML and opioid-curbing policies were implemented simultaneously. The opioid-restricting

policies in our treatment states were passed before 2016 (i.e., not simultaneously with the passage of

MML), e.g., Ohio passed the MML in April 2016 while the pill mill law was passed in 2011. Thus, our

analysis would be able to adjust for these systematic differences between the states in the pre-treatment

period. Therefore, we can cleanly attribute the decrease in payment to opioid physicians to substitution

effect arising due to MML passage.

Among the potentially other factors that could explain the estimated decline, it could also be that the

treated states were able to pass the MML because of potentially weak lobbying power of the opioids

manufacturers in those states (Frances, 2021). This could have led to the opioid manufacturers selectively

reducing their activities in the treated states and hence a spurious negative effect in our analysis is man-

ifested. If this conjecture is valid, we would see a negative effect on payments to physicians agnostic of

their specializations. To test such a theory, we also analyzed direct payments to Anesthesiologists, who
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received the second highest payments after pain medicine physicians.6

Both specializations, pain medicine and anesthesiology, regularly prescribe opioid. However, pain

medicine physicians mostly use opioid for chronic pain management where marijuana is a good substi-

tute (Powell et al., 2018). Anesthesiologists, on the other hand, primarily use opioid to manage acute

pain in hospital settings. As mentioned in Section 1, marijuana, for the most part, is not FDA approved,

rendering it inapplicable in acute pain management. Hence, if the marijuana substitution theory is valid,

the payments to anesthesiologists should not show a consistent decline post MML passage. In contrast,

if the opioid manufacturers reduced payments only because they lost ground in blocking MML passage,

the decline of payments seen for pain medicine physicians will be mirrored in the payments to anesthe-

siologists. Similar to the analysis conducted for the pain medicine physicians (the left panel of Figure

5), we analyzed the payments to anesthesiologists between MML and non-MML states using our pro-

posed synthetic control method. The corresponding plot for ATE on payments to anesthesiologists is

provided in the right panel of Figure 5. We find that although payments to Anaesthesiologists declined

initially immediately after MML passage, the decline in payments bounced back within a quarter’s time

to pre-treatment patterns.

The support for the substitution effect of marijuana in explaining the change in direct payments to

pain medicine physicians is still incomplete, as this decrease in payments may not have been driven by

the perceived invasion of medical marijuana. Instead, the decline in payments from opioid manufacturers

to physicians may have led to reduced opioid prescriptions and thus made room for increased medical

marijuana use. We attempt to differentiate between these two mechanisms using data on medical mari-

juana patient registration.

Florida provides bi-weekly updates regarding medical marijuana activities in the state. From their

updates, we collected information on the locations of active dispensaries over time and the number of

registered medical marijuana patients in those time periods in the state.7 Figure 7 displays a rolling

average of payments to physicians grouped by an active dispensary in their area. Joining the marijuana

patient registration data with the payments data we conducted two regressions: we first regressed the

6All the other specializations, e.g., internal medicine and family medicine, had less than 10% of opioids related payments.
7Data related to bi-weekly updates on locations of active dispensaries and the number of registered medical marijuana

patients are available at https://knowthefactsmmj.com/2018/07/28/2017-ommu-updates-archive/
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Table 4: Regression analysis results in cities where physicians practice across Florida

Dependent Var.: Log of Log of Log of Percent Change
Payment Rec. Payment Rec. Payment Rec. Mari. Patient

Lag of % Change
in Mari. Patients −0.3626. (0.1886) −0.3701** (0.188)
Whether City has
Marijuana Dispensary −0.1435*** (0.0243) −0.1439*** (0.0243)
Log of Payment Rec. 0.0011 (0.0010)

Fixed-Effects:
Physician Specialty Yes Yes Yes Yes

S.E. type Heteroskeda.-rob. Heteroskedast.-rob. Heteroskedast.-rob. Heteroskedast.-rob.
Observations 8,467 8,467 8,467 9,235
R2 0.05255 0.05569 0.05613 0.004
Within R2 0.00044 0.00375 0.00421 0.0004

log of payment on the lagged bi-weekly change in marijuana patients, and whether the city in which

a physician was practicing had a marijuana dispensary, and subsequently we regressed the bi-weekly

change in marijuana patients to lagged payment activity. The results reported in Table 4 show a significant

negative correlation between an increase in marijuana patients in preceding period as well as presence

of a marijuana dispensary with opioid-prescribing physician payment; however, there is no significant

association between physician payment and change in marijuana patients in the following period. These

results provide us with further support that the substitution effect of marijuana is indeed the dominating

factor in reducing payments to pain medicine physicians post-passage of MML.

6 Heterogeneity

In the previous section, we have seen evidence that the passage of MML led to a reduction of direct pay-

ments to pain medicine physicians from opioid manufacturers. We argued that this reduction is possibly

stemming from opioid manufacturers realizing that increasing substitution from opioids to marijuana,

particularly for chronic pain management. However, the above analysis does not tease out whether the

substitution is initiated by choice(s) made by physicians or patients or if it is happening because of a so-

cietal shift. Therefore, it is interesting to explore if some distinct patterns in the data can motivate future

studies to extend the understanding of this mechanism. Our proposed synthetic control method allows us

24



to estimate the individual treatment effects (ITEs), i.e., the treatment effect of MML on payments made to

each physician. We use these ITEs to perform a secondary analysis wherein we investigate how the treat-

ment effect varies as a function of physician characteristics and the demographics of where the respective

physicians were practicing. In Figures 8–10, the vertical axes plot the estimated ITEs of physicians from

13 states averaged over the four quarters following MML passages in PA, OH, and LA in 2016 Q2.

We first look at the two physician characteristics, namely gender and year of graduation, in Figure 8.

While the ITEs for the year of graduation do not show any defined pattern, we find that the decreases in

payments to male physicians are less pronounced than female physicians. Historically, empirical research

involving physician care has under-studied female physicians (Kimball and Crouse, 2007). However,

significant differences exist in practice patterns between male and female physicians. Research shows

that female physicians are more patient-centric, more open to patient concerns, have longer visits, and

ask more questions (Hall et al., 1994, Roter et al., 2002). Our current finding emphasizes that in the

context of pain relief, there is significant heterogeneity in how the introduction of medical marijuana

affects physicians based on gender and, consequently, the population they serve.

Analyzing the ITEs based on the demographics of where the physicians practice, in Figure 9, we find

that the payments show a greater decrease in low-income areas. Low income areas would have a higher

proportion of people who engage in blue-collar jobs and, therefore, have more requirements for chronic

pain management (Jacobsen et al., 2013). Also, poorer regions have shown higher instances of opioid

misuse (Ghertner and Groves, 2018). Arguably, substituting into marijuana will help these communities

(Compton et al., 2017). The recent governmental intervention to reduce opioid misuse has focused on

these vulnerable communities (The White House, 2016, USDA, 2019). The larger substitution effect that

we witness in lower income communities could be a manifestation of a combination of governmental

efforts and societal awareness regarding the potential harmfulness of opioids.

In Figure 9, ITE patterns with respect to the median age of the population reveal that the substitution

to medical marijuana is possibly the largest in the regions with a median age between 30-40 years. Pop-

ulations younger than this bracket will have lesser requirements for chronic pain management; therefore,

lesser substitution is probably not surprising. However, regions with an older population, who are more

prone to chronic pain, also show lesser substitution to medical marijuana. We are limited in this study to
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discern if the slower adoption of medical marijuana among older people is driven by their inertia against

alternative pain management methods or if physicians are generally risk-averse in recommending medical

marijuana for these older patients.

Next, analyzing the ITEs with respect to racial demographics of a physician’s practice, in Figure 10,

we find no discernible patterns as the proportion of Asian or Hispanic increases. However, ITEs show a

sharp decline for physicians practicing in populations with a higher percentage of blacks. Recent stud-

ies have shown considerable differences in opioid prescribing patterns between black/African-American

and white patients (SAMHSA, 2020). For example, Blacks/African-Americans are significantly less

likely to be prescribed opioids for pain by medical providers than white patients. We find notable differ-

ences in the substitution effects between a higher proportion of white population and higher proportion

of black/African American population. In Figure 10, a population with a higher than the national average

of white population shows a relatively higher effect of MML passage compared to a population with a

higher than the national average of black/African American population.8

In the above findings, we show that physicians’ characteristics and demographics of where they prac-

tice are differently affected by payment reduction by the opioid manufacturers, possibly due to inherent

differences in the physicians’ and patients’ substitution patterns. Motivated by our results, hypothesis-

driven studies would be helpful to establish the modifiers of the substitution effect on treating pain.

7 Discussion

In the wake of opioid epidemic in the US (Feinberg, 2019), several measures were instituted at the federal

and state levels to regulate the proper management of opioid consumption. Some states also passed laws

legalizing medical marijuana consumption partly in response to the opioid epidemic. However, the FDA

notes that, to date, “[it] has not determined that cannabis is safe and effective for any particular disease

or condition;”9 while, opioid still remains a potent treatment for chronic pain. Physicians are the primary

gatekeepers for deciding medication for patients needing pain management. This paper connects these

8By April, 2020 estimates, the demography of the United States has about 59.3% non-Hispanic white and 13.6%
black/African American population. https://www.census.gov/quickfacts/fact/table/US/PST040221

9https://www.fda.gov/news-events/public-health-focus/fda-regulation-cannabis-and-cannabis-derived-products-including-
cannabidiol-cbd
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three pieces: medical marijuana laws, opioid manufacturers and their interaction with opioid-prescribing

physicians.

Our study finds a significant decrease in financial interactions between opioid manufacturers and

physicians as an effect of MML passage. The finding that the opioid manufacturers in states that passed

MML are stepping away from this particular form of interaction is concerning, for such activity can

significantly affect the opioids ecosystem. It calls for detailed studies on the opioid-related healthcare

industry in these states. If physicians are not actively engaged with opioid manufacturers in getting

updates and driving research, eventually, patients are deprived of optimal care. As we currently do not

have a comprehensive understanding of the effects of medical marijuana on individuals and society at

large, intensive research on opioids and their safe consumption are needed for optimal pain management

in the immediate future.

While our study focuses on opioid manufacturers and physicians, it is worth considering for a moment

MML’s effect on patient pain management. To set the context, physicians typically prescribe medication

of a certain amount in 30 days’ fills but also specify medication for the number of days of use. Addition-

ally, it is expected that pain medicine physicians would tend to prescribe more opioid than non-opioid

medication. Analyzing the annual prescription data (mentioned in Section 2), we found that, in 2015,

they prescribed 49% more opioids than non-opioids in 30 days’ fill and a similar 49% more days of pre-

scription for opioid vs non-opioid. From 2015 to 2017, in the states not passing an MML, 30 days’ fill of

opioid vs non-opioid remained flat at a 1.38:1 ratio. However, in the states passing an MML, from 2015

to 2017, 30 days’ fill of opioid vs non-opioid decreased from a 1.57:1 ratio to a 1.52:1 ratio. The ratios

for the number of days of prescription in the MML states also decreased from a 1.57:1 ratio in 2015 to a

1.52:1 ratio in 2017. In particular, the pattern of opioid vs non-opioid prescriptions did not change in the

control states, while there was a relative decrease in opioid prescriptions in the MML states from 2015 to

2017. We leave further analysis of the possible effect of MML passage on patient care for future research.

As a methodological contribution, we develop a novel penalized synthetic control method. This

method estimates an average treatment effect from a longitudinal dataset on multiple treated and con-

trol individuals. We create a synthetic counterpart of each treated and control unit by closely matching

on the target unit’s and their groups’ average pre-treatment outcome history using the pooled synthetic
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control strategy. Further, we use a novel penalty so that the resulting estimators are adaptive to the latent

groups in the data whose members have similar quarterly non-payment patterns. The penalty reduces

interpolation bias by closely matching individuals and their synthetic counterparts on their non-payment

patterns. Finally, we study the proposed method under an additive mixture model appropriate for our

study. We show that an unpenalized synthetic control method will have uncontrolled maximal risk in the

additive mixture models while the proposed method produces efficient SC estimates. In future, it will be

useful to develop penalized synthetic control methods that can operate in the presence of more complex

latent structures in the data.
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Schuler, M. S., B. A. Griffin, M. Cerdá, E. E. McGinty, and E. A. Stuart (2021). Methodological chal-
lenges and proposed solutions for evaluating opioid policy effectiveness. Health Services and Out-
comes Research Methodology 21(1), 21–41.

Schwartz, L. M. and S. Woloshin (2019, 01). Medical Marketing in the United States, 1997-2016.
JAMA 321(1), 80–96.

Shi, Y. (2017). Medical marijuana policies and hospitalizations related to marijuana and opioid pain
reliever. Drug and alcohol dependence 173, 144–150.

Szalavitz, M. (2023). ‘Entire body is shaking’: Why americans with chronic pain are dying. New
York Times, Opinion, Guest Essay. https://www.nytimes.com/2023/01/03/opinion/
chronic-pain-suicides.html.

The White House (2016). Fact sheet: President obama proposes $1.1 billion in new
funding to address the prescription opioid abuse and heroin use epidemic. https:
//obamawhitehouse.archives.gov/the-press-office/2016/02/02/
president-obama-proposes-11-billion-new-funding-address-prescription.

USDA (2019). Rural community action guide: Building stronger healthy, drug-free ru-
ral communities. https://www.usda.gov/sites/default/files/documents/
rural-community-action-guide.pdf.

Zhang, P., C.-W. Chiang, S. Quinney, M. Donneyong, B. Lu, L. F. Huang, and F. Cheng (2020). The
concurrent initiation of medications is associated with discontinuation of buprenorphine treatment for
opioid use disorder. medRxiv, 1–19. doi:10.1101/2020.01.15.20017715.

31

https://www.nytimes.com/2023/01/03/opinion/chronic-pain-suicides.html
https://www.nytimes.com/2023/01/03/opinion/chronic-pain-suicides.html
https://obamawhitehouse.archives.gov/the-press-office/2016/02/02/president-obama-proposes-11-billion-new-funding-address-prescription
https://obamawhitehouse.archives.gov/the-press-office/2016/02/02/president-obama-proposes-11-billion-new-funding-address-prescription
https://obamawhitehouse.archives.gov/the-press-office/2016/02/02/president-obama-proposes-11-billion-new-funding-address-prescription
https://www.usda.gov/sites/default/files/documents/rural-community-action-guide.pdf
https://www.usda.gov/sites/default/files/documents/rural-community-action-guide.pdf


Figure 1: Distribution of average payment (in US dollars) and the number of payments related to opioid, catego-
rized by the ratio of opioid to non-opioid drugs promoted during each payment.

1
2

3
4

5
6

Quarter

lo
g

 p
a
y
m

e
n

t

2014.Q1 2014.Q3 2015.Q1 2015.Q3 2016.Q1

MML States

1
2

3
4

5
6

Quarter

lo
g

 p
a
y
m

e
n

t

2014.Q1 2014.Q3 2015.Q1 2015.Q3 2016.Q1

Non MML States

2014.Q2 2014.Q4 2015.Q2 2015.Q4 2016.Q2

Quarter

%
 p

h
y
s
ic

ia
n

s
 w

 z
e

ro
 p

a
y

0
5

1
0

1
5

2
0

2
5

2014.Q2 2014.Q4 2015.Q2 2015.Q4 2016.Q2

Quarter

%
 p

h
y
s
ic

ia
n

s
 w

 z
e

ro
 p

a
y

0
5

1
0

1
5

2
0

2
5

Figure 2: Summary of the payments to physicians in different quarters of pre-treatment period by the states that
did and did not pass medical marijuana laws. The MML states are ‘FL’, ‘LA’, ‘OH’ and ‘PA’; the non MML states
are ‘AL’, ‘GA’, ‘IN’, ‘NC’, ‘NE’, ‘SC’, ‘TX’, ‘UT’, ‘VA’ and ‘WI’. The plots on the top two panels show the 85th,
50th and 15th percentiles of log payments.

Figure 3: Distribution of average annual payments (in US dollars) to pain-medicine physicians and the corre-
sponding average number of prescriptions (in ’000s) written by those physicians across our analysis window (i.e.,
2014-2017).
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Figure 4: Two sets of simulated data in each the tree columns from the three simulation models. The three treated
units from the three clusters are in colors ‘black’, ‘dark gray’ and ‘gray’ respectively; the vertical line shows the
treatment adoption time.
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Figure 5: Synthetic counterpart analysis for MML passage on payments to physicians from 13 states in the US.
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Figure 6: Synthetic control analysis for MML passage on payments to pain medicine physicians in Florida. The
dashed line pretends MML passage in FL happened in the second quarter of 2016.
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Figure 7: Payments to physicians in Florida between June and Dec 2017 in the cities without any marijuana
dispensary at that time in red and with a marijuana dispensary at that time in green.
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Figure 8: Effect heterogeneity by physician gender and year of graduation.
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Figure 9: Effect heterogeneity by median income and the age of the zip code.
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Figure 10: Effect heterogeneity by racial composition of the zip code.
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