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Abstract

Amid increasing awareness regarding opioid addiction, medical marijuana has emerged as a substitute to opioids
for pain management. Concurrently, opioid manufacturers are putting significant research into making opioids
safer yet effective. Interactions between these manufacturers and physicians are critical to advance existing pain
management protocols. Direct payments from opioid manufacturers to physicians are established practices that
often moderates such interactions. We study the effects of passage of a medical marijuana law (MML) on these
direct payments to physicians. To draw causal conclusions, we develop a novel penalized synthetic control (SC)
method that accommodates the zero-payment related latent structures inherent in these payments. Under a truncated
flexible additive mixture model, we show that the SC method has uncontrolled maximal risk without the penalty;
by contrast, the proposed penalized method provides efficient estimates. Our analysis finds a significant decrease
in direct payments from opioid manufacturers to pain medicine physicians as an effect of MML passage. We
provide evidence that this decrease is due to the availability of medical marijuana as a substitute. Finally, our
heterogeneity analyses indicate that the decrease in direct payments are comparatively higher for female physicians
and in localities with higher white, less affluent, and more working-age populations.

Keywords: Access to medication; average treatment effect; latent structure; pain management; penalized

estimation

1 Introduction
Opioids are a class of drugs used to reduce pain. Opioids can be prescribed by physicians to treat moderate

to severe pain but may also involve serious risks and side effects. Misuse and overuse of opioids have

led to significant increase in opioid addictions and deaths. Opioid overdose-related deaths in the US rose

from 21, 088 in 2010 to 68, 630 in 2020 (NIDA, 2022). As such, opioid consumption and its effects are

highly debated objects in the current public discourse as well as a topic of vibrant academic research

(Blanco et al., 2007, Cohn and Zubizarreta, 2022, Jacobs et al., 2022, Nam et al., 2020, Neuman et al.,

2020, Prochaska et al., 2021, Zhang et al., 2020).

We consider two notable consequences in light of the opioid epidemic. First, advocacy of marijuana

as a substitute for opioids gained traction (Cooper et al., 2018, Geluardi, 2016, Hollenbeck and Uetake,
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2021), arguing for its effectiveness with respect to opioids, both as a painkiller as well as in lowering

the chances of addiction and overdose death than opioids (NIDA, 2021). Many states have legalized

medical consumption of marijuana, which in part is aimed at reducing opioid-induced harm (Bachhuber

et al., 2014, Powell et al., 2018, Shi, 2017). However, there is limited medical congruence regarding the

efficacy of marijuana in treating acute and chronic pain, and the Food and Drug Administration (FDA)

has advocated for more clinical studies before it approves marijuana for pain management (FDA, 2020).

Second, opioid manufacturers are increasingly spending more into research and development to make

opioids safer, e.g., by including an abuse-deterrent formulation (Evans et al., 2019, FDA, 2015). However,

an increased adoption of marijuana could lead to opioid being a niche product or, in the extreme, could

lead to severely diminished usage of opioids (Feinberg, 2019, Szalavitz, 2023). Thus, in response to

marijuana’s entry into pain management, opioid manufacturers are likely to adjust their push-marketing

strategies to interact with physicians (Levy et al., 1983, Scherer, 1980). One of the most common practices

to facilitate such interactions in pharmaceuticals is through direct payments to physicians from opioid

manufacturers (Jones and Ornstein, 2016, Schwartz and Woloshin, 2019). These direct payments may be

in the form of consulting and speaker fees, conference travel reimbursements, or meal vouchers.

In this paper, we study the effects of legalization of medical marijuana on these direct payments

made by opioid manufacturers to opioid-prescribing physicians. In 2021, the direct payments to physi-

cians made by US pharmaceutical companies amounted to $10.88 billion.2 Some stakeholders in this

ecosystem, who have justified these payments, have argued that these payments serve as a conduit to en-

gage with physicians and foster collaboration (Donohue et al., 2007, Korenstein et al., 2010, Rosenbaum,

2015). However, these payment practices have been historically found to have caused biased endorse-

ment of manufacturers’ drugs by the payment-receiving physicians (Carey et al., 2021, DeJong et al.,

2016, Jones and Ornstein, 2016) and also contributed to higher health care costs (CMS, 2013). Given the

potential impact of these payments, it is of societal interest to study how a law affecting a critical domain,

such as pain management, impacts these payment-to-physician strategies.

In the context of this research, we study the impact that passage of marijuana legalization laws (MML)

in different US states had on the opioid ecosystem by analyzing the changes in these direct payments to

2Based on OpenPayment data from CMS: https://openpaymentsdata.cms.gov/summary
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opioid prescribers over time. To derive causal conclusions, we follow the popular synthetic control (SC)

method (Abadie et al., 2010, Abadie and Gardeazabal, 2003). The widely used SC criterion of Abadie

et al. (2010) cannot be directly applied in our context due to an idiosyncratic nature of the physicians’

payment data, which we describe in detail later. To provide consistent inference we develop a novel pe-

nalized SC method akin to Abadie et al. (2015) and Ben-Michael et al. (2021b). In addition to estimating

the overall effect of MML on payments to opioid-prescribing physicians, we also explore how this effect

varies across physician specialties, experience levels, gender, and the communities they serve.

1.1 Causal Study of Marijuana Legalization Effects on Direct Payments to Physi-

cians by Opioid Manufacturers

We study whether the passage of a law legalizing medical marijuana consumption (MML) affects di-

rect payments from opioid manufacturers to physicians. These payments are part of the traditional push

marketing strategies employed by pharmaceutical companies (Levy et al., 1983), strategically aimed at

physicians based on patient demographics and prescription preferences (Angell, 2018, Schwartz and

Woloshin, 2019). In MML states, where physicians can recommend medical marijuana for pain relief

(Black, 2022), marijuana emerges as an opioid substitute. Subsequently, opioid manufacturers may ad-

just these payments in response to this new competition, potentially impacting the pain management

ecosystem significantly.

Our research explores how direct payments from opioid manufacturers to physicians change in the

states where a law legalizing medical marijuana was passed. We use a synthetic control method to match a

physician from a state with MML, on payments they received before MML, to physicians in states without

MML. Synthetic control methods are suitable for panel data because they provide causally interpretable

estimates of post-treatment effect over time under appropriate assumptions; see details in Abadie et al.

(2015) and Ben-Michael et al. (2021b). These methods are further appropriate for us since an MML

passage is a staggered treatment; consequently, there are distinguished pre and post-treatment periods.

However, as we discuss below, some care in using SC methods is warranted for our study.

Briefly, the synthetic control (SC) method is used with panel data where it (Abadie et al., 2010, Abadie

and Gardeazabal, 2003) fits the pre-treatment observations of a target treated unit using a convex combi-
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nation of the pre-treatment observations of the control units, which is called the synthetic control (SC) unit

for this treated unit. The post-treatment outcome of the SC unit estimates the unobserved counterfactual

post-treatment outcome of the target unit. Most applications of the SC method in the literature have used

aggregated units, e.g., states and countries, as their study units. Aggregated observations average over

latent patterns in the finer units’ data and retain the common factors that might have different loadings

in different units. Intuitively, in aggregated data, weights in the SC methods attempt to equate the factor

loading of the target unit to the weighted average of the loadings of the control units.

Our direct payments data are available at the physician-level and have latent patterns. Specifically,

these payments received by a physician are typically discontinuous, with significant periods of time when

no payments are made to the physician. Nonetheless, controlling for these no-payment periods in our

estimation is critical. For example, consider a physician in the treated group who received payment

periodically, every six months, while many control physicians received payments every five months.

For such data (Abadie et al., 2015) note that in direct use of the SC method, “interpolation biases may

be severe [when] the donor pool contains units with characteristics that are very different from those

of the unit representing the case of interest.” The usual SC method that looks at the overall fit of the

payments received by the target physician (in our example), will likely give positive weights to control

physicians who received payments every five months. This will lead to biased estimates of post-treatment

counterfactual outcomes. As a possible remedy to this bias, Abadie et al. (2015) recommend “restricting

the donor pool to units that are similar to the [target unit].” For our study, we customize the synthetic

control method (Abadie et al., 2010, Abadie and Gardeazabal, 2003) to account for varied zero-payments

patterns in physician payments while matching as these patterns are latent.

Using detailed physician-level data, we study the heterogeneity in the effect based on physicians’

specialties and their genders. We also study the heterogeneity in the said effects based on income, age,

and racial composition of the respective patient communities these physicians serve by combining de-

mographic and socioeconomic zip code data to each physician’s area of practice. Our contributions are

outlined below.

1. We develop a novel penalized synthetic control method to accommodate the zero-payment related

idiosyncrasies of our physician payments data set. Most physicians’ payment histories contain
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instances of no payments, which do not allow direct application of the widely used synthetic control

(SC) method of Abadie et al. (2010). Motivated by penalized SC (PSC) approaches suggested

in Abadie et al. (2015), Ben-Michael et al. (2021a), we develop a novel penalty that can prevent

interpolation biases and can capture the varied patterns of non-payments in the pre-treatment period.

The proposed penalty involves two parameters λ and γ (defined in Sec. 3.2). While γ is associated

with a pooling-penalty akin to Ben-Michael et al. (2021b), λ involves a new penalty that is designed

to adjust for different patterns of non-payments.

2. We explain the role of the penalty and the working principle behind the developed PSC method

in a truncated flexible additive mixture model that consists of a latent factor model and a mix-

ture process. The model is more complex than the models for which operating characteristics of

SC methods have been studied in the existing literature (Abadie et al., 2010, Ben-Michael et al.,

2021a,b). The truncation is for non-negative payments and the mixture accommodates varying

patterns of zero-payments among the physicians. In Section 3.3, we rigorously explain how the

proposed penalty produces efficient SC estimates by accurately learning the factor model coeffi-

cients as well as mixture group memberships (see Theorem 1). Further, we illustrate the necessity

of the penalty by showing that unpenalized SC method will have uncontrolled maximal risk in the

concerned additive mixture models (see Lemma 3). These results may be of independent interest

in understanding the role of SC methods in mixture models.

3. We analyze the impact on pain-medicine physicians’ direct payments using our PSC method. Quar-

terly, 5%-15% of physicians had no payments. In the pre-treatment period, physicians in MML

states (treated) and non-MML states (control) had no payments on an average of 0.99 and 1.04

quarters respectively (see Section 2). Our penalized SC method effectively matches physicians

with synthetic counterparts during this period. Assuming the validity of the proposed synthetic

control method, we find a statistically significant payment decrease due to MML passage.

4. We stress-test the effect of MML passage by examining a potential substitution mechanism. First,

we identify a consistent effect in Florida, despite Florida passing MML two quarters after other

treated states in our main analysis. Second, for Anesthesiologists, who are less prone to shifting
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from opioids to marijuana, we observe an initial negative post-MML effect that subsequently levels

to a non-significant impact. Third, we find a negative correlation between increased marijuana

patient registration and opioid-prescribing physician payments.

5. Finally, we investigate the variability in the MML effect on payments across different subgroups.

This heterogeneity analysis uses the estimated individualized treatment effect of the pain-medicine

physicians. The effect varies between areas with comparatively higher white and black popula-

tions and seems more substantial in areas with more lower-income and working-age populations.

Additionally, the effects of MML passage are lower in magnitude on female physicians.

1.2 Organization of the paper

Section 2 describes our data. We develop our PSC method aimed at varied zero-payment patterns and

study its theoretical properties in Section 3. Section 4 presents simulation experiments comparing our

PSC method with existing methods. Section 5.1 presents the primary analyses for pain-medicine physi-

cians. Section 5.2 provides the mechanism analysis. Section 6 probes the heterogeneity in effects across

physicians’ gender, experience, and demographics of their patient communities. We conclude with addi-

tional discussion in Section 7. The supplement includes proofs and additional results.

2 Data Description
To meet our research goals, we needed access to the details on the direct payments from opioid man-

ufacturers to prescribing physicians. These payments, although endogenously decided by each opioid

manufacturer, are now legally mandated to be reported under the “Sunshine Act” (Richardson et al.,

2014). This law was a federal response to address concerns over possible conflicts of interest, potential

treatment bias, and healthcare costs (Carey et al., 2021, DeJong et al., 2016, Engelberg et al., 2014, Jones

and Ornstein, 2016). Data became publicly available in September 2014, including payment amounts

between physicians and manufacturers, drugs promoted through these payments, and payment dates.

We aggregated the payment information for each physician in our treated and control states for each

of the 16 quarters from 2014 to 2017. No states passed an MML in 2015, and in 2016, six states passed an

MML: Pennsylvania (PA), Ohio (OH), North Dakota (ND), Louisiana (LA), Florida (FL) and Arkansas

(AR). We excluded the two small states, ND and AR, which had less than three eligible physicians for our
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primary analysis. Three out of these four states, PA, OH, and LA passed an MML in the second quarter

of 2016, while FL passed the law in the last quarter of 2016. This gap of over a quarter in Florida’s MML

passage could sway attitudes of physicians and patients on marijuana adoption, based on outcomes seen

in PA, OH, and LA. FL policymakers and voters might also have been influenced by these states’ MML

passage, posing potential confounding concerns. Therefore, to prevent this confounding bias, we analyze

FL separately from PA, OH, and LA. We use 10 control states that did not pass an MML till 2016 Q2.3

For each payment made to a physician, the data indicates the drug category promoted during the

interaction, with up to five drugs listed per entry. To isolate opioid-related payments, we first flagged

payments mentioning “pain,” and subsequently retained those payments that mentioned opioids among

the promoted drugs. We focused only on opioid manufacturer-drug combinations with payments in our

pre-MML (pre-treatment) period (2014–2016). This led to 15 opioid brands from 5 manufacturers.4 Our

analysis precisely examines how MML impacts payments to physicians from these 15 opioid brands.5

A single payment can involve both opioids and non-opioids. As there was no logical way to allocate a

fraction of the payment solely to opioids, to be conservative, we deemed any transaction as opioid-related

if one or more opioids were mentioned. Figure 1 depicts the distribution of opioid proportion promoted in

each payment and its corresponding average amount. The graph highlights two prominent payment types:

payments promoting a single opioid, and payments involving two drugs, one or both of which could be

opioids. Notably, payments featuring a single opioid tend to be associated with higher amounts.

Figure 2 outlines physician payments in the states under our study. While not identical, the pay-

ments exhibit similar patterns between treated and control states pre-MML. These payments, however,

differ based on physician specialties. In 2015, the year before our treatment, ‘Anesthesiologists’ received

roughly 30% of payments by dollar value, with ‘Pain Medicine’ physicians following at around 19%.

Anesthesiologists and pain medicine physicians likely prescribe opioids for different purposes. Medi-

3These are: VA, NC, IN, GA, TX, WI, NE, SC, UT, AL. Twenty states had not passed an MML till 2016 Q2. Our control
states were selected from them first, based on their geographical proximity to the treated states. Then, because of the population
and economy sizes relative to our treated states, we included TX as a control state and removed smaller states TN and WV. The
scarcity in just 20 donor states also leads to poor balance in synthetic control for state-level aggregated data. The quarter-year
time scale also minimizes treatment anticipation bias in our analysis.

4Different dosages of the same drug are considered as a single opioid brand.
5We anticipate minimal interference from new opioid brand introductions in our post-MML analysis period, as only one

brand from a new manufacturer was introduced in 2017, our post-MML period. (For more details, refer to Supplement S3).
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Table 1: Percent of physicians by the number of quarters with zero payments

Number of quarters 0 1 2 3 4 5 6 Total
Control states 50 26 8 7 6 3 0 100
Treated states 53 23 10 9 2 2 2 100

cal pain management involves various specialists for treating chronic pain conditions, including family

physicians, internal medicine physicians, and psychiatrists (Chou et al., 2009, INTEGRIS, 2020). Anes-

thesiologists, on the other hand, specialize not only in treating chronic pain but also in acute pain, and

may use advanced intravenous techniques, particularly in peri-operative settings (INTEGRIS, 2020). De-

spite marijuana’s growing use for chronic pain, its effectiveness in acute pain is limited (Corliss, 2022).

With FDA yet to endorse marijuana for pain (FDA, 2020), anesthesiologists cannot use marijuana in intra-

venous acute pain treatment. Consequently, if medical marijuana were to work as a substitute for opioid in

pain management, we are likely to see a more pronounced effect of MML passage on direct payments to

pain medicine physicians than anesthesiologists. Therefore, we primarily study pain medicine physicians

to explore the causal effect of MML passage on direct payments, and subsequently include the effect on

anesthesiologists as part of the mechanism analysis behind the causal effect.

Combining anesthesiologists and pain medicine physicians, our analysis had 138 and 356 physicians

from the four treated and ten control states, respectively, after removing 11 and 28 physicians from the

treatment states and control states for extreme and irregular values. Figure 2 shows that in each quarter,

5%–15% of the physicians had no payments. Physicians in the treated and control states had zero pay-

ments on an average of 0.99 and 1.04 quarters, respectively, between 2014 Q1 and 2016 Q2. An incidence

of zero payment during a period between an opioid manufacturer and a physician is informative about the

latent behaviors of both parties. Clearly, the latent behaviors vary across physicians. Thus, our method,

described in the next section, includes an additional penalty to closely match these zero-payment related

latent patterns for a physician and its synthetic counterpart.6

We supplement the payments data with the corresponding prescription data for each physician from

6We could have avoided this technical challenge by aggregating the payments data at the state level. However, with only 20
control possible control states for 4 treated states and 10 pre-treatment time periods to match for, we found that the synthetic
control method does not give good matches.

8



the Medicare Part D Prescriber Public Use File.7,8 To calculate the number of opioid-related prescriptions,

we separated the opioid and non-opioid drugs prescribed by the pain-medicine physicians. Figure 3 shows

the yearly average opioids related payments and number of opioids related prescriptions. The figure

shows a decrease in payments, while the average number of prescriptions increase marginally, although

not significantly, from 2015 to 2017. Later, we look at a difference-in-differences comparison for opioid

vs non-opioid prescription patterns for the treated and control states across the years.

We use additional data for further analysis of the heterogeneity in the effects on direct payments

due to an MML passage. Supplementary analyses involve zip-code level data on demographics and

income characteristics from the US Census Bureau’s American Community Survey. We also use data

on physicians’ experience, gender, and practice size. Further, we analyze longitudinal data on medical

marijuana patients in Florida post-MML. Section 6 gives additional information on these datasets.

3 Methodology
3.1 Set-up and notations

Let b be arbitrary unit that received treatment. The set C of all control units is indexed by c = 1, . . . , C.

We observe payments yct, c = 1, . . . , C and t = 1, . . . , T received by units in C. For simplicity, assume

that the treatment was applied between time T − 1 and T . We observe payments ybt, t = 1, . . . , T − 1

received by unit b in the pre-treatment period and the payment y̌bT received by unit b post-treatment.

Noting that unit b would have received ybT if they were not in the treatment set, the treatment effect is

given by TEb = y̌bT − ybT .

Now, if B be a set of treated units indexed by b = C + 1, . . . , C + B, the average treatment effect on

the treated (ATT) over the set B is given by ATTB = B−1
∑C+B

b=C+1 TEb. Our goal is to estimate ATTB as

well as the subgroup average treatment effect ATTA = |A|−1
∑

b∈A TEb over various interesting subsets

of A ⊆ B, where |A| denotes the cardinality of A. For that purpose we next develop a synthetic control

method to estimate the unknown ybT for each b ∈ B. The estimates ŷbT are then used to estimate ATTA

7The Part D Prescriber PUF is from CMS’s Chronic Conditions Data Warehouse, which contains Prescription Drug Event
records submitted by Medicare Advantage and stand-alone Prescription Drug Plans (https://www.cms.gov/Research-Statistics-
Data-andSystems/Statistics-Trends-and-Reports/Medicare-Provider-Charge-Data/ PartD2013.html).

8Unlike the detailed payments dataset, the prescription dataset only gives yearly aggregated information per physician.
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by ÂTTA = |A|−1
∑

b∈A(y̌bT − ŷbT ).

3.2 Proposed Penalized Synthetic Control Method

For unit b ∈ B, we estimate ybT by using the synthetic control (SC) method (Abadie, 2021, Abadie et al.,

2010, Abadie and Gardeazabal, 2003) that prescribes estimating ybT by linearly aggregating the payments

received by the controls ŷbT =
∑C

c=1wbcycT where the weights wbc ≥ 0 and
∑C

c=1wbc = 1 for all b ∈ B.

Let wb be the C dimensional vector (wb1, . . . , wbC) and W denote the B × C matrix whose row b is w′
b.

Define

f(W ;λ, ν) =
1

B

∑
b∈B

[ T−1∑
t=1

(
ybt −

C∑
c=1

wbc yct

)2

+
C∑
c=1

wbc exp

{
λ

( T−1∑
t=1

(
ybt + yct

)
I
{
ybt · yct = 0

})}]

+ ν
T−1∑
t=1

{
1

B

∑
b∈B

ybt −
C∑
c=1

(
1

B

∑
b∈B

wbc

)
yct

}2

, (1)

where I{} denotes the indicator function. For any fixed λ, ν ≥ 0 consider the following minimization:

argmin
W

f(W ;λ, ν) such that wb ≥ 0 and ||wb||1 = 1 for all 1 ≤ b ≤ B. (2)

The objective criterion produces a penalized synthetic control (PSC) estimator. Penalized synthetic con-

trols are increasingly being used (Abadie, 2021, Abadie et al., 2015, Ben-Michael et al., 2021a) to incor-

porate relevant structural constraints particularly while dealing with disaggregate level data. See Section

1 of Ben-Michael et al. (2021a) for a comprehensive review on usages of penalized synthetic controls.

Here, we have two penalty parameters λ and ν which imparts two different types of regularization on the

estimators. We next elaborate on the motivation behind (1) and the role of the penalization parameters.

We are interested in not only estimating the average treatment effect on the treated ATTB over dif-

ferent concerned subsets of physicians B but also in studying the heterogeneity among the individual

treatment effects TEb. For the first goal, it is best to use pooled SC based criterion that minimizes the

average pre-treatment imbalance across members in B. However, for the second goal it is optimal to use

separate SC criterion which estimates weights by separately minimizing the pre-treatment imbalance for

each treated unit b ∈ B. The estimators from the pooled SC and the separate SC based criteria often

significantly disagree and subsequently producing highly sub-optimal inference in either one of the two
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goals. Partially pooled SC (Ben-Michael et al., 2021b) provides a framework for construction of SC esti-

mator whose risk can be simultaneously well-controlled in both the aforementioned inferential goals. We

consider a partially pooled SC framework. The ν hyper-parameter in (1) balances the sum of squared im-

balances (Im) from the individual SC and the pooled SC criteria. As such, note that the objective criterion

minimized here is the sum of three components. Denote the three terms in (1) respectively by

(a) Imsep, which is the sum of squared pre-treatment imbalances for each separate treated units,

(b) Pensep(λ), which is an additive penalty that is separable across treated units, and

(c) Impool, which is the sum of squared pre-treatment imbalances for the average payment in B.

Thus, we have: f(W ;λ, ν) = Imsep + Pensep(λ) + ν Impool. When ν = 0, f(W ;λ, ν) decouples into

B separate unit-level minimization problems. Also, as yit ≥ 0 for all i and t in our data application,

Pensep(λ) is an increasing function of λ. At λ = 0, Pensep(0) = 1. When both λ = 0 and ν = 0,

f(W ;λ, ν) is the canonical SC criterion prescribed in Abadie et al. (2010). When λ = 0 and ν > 0, it

is the partially pooled SC criterion where ν balances the separate unit level and pooled sum of squared

imbalances between the treated unit and their synthetic controls in the pre-treatment period.

We develop and use the penalty Pensep(λ) in (1) to prevent interpolation biases particularly when the

control set is large and have highly heterogeneous members. Such uses of penalties in SC methods were

suggested in Abadie et al. (2015) and later further developed in Ben-Michael et al. (2021b). However,

Pensep(λ) differs in fundamental aspects from penalties that have been prescribed in the existing literature

on PSC. This is because we have developed Pensep(λ) so that the resulting estimators are adaptive to the

following important structural characteristics of the physicians’ payment data set that we analyze here.

This adaption in the proposed PSC method is crucial (explained later in Section 3.3) in controlling the

error rates of the synthetic control based estimators of TE in this application.

While the observed payment yit is non-negative, we witness (see Table 1 and Figure 2) non-significant

proportion of zero-payments, i.e., yit = 0. As the event of a zero-payment is intrinsically much different

from the event of a positive payment, considering a uniform metric such as L2 distance used in Imsep

across all time points can lead to erroneous estimation. To mitigate the severe interpolation bias that

can happen due to using sum of squared differences between treated and its estimates, we append the

penalty Pensep(λ) to the minimization criterion. A natural choice of penalty is the weighted L1 distance
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between the treat unit b and each of the control units: Pen(ℓ1)
sep(λ) = λ{

∑C
c=1wbc (

∑T−1
t=1 |ybt− yct|)} . The

proposed penalty Pensep(λ) differs from it by emphasizing the difference between the treated and control

units in the occurrence of zero-payments. Unlike this L1 penalty, the proposed penalty is not linear but

exponential and it only considers the gaps between the treated and control units when one of them is zero

and the other positive: Pensep(λ) =
∑B

b=1

∑C
c=1wbc exp

(∑T−1
t=1 {λ yctI(ybt = 0) + λ ybtI(yct = 0)}

)
.

Table S1 in the supplement compares these two choices of penalties through a simulation study and shows

that the proposed penalty is more suitable for our context.

Heuristically, the penalty helps in the construction of SC estimates by restricting estimates for treated

unit b to only corresponding control units that have similar patterns of zero-payments; subsequently, the

ν-weighted sum of separate and pooled imbalances are minimized producing SC estimates for any treated

unit b ∈ B that (a) have controlled imbalances for positive ybt in t = 1, . . . , T − 1, and (b) are based on

control units Cb ⊂ C such that supc∈C yct ≈ 0 whenever ybt = 0 for any t = 1, . . . , T . We show below in

Section 3.3 that not only the former but the second condition is also needed in our application to produce

good estimates of ybT for b ∈ B. Thus, the role of the penalty is very important in (1). Next, we formally

explain the role of the penalty function and then provide the implementation details for constructing the

proposed PSC estimates in Section 3.4.

3.3 Risk properties and the role of the penalties

An additive mixture model. To study the risk properties of the proposed PSC estimators we consider

a flexible additive mixture model. Readers interested in the implementation of the PSC method and our

empirical study may skip ahead to Section 3.4.

Without loss of generality, consider yit as truncated observations from unobserved pay-offs zit that

varies over R, i.e., yit = max(zit, 0). Consider an additive model for the pay-offs:

zit = fit + δit + ϵit, for i = 1, . . . , C, C + 1, . . . , B + C and t = 1, . . . , T, (3)

where, fit is a low-dimensional factor model and ϵit are noise with E(ϵit) = 0, E(ϵ2it) = σ2 and E(ϵi1t1 ·

ϵi2t2) = 0 whenever i1 ̸= i2 or t1 ̸= t2. Let fit =
∑K

k=1 ϕki µkt be a K dimensional latent factor model as

in Abadie et al. (2010), with the coefficient ϕi = (ϕik : 1 ≤ k ≤ K) varies across units but is invariant

across time, whereas the factor µt = (µkt : 1 ≤ k ≤ K) is invariant across units but varies across time.
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For each i, let ∆i = (δi1, . . . , δiT )
′ be a dampening sequence, i.e, ∆i ≤ 0. If ∆i = 0 for all i in (3),

and T − 1 ≫ K, then for any treated unit b ∈ B the parameters ϕb and {µt : 1 ≤ t ≤ T} can be well

approximated leading to good SC based estimates of ybT (see appendix B of Abadie et al., 2010 and the

proof of Thm. 1 in Ben-Michael et al., 2021a).

When δit is highly negative for some t, it would dominate the other terms in (3) producing negative

pay-off zit and so, the observation yit would be a zero-payment. Represent the support of the negative

spikes of this dampening process by the vector qi = I{∆i < 0}. There can be 2T different types of qis.

However, for our application the qis are not random sequences but are based on specific temporal patterns.

As such, we can impose further constraints on the model and assume that there are only L different types

of dampening sequences where L is an unknown but fixed number. The presence of such regularity

structures among the zero-payment patterns is important for consistent estimation. Under this constraint,

∆i is generated from a mixture model, i.e., ∆i = ∆̄h(i) where h : {1, . . . , B + C} → {1, . . . , L} is an

unknown function that maps the units to groups containing on similar dampening sequences.

We observe yit = max(zit, 0) for i ∈ B ∪ C and t = 1, . . . , T − 1 and yiT = max(zit, 0) for i ∈ C

and the goal is to estimate yiT = max(zbT , 0) for b ∈ B. The factors µt in the factor model are global

(invariant across units) whereas ∆̄h = (δ̄h(c),t : 1 ≤ t ≤ T )′ varies between groups with different

dampening patterns. Compared to the latent factor model analyzed in Abadie et al. (2010), it is more

challenging to construct efficient SC estimates in the presence of these complex, additive structures in

∆s. See supplement for an illustrative example. Equipping (1) with the penalty Pensep(λ) helps us in

correctly learning the coefficients ϕb for any treated unit b. Next, we explain the risk properties of the

proposed PSC method in an asymptotic regime where T → ∞ and λ is large. In practice, the tuning

parameter λ is chosen by cross validation and the penalized criterion is seen to produce good estimates

across varied non-asymptotic regimes which are presented later in Section 4.

Risk analysis of the proposed estimator. To facilitate a formal but intuitive understanding on the role of

the aforementioned penalty for producing consistent SC based estimates, henceforth in this subsection,

we assume that the noise component ϵit in (3) are generated from Gaussian distribution. All the results

in this subsection can be easily extended to additive mixture models with sub-gaussian noise. To provide

rigorous mathematical proofs of the risk properties, we consider T → ∞ and impose the following
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assumptions on (3):

A1. The factor model has significant signal strength. Let γ = 2(logC + log T )1/2σ. Assume f∗ :=

inf{fit : 1 ≤ i ≤ B + C, 1 ≤ t ≤ T} ≥ γ.

A2. For any two dampening sequences ∆̄g, ∆̄h, if q̄g = I{∆̄g < 0} and q̄h = I{∆̄h < 0} are such

that
∑T−1

t=1 |q̄g,t − q̄h,t| = 0 then qq,T = qh,T . This is a benign assumption that ensures that two

distinct dampening sequences must differ at least once in the pre-treatment era. It is essential for

identifiable estimate of ybT in (3) based on observing yit for t = 1, . . . , T −1 and i = 1, . . . , B+C.

A3. There is at least one instance where the dampening sequence has large enough negative signal to

dominate the factor model. For any h, assume inf1≤t<T δ̄h,t ≤ −f ∗ − γ where f ∗ := sup{fit : 1 ≤

i ≤ B+C, 1 ≤ t ≤ T}. Additionally, post intervention δh,T are either very large or well-controlled:

δh,T ∈ (−∞,−f ∗ − γ] ∪ [−σ(log T )1/2, 0] for all h.

A4. Two distinct dampening sequences must differ significantly in at least one time point in the pre-

treatment era, i.e., sup1≤t<T |∆̄g,t − ∆̄h,t| I{∆̄g,t∆̄h,t = 0} ≥ f ∗ + γ. Note that, by assumption

A3, if two distinct dampening sequences have disjoint supports, i.e.,
∑T−1

i=1 q̄g,t q̄h,t = 0, then this

condition is trivially satisfied.

A5. Each dampening sequence has a non-trivial fraction of zeros: infh limT→∞ T−1
∑T

t=1(1− q̄h,t) > 0.

This implies each treated unit can have a non-trivial proportion of non-zero payments in (3). This

is a benign assumption mainly set to prevent degeneracy in the proof. Estimates of any treated unit

not satisfying the condition can be just set to 0. We further assume that for any treated unit b, the

sum of squared imbalances based on controls with same dampening sequences is well-controlled:

min
w≥0, ||w||1=1

T∑
t=1

(
ybt −

∑
c∈Cb

wc yct
)2
I{δbt = 0} ≤ O(T log T ) as T → ∞, (4)

where, Cb = {1 ≤ c ≤ C : ∆c = ∆b}. This again is a very flexible assumption as the asymptotic

behavior of the square error of imbalances from any reasonable model in the pre-treatment period is

typically linear in T and we allow a poly-log margin over it. It holds as long as we have a sensible

control set such that no group in (3) that has too few or no control units.

A6. Our final assumption is not on the model but on criterion (1). We restrict the weight corresponding

to each control unit to be either 0 or at least 1/(CT ). Let W be the set of all such weight vectors
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which satisfy
∑C

c=1wc = 1 and wc = {0} ∪ [(CT )−1, 1] for all c. We assume (4) also holds for the

reduced weight space W .

Under these assumptions, we concentrate on estimating YbT where YbT is generated from (3) and b /∈ C.

We consider estimators of the form ŷbT (w) =
∑C

c=1wc ycT where weight w ∈ W . We concentrate on

criterion (1) with ν = 0. The effect of the pooling penalty parameter has been extensively studied in

Ben-Michael et al. (2021a) and similar impact will be seen here. With ν = 0, the optimization of (1)

decouples in optimization for each treated unit separately. For constructing ŶbT , consider only controls in

the following subset of the control set C:

Ĉb = {c ∈ C : yct ≤ ψ−1 if ybt = 0 and yct > 0 if ybt ≥ ψ−1 for all t = 1, . . . , T − 1}, (5)

for some ψ > 0. Note that, unlike Cb which depends on the model parameters, Ĉb depends only on the

observations. Next, consider the sequence of penalty parameter {λT : T ≥ 1} with λ2T = 2ψ(log(CT ) +

log log T ). The additional off-shoot term in the penalty akin to hard thresholding penalty in Donoho and

Johnstone (1994). Lemma 1 shows that with very high probability for any treated unit b the PSC estimate

based on λT is solely based on control units in Ĉb. As such, the probability is at least 1− T−2 as T → ∞.

Lemma 1. Under assumptions A1–A6, for any treated unit b, the optimal weight vector ŵ(b) for the

minimization (2) with λ ≥ λT satisfies

lim
T→∞

T 2 P
(
ŵ(b)

c ̸= 0 for some c ∈ C \ Ĉb
)
= 0.

The proofs of all the results stated in this section and additional discussion are given in the supplement.

We next show that if we restrict ourselves to controls in Ĉb, then with very high probability, we will be

considering only controls which has the same dampening sequence as the bth treated unit.

Lemma 2. Under assumptions A1–A6, for any b ∈ B and α < 1/2

lim
T→∞

T (log T )α P
(
sup
c∈C

T∑
t=1

|δct − δbt| · I{c ∈ Ĉb} > 0

)
= 0. (6)

Equipped with the above the above results, we next establish a probabilistic upper-bound on the error

of the proposed PSC estimator. It involves several steps. The essential part of the analysis is that when
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ybT > 0, then with very high probability, ybT − ŷbT = zbT −
∑

cwczcT for the proposed estimator, and we

can concentrate on the estimation error for the non-truncated pay-offs from (3). For any weight w, this

error decomposes into three constituents corresponding to the factor model, the dampening sequence and

the noise respectively:

Rf (w) +Rδ(w) +Rϵ(w), where, Rf (w) =
K∑
k=1

µkT

(
ϕkb −

∑
c

wcϕkc

)
,

Rδ(w) =
∑
c

wc(δ̄h(b),T − δ̄h(c),T ), and Rϵ(w) = ϵbT −
∑
c

wcϵcT . (7)

By lemma 2, Rδ is well-controlled for the proposed PSC estimator. Also, as any weight vector w that is

trained on the pretreatment period as in (1) is independent of {ϵcT : c = 1, . . . , C},Rϵ(w) is stochastically

dominated by N(0, v) where, v = σ2(1 + ||w||2) ≤ 2σ2 as ||wb||1 = 1. Rf in (7) can be well-controlled

if the PSC method learns the factor model coefficients {ϕkb : 1 ≤ k ≤ K} pertaining to treatment b well,

i.e.,
∑

c ŵbcϕkc ≈ ϕkb. For any weight vector w define Φ(b;w) = (ϕkb −
∑

cwcϕkc : 1 ≤ k ≤ K).

Then, |Rf (w)| ≤ ||µT ||2||Φ(b;w)||2. In the latent factor model where δit = 0 for all i, t in (3), it follow

directly from Appendix B of Abadie et al. (2010), that ||Φ(b;w)||2 is upper bounded by a multiple of

the imbalance between the treated unit and the PSC estimates in the pre-treatment period. The multiplier

is proportional to the lowest eigenvalue of H where H =
∑T−1

t=1 µtµ
′
t. Using lemma 2 and applying

similar derivations for SC estimates restricted to the class Ĉb of controls, we obtain an analogous upper

bound for |Rf (w)|. Combining these bounds on the three terms in (7) we arrive at our main result

which provides an explicit upper-bound on the loss of the PSC estimator ŷbT (w) for the bth treated unit

based on weight w. The bound depends on the sum of squared imbalances from positive time points

Imp(w, b) =
∑T−1

t=1 (ybt −
∑C

c=1wcyct)
2I{ybt > 0} as well as on the factor model parameters in (3).

Theorem 1. Under assumptions A1–A6, for any treated unit b ∈ B and for any weight w ∈ Wb := {w ∈

W : wi = 0 for i /∈ Ĉb} and ψ > 0, we have,

|ybT − ŷbT (w)| ≤ m
−1/2
b ||µT ||2

(
κb {s−1

b Imp(w, b)}1/2 + 8σ
√
s−1
b log T

)
+ 2σ

√
log T , (8)

with probability at least 1− 1/T where mb and κb are respectively the smallest eigenvalue and condition

number of s−1
b

∑T−1
t=1 µtµ

′
tI{ybt > ψ−1} with sb =

∑T−1
t=1 I{ybt > ψ−1}.
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Note that in Theorem 1, Wb is the weight space with support concentrated on the control subset Ĉb.

For moderately large T , the non-coverage probability of (8) is very small. Also, with K fixed as T → ∞

when the factor loadings are well-regulated, we have mb = O(1), κb = O(1). Thus, in this case (8) gives

|ybT − ŷbT (w)| ≤ K||µT ||∞ {s−1
b Imp(w, b)}1/2 + 2σ

√
log T . (9)

By assumptions A5 and A6, the right side above for the optimal weighted PSC estimate is O(
√
log T ).

Now, to illustrate the importance of the penalty Pensep(λ) we show that the SC estimator based on

minimizing criterion (1) with λ = 0 have extremely high maximal risk as compared to the proposed PSC

estimator. Consider the set ΘT of all parameters θ = (µk, ϕik, ∆̄l : k = 1, . . . , K; i = 1, . . . , B +C; l =

1, . . . , L) of (3) which along with assumptions A1–A4 also satisfy supk |µk| ≤ ζ for some prefixed ζ > 0

and inf{|ϕb − ϕc|∞ : c ∈ C and ∆c = ∆b} ≤ log T . The following asymptotic result shows that with

probability 1 − 1/T , the worst case risk over ΘT of the PSC estimate is O(
√
log T ) whereas the worse

case risk of the SC estimate is higher than T .

Lemma 3. Consider the PSC estimator ŷbT (ŵpsc) and the SC estimator ŷbT (ŵsc) where the two weight

vectors are selected by the minimization problem (2) with λ ≥ λT and with λ = 0 respectively. For any

a > 1/2, there exists C > 0 such that,

lim
T→∞

min
θ∈ΘT

T

[
1− Pθ

(
(log T )−a

∣∣ybT − ŷbT (ŵpsc)
∣∣ < C

)]
= 0.

lim
T→∞

max
θ∈ΘT

T

[
1− Pθ

(
T−1

∣∣ybT − ŷbT (ŵsc)
∣∣ > C

)]
= 0.

3.4 Implementation of the method for analysis of physician payments data

We discuss the implementation details of the method, specifically our calculations of ν, λ and confidence

interval. First, we follow Ben-Michael et al. (2021b)’s guide for the calculation of ν. We calculate W

separately by minimizing Imsep and Impool. Then ν is set as
√

Imsep/(
√

Impool −
√

Imsep). Next, we

use a cross-validation method to calculate λ. The cross-validation method leaves one of the pre-treatment

time periods out at a time and fits the penalized synthetic control for a given λ. The λ is chosen as the one

that minimizes the penalized partial sum of squared imbalance of the left-out time period to the synthetic

control fit. Our simulation comparisons evaluate the proposed PSC where ν and λ are calculated this way.
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In our payments data analysis, we analyze the average treatment effect on the treated (ATT) and the

overall average treatment effect (ATE). The ATE calculation finds a synthetic control physician for each

of the physicians from the states passing an MML as well as a synthetic counterpart physician from the

pool of treated physicians for each of the physicians from the control states. We fit two W matrices for

this purpose by solving two minimization problems, one finding a vector of weights of length equal to the

number of control physicians for each treated state physician and the second finding a vector of weights

of length equal to the number of treated physicians for each control state physician.

Finally, the confidence interval calculations use a leave-one-state-out calculation as in Rubinstein et al.

(2021). For each state we create a new data set, leaving out all the physicians in that state, and calculate

the ATE for the remaining physicians using our PSC method. We then estimate the standard error of

our ATE by taking the squared root of the Jackknife variance formula ((17) of Rubinstein et al.). The

calculation of standard errors for the ATT of FL leaves out control state physicians one state at a time. In

an alternative approach, Keele et al. (2023) address correlated observations by estimating the correlation

from the residuals from an outcome model fit. Our PSC method does not use an outcome model.

4 Simulation

We evaluate the relative performance of the proposed penalized synthetic control method to the existing

methods. Our simulation model generates 30 units observed for T = 55 periods. Three of these 30 units

are exposed to a treatment at time 45 and the rest 37 units remain unexposed. The original synthetic

control method of Abadie and Gardeazabal (2003) and Abadie et al. (2010) is developed for a single

exposed unit. This method is adapted when there are multiple exposed units by separately calculating

the synthetic controls for each of the exposed units from the pool of all control units. Ben-Michael et al.

(2021b) show that this method of separate calculations of the synthetic controls can be inefficient and

propose a new method for simultaneous calculation of synthetic controls. We compare our method, with

the proposed selection of the ν and λ, to these two state-of-the-art methods for synthetic control analysis.

In the notation introduced in the previous section, we generate data for unit i at time t as

yit = max(zit + τiWit, 0); where zit = ai + (t− 1)/4 + ⌊(t− 1)/4⌋+ δit + ϵit,
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where ai are iid uniform on [10, 60], Wit are the treatment indicator which is 1 only when t > 45 and

unit i is exposed, and τi is the treatment effect. The noise ϵit are independently drawn for each i, t from

a normal distribution with mean 0 and standard deviation 5. We consider three clusters of the units and

each cluster is specified by its units’ common dampening sequence δit. How similar or different these

dampening sequences are determines how similar or different these clusters are. One unit from each

cluster is selected to be treated where the probability of treatment for unit i is proportional to
∑45

t=20 yit.

We specified three models for the δits in the three clusters in our simulations, varying the similarity of

the clusters. We let δit = −80× qit where qit is 0 or 1, indicating the time when the process is dampened.

The first two models are probabilistic and use exponential waiting time processes. Specifically, in cluster

c, starting at time t = 0, after an exponential time with the rate θc a dampening starts. After that, the

process is dampened for an exponential time length with the rate ηc. Following this, the first process

restarts to find the next starting time for dampening. This model can be thought of as physicians and drug

manufacturers following a similar exponential waiting process for deciding when they would interact.

Our first dampening model sets θc = 1/10 for all c = 1, 2, 3 and η1 = η2 = η3 = 1/3; the second

model sets θ1 = 1/10, θ2 = 1/15, θ3 = 1/7 and η1 = η2 = η3 = 1/3. The last model sets deterministic

qi = 1 for i = 20, . . . , 24, 40, . . . , 44 in cluster 1, for i = 30, . . . , 34, 45, . . . , 49 in cluster 2, and for

i = 40, . . . , 44, 50, . . . , 54 in cluster 3. Figure 4 provides plots of data generated from these models.

Table 2: Simulation comparison for different synthetic control methods when τi = 0 for all: best performance in
each row is in bold. Results are based on averaging over 500 simulations; standard errors are in the parentheses

Synthetic control Pooled SC Proposed Penalized SC
clusters are probabilistically similar

l2 Imbalance 19.14 (0.26) 5.50 (0.08) 4.04 (0.03)
RMSE for ITT 20.69 (0.36) 5.87 (0.09) 5.35 (0.11)

RMSE for ATT 13.16 (0.39) 3.61 (0.11) 2.36 (0.11)
clusters are probabilistically different

l2 Imbalance 19.40 (0.27) 5.58 (0.10) 4.07 (0.03)
RMSE for ITT 21.33 (0.37) 5.81 (0.10) 5.81 (0.18)

RMSE for ATT 14.03 (0.37) 3.63 (0.13) 2.89 (0.16)
clusters are deterministic and different

l2 Imbalance 16.65 (0.17) 6.61 (0.08) 4.50 (0.02)
RMSE for IIT 26.30 (0.31) 6.56 (0.08) 5.38 (0.04)

RMSE for ATT 13.89 (0.22) 4.01 (0.10) 2.54 (0.05)
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The simulation results are summarized in Tables 2 and 3, which report three performance measures.

The ‘l2 imbalance’ is the average of the three Euclidean distances of the pre-treatment outcomes of the

three treated units and their synthetic controls. The ‘RMSE for ITT’ is the average of simulation-based

root mean squared errors for estimating the individual treatment effect τi for each of the three treated

units. Finally, the ‘RMSE for ATT’ is the simulation-based root mean squared error for estimating the

average treatment effect
∑

iWiT τi/3 of the three treated units.

Table 3: Simulation comparison for different synthetic control methods when τi = 15, 25 and −10 in the three
exposed units respectively: best performance in each row is in bold. Results are based on averaging over 500
simulations; standard errors are in the parentheses

Synthetic control Pooled SC Proposed Penalized SC
clusters are probabilistically similar

l2 Imbalance 19.50 (0.26) 5.50 (0.08) 4.07 (0.03)
RMSE for ITT 21.18 (0.36) 5.80 (0.09) 5.33 (0.11)

RMSE for ATT 13.74 (0.39) 3.52 (0.11) 2.42 (0.11)
clusters are probabilistically different

l2 Imbalance 19.54 (0.27) 5.64 (0.10) 4.07 (0.03)
RMSE for ITT 21.24 (0.37) 5.96 (0.10) 5.81 (0.18)

RMSE for ATT 13.41 (0.37) 3.81 (0.13) 2.81 (0.16)
clusters are deterministic and different

l2 Imbalance 16.33 (0.17) 6.79 (0.08) 4.53 (0.02)
RMSE for IIT 25.88 (0.31) 6.67 (0.08) 5.38 (0.04)

RMSE for ATT 13.70 (0.22) 4.15 (0.10) 2.55 (0.05)

These simulation results show that the original synthetic control method adapted to this situation

performs very poorly in all measures. Comparatively, the pooled SC method performs better than the

original method. Still, the proposed method has the best performance among all the methods in better fit

and estimation. Further, the performance of pooled SC becomes progressively worse with three structures

of the clusters that create increasing distinctions between the latent structures in the clusters. By contrast,

the proposed method provides consistently good performance across different cluster structures.

Figure S2 in the supplement, which shows that the RMSEs are lowest for the proposed λ over a grid

of choices of λs, provides an empirical justification of the cross-validated choice of λ. As in Kern et al.

(2016), we further conduct a simulation study “calibrated” to the physician payments data set to judge

our method’s performance in practice. Results reported in the supplement show that the proposed method

performs better in this calibrated simulation study; see Figure S3.
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5 Results

5.1 Synthetic control analysis of the MML passage on physician payments

Our primary analysis considers all pain medicine physicians from 13 states, of which three (PA, OH,

LA) were ‘treated’ states that passed an MML in the second quarter of 2016. The method, described in

Section 3.4, produces synthetic controls for each physician in the treated states using physicians in the

control states, and likewise produces synthetic counterparts for each physician in the control states using

physicians in the treated states.

The accompanying Figure 5 in its left panel shows the average of the differences in the payments of

190 pain-medicine physicians against their synthetic counterparts. The difference in payments is nearly

0, with a confidence interval between −$27.0 and $0.3, in the pre-treatment periods. Thus, the match

provides a good fit, which is an important requirement to draw causal conclusions from the calculated

differences during the post-treatment period (Abadie, 2021, Abadie et al., 2010). Recently, Parast et al.

(2020) proposed a new type of measure that is similar to the commonly used standardized differences in

matched studies for balance diagnosis of a synthetic control analysis. Using this measure, Figure S4 in

the supplement shows that the synthetic counterparts are good matches for the target physicians.

Figure 5 shows the average treatment effect (ATE) of MML on payments to physicians, estimating the

effect on physicians from treated as well as control states where an MML might be enacted in the future.

In the left panel, a significant and negative ATE is observed for pain medicine physicians, indicating

declining payments after MML passage. The negative impact on payments persists, except for a minor

shift from Q1 to Q2 of 2017. This reflects evolving dynamics in the interaction between these physicians

and opioid manufacturers. The estimated payment decrease is substantial, around $1217.41 in Q3 2017.

Unlike the treated states mentioned earlier, Florida enacted an MML in the final quarter of 2016.

We explore whether actions in other states (PA, OH, and LA) during the quarter before Florida’s MML

passage influenced payment activities in Florida. Such potential spillover effects from MML in other

states in Q2 2016 could bias the estimated treatment effect for Florida’s pain medicine physicians using

the synthetic control method (Schuler et al., 2021). We conducted two analyses on Florida physician

payments. In the first, we created synthetic controls from physicians in the 10 control states, considering
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payment history up to Q2 2016. In the second, we used payment history up to Q4 2016. Figure 6 contrasts

payments to Florida physicians with their synthetic controls from these two analyses. Estimates from the

first analysis are similar to estimates from the earlier analysis shown in left panel of Figure 5. This analysis

reveals a negative effect on Florida physicians’ payments as early as Q3 and Q4 of 2016, possibly due to

spillover from MML passage in other states. However, this spillover only accentuates the negative MML

effect. Controlling for concurrent MML passage in other states in our second analysis, the significant

negative MML effect on payments to Florida physicians persists. This suggests that opioid manufacturers

could have anticipated marijuana legalization, thus reducing direct payments with physicians.

5.2 Mechanism
We now elaborate on the possible mechanism behind the declining payments to pain medicine physicians

due to MML passage. We attribute that this decline in direct payments from opioid manufacturers to the

evolution of marijuana as a superior substitute in states that have legalized medical marijuana. Scherer

(1980) theorizes that upon entry of a substitute, existing competitors in the market respond in one of

the following ways: by counterattacking (increased marketing spending), retreating (by cutting back on

marketing spending), or remaining passive (no reaction) (Hanssens, 1980, Lambin et al., 1975). Gatignon

et al. (1989) suggest that existing players may reduce marketing spending as a profit-maximizing move

when they are unable to effectively counter new entrant(s) (Oxenfeldt and Moore, 1978). In our context,

research shows a shift in consumption from opioids (exiting players) to marijuana (the new entrant)

(Boehnke et al., 2019, Cooper et al., 2018, Hollenbeck and Uetake, 2021, NIDA, 2021). Thus, opioid

manufacturers may curtail marketing spending where the substitution to marijuana is inevitable.

However, the declining opioid payments in the treated states can potentially happen due to factors

other than MML passage. For example, some states might have stricter laws to curb opioid usage, such

as stricter PDMPs or Pill Mill laws (Moyo et al., 2017). In those states, the pressure on physicians to

move away from opioids can lead to opioid manufacturers strategically decreasing their presence and

thus investing less on financial inducements to physicians. And if those states pass MML, it might be

difficult to identify the substitution effect that can be attributed to MML passage separately from the

effect induced by opioid-restricting policies of those states. However, such identification issue will arise
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only if the MML and opioid-curbing policies were implemented simultaneously. The opioid-restricting

policies in our treatment states were passed before 2016 (i.e., not simultaneously with MML), e.g., Ohio

passed the MML in April 2016 while the pill mill law was passed in 2011. Thus, our analysis would

be able to adjust for these systematic differences in the pre-treatment period. Therefore, we can cleanly

attribute the decrease in payment to opioid physicians to substitution effect arising due to MML passage.

Among the potentially other factors that could explain the estimated decline, it could also be that the

treated states were able to pass the MML because of potentially weak lobbying power of the opioids

manufacturers in those states (Frances, 2021). This could have led to the opioid manufacturers selectively

reducing their activities in the treated states and hence a spurious negative effect in our analysis is man-

ifested. If this conjecture is valid, we would see a negative effect on payments to physicians agnostic of

their specializations. To test such a theory, we also analyzed direct payments to anesthesiologists, who

received the second highest payments after pain medicine physicians.9

Both specializations, pain medicine and anesthesiology, regularly prescribe opioid. Pain medicine

physicians primarily address chronic pain, while anesthesiologists manage both chronic and acute pain,

often necessitating intravenous interventions (INTEGRIS, 2020). Despite increasing medical marijuana

acceptance, its lack of FDA approval and its limited efficacy in treating acute pain make it unsuitable for

anesthesiologists’ intravenous procedures (Corliss, 2022, FDA, 2020). Therefore, pain medicine physi-

cians are more likely to switch to marijuana compared to anesthesiologists. Consequently, post-MML,

opioid manufacturers may reduce the payments to pain medicine physicians in response to the evitable

substitution to marijuana, but may not decrease payments to anesthesiologists. Alternatively, if reduced

payments to pain medicine physicians were solely due to opioid manufacturers losing ground in blocking

MML passage, then a similar payment decline would be seen for anesthesiologists. We analyzed pay-

ments to anesthesiologists in MML and non-MML states, akin to the analysis on pain medicine physician

(left panel of Figure 5), using our synthetic control method. The corresponding ATE plot for anesthesi-

ologist payments is shown in the right panel of Figure 5. Results indicate that though anesthesiologist

payments initially dropped post-MML passage, they rebounded within a quarter to pre-treatment levels.

It is probable that there could be another mechanism that explains the observed effects. The decline in

9All the other specializations, e.g., internal medicine and family medicine, had less than 10% of opioids related payments.

23



Table 4: Regression analysis results in cities where physicians practice across Florida

Dependent Var.: Log of Log of Log of Percent Change
Payment Rec. Payment Rec. Payment Rec. Mari. Patient

Lag of % Change
in Mari. Patients −0.3626. (0.1886) −0.3701** (0.1882)
Whether City has
Marijuana Dispensary −0.1435*** (0.0243) −0.1439*** (0.0243)
Log of Payment Rec. -0.0001 (0.0001)

Fixed-Effects:
Physician Specialty Yes Yes Yes Yes

S.E. type Heteroskeda.-rob. Heteroskedast.-rob. Heteroskedast.-rob. Heteroskedast.-rob.
Observations 8,467 8,467 8,467 9,453
R2 0.04408 0.04725 0.04757 0.00280
Within R2 0.00044 0.00375 0.00421 0.00001

payments might not directly result from perceived medical marijuana influence, but could be due to lower

payments prompting reduced opioid prescriptions and subsequently an increase in medical marijuana

recommendation. We aim to distinguish between these mechanisms using medical marijuana patient reg-

istration data. Florida’s provides bi-weekly updates on medical marijuana activity in the state, detailing

active dispensary locations and number of registered patients over time.10 Figure 7 depicts a rolling av-

erage of physician payments linked to active dispensaries in their regions. By merging marijuana patient

registration data with payment data, we performed two regressions. First, we regressed log of payment

against lagged bi-weekly change in marijuana patients and whether the physician’s city had a marijuana

dispensary. Second, we regressed bi-weekly change in marijuana patient against lagged payment activity.

The results reported in Table 4 show a significant negative correlation between an increase in marijuana

patients in preceding period as well as presence of a marijuana dispensary with opioid-prescribing physi-

cian payment. However, no significant association exists between physician payment and subsequent

period change in marijuana patients. These findings further support that the dominant factor in reducing

payments to pain medicine physician post-MML is the substitution effect of marijuana.

6 Heterogeneity
In Section 5, we found the passage of MML led to reduced direct payments to pain medicine physicians

from opioid manufacturers. We argued this might arise from manufacturers recognizing increased opioid-

10Information is available at https://knowthefactsmmj.com/2018/07/28/2017-ommu-updates-archive/
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to-marijuana substitution, especially for chronic pain management. Exploring distinct data patterns can

inspire further studies to extend understanding of this mechanism. Our synthetic control method offers

insight into individual treatment effects (ITEs), i.e., how MML affects each physician’s payments. Using

ITEs, we conduct a secondary analysis to explore variations in treatment effects based on physician

characteristics and practice demographics. Figures 8–10 display estimated ITEs for physicians in 13

states, averaged over four quarters following MML passages in PA, OH, and LA in 2016 Q2.

We first look at the two physician characteristics, namely gender and year of graduation, in Figure 8.

While the ITEs for the year of graduation do not show any defined pattern, we find that the decreases in

payments to male physicians are less pronounced than female physicians. Historically, empirical research

involving physician care has under-studied female physicians (Kimball and Crouse, 2007). However,

significant differences exist in practice patterns between male and female physicians. Research shows

that female physicians are more patient-centric, more open to patient concerns, have longer visits, and

ask more questions (Hall et al., 1994, Roter et al., 2002). Our current finding emphasizes that in the

context of pain relief, there is significant heterogeneity in how the introduction of medical marijuana

affects physicians based on gender and, consequently, the population they serve.

Analyzing the ITEs based on demographics of where the physicians practice, in Figure 9, we find that

the payments show a greater decrease in low-income areas. Low income areas would have a higher pro-

portion of people who engage in blue-collar jobs and, therefore, have more requirements for chronic pain

management (Jacobsen et al., 2013). Also, poorer regions have shown higher instances of opioid misuse

(Ghertner and Groves, 2018). Arguably, substituting into marijuana will help these communities (Comp-

ton et al., 2017). The recent governmental intervention to reduce opioid misuse has focused on these

vulnerable communities (The White House, 2016, USDA, 2019). The observed larger decrease in pay-

ments to physicians practicing in lower income communities could be a manifestation of a combination

of governmental efforts and societal awareness regarding the potential harmfulness of opioids.

In Figure 9, ITE patterns with respect to the median age of the population reveal that the decrease in

payments is the largest in the regions with a median age between 30-40 years. Populations younger than

this bracket will have lesser requirements for chronic pain management; therefore, opioid manufacturers

might feel less threatened by the entry of marijuana and may not decrease payments significantly. How-
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ever, regions with older populations, who are more prone to chronic pain, also show lesser decrease in

payments to physicians, suggesting lesser threat to substitution to medical marijuana. Focusing on racial

dispersion, in Figure 10, ITEs show a sharp decline for physicians practicing in populations with a higher

percentage of blacks. Recent studies have shown Blacks/African-Americans are significantly less likely

to be prescribed opioids for pain by medical providers than white patients (SAMHSA, 2020). In Figure

10, we also observe that areas above the national average in White population demonstrate a greater MML

passage effect than those exceeding the national average in Black/African American population.11

Our heterogeneity analyses reveal decline in direct payments vary based on physicians’ characteristics

and demographics of where they practice, possibly due to inherent differences in physicians’ and patients’

substitution patterns. Motivated by our results, hypothesis-driven studies would be helpful to (a) estab-

lish whether decrease in payments to opioid prescribing physicians is causally related to substitution to

medical marijuana and (b) subsequently identify the modifiers of the substitution effect on treating pain.

7 Discussion
In the wake of opioid epidemic in the US (Feinberg, 2019), several measures were instituted at the federal

and state levels to regulate proper management of opioid consumption. Some states also passed laws

legalizing medical marijuana consumption partly in response to the opioid epidemic. While adoption of

medical marijuana is on the rise (Geluardi, 2016), the FDA notes that, to date, “[it] has not determined

that cannabis is safe and effective for any particular disease or condition;”12 leading to opioids continuing

to be potent treatment for mitigating pain. Physicians are the primary gatekeepers for deciding medication

to patients needing pain management. Our research links these three key factors: medical marijuana laws,

opioid manufacturers, and their engagement with prescribing physicians. Specifically, we study how the

introduction of medical marijuana as a transformative competitor impacts direct payments to physicians

from opioid manufacturers. We show that MML leads opioid manufacturers to reduce direct payments

to opioid-prescribing physicians. Our mechanism analyses attribute this change to a growing adoption of

marijuana for pain management, suggesting that opioid manufacturers perceive marijuana as a superior

11By April, 2020 estimates, the demography of the United States has about 59.3% non-Hispanic white and 13.6%
black/African American population. https://www.census.gov/quickfacts/fact/table/US/PST040221

12https://www.fda.gov/news-events/public-health-focus/fda-regulation-cannabis-and-cannabis-derived-products-including-
cannabidiol-cbd

26



substitute and subsequently respond by reducing these direct payments (Gatignon et al., 1989).

While our research focuses on opioid manufacturers and physicians, it is worth considering MML’s

effect on patient pain management. To set the context, pain medicine physicians tend to prescribe more

opioid than non-opioid medication. They typically prescribe a certain amount in 30 days’ fills but also

medication for the number of days of use. The annual prescription data (mentioned in Section 2) shows

that, from 2015 to 2017, in the states not passing an MML, 30 days’ fill of opioid vs non-opioid remained

flat at a 1.38:1 ratio. However, in the states passing an MML, from 2015 to 2017, 30 days’ fill as well

as the number of days of prescription of opioid vs non-opioid decreased from a 1.57:1 ratio to a 1.52:1

ratio. In particular, the pattern of opioid vs non-opioid prescriptions did not change in the control states,

while there was a relative decrease in opioid prescriptions in the MML states from 2015 to 2017. We

leave further analysis of the possible effect of MML passage on patient care for future research.

Methodologically, we develop a novel penalized synthetic control method that estimates an average

treatment effect from a longitudinal dataset on multiple treated and control individuals. Using the pooled

synthetic control strategy, we create a synthetic counterpart of each treated and control unit by closely

matching on the target unit’s and their groups’ average pre-treatment outcome history. Further, we use a

novel penalty to adapt the resulting estimators to the latent groups in the data whose members have similar

quarterly non-payment patterns. The penalty reduces interpolation bias by closely matching individuals

and their synthetic counterparts on their non-payment patterns. Finally, under an additive mixture model

appropriate for our study, we show that an unpenalized synthetic control method will have uncontrolled

maximal risk while the proposed method produces efficient SC estimates. In the future, developing

penalized synthetic control methods for more complex latent structures in the data will be useful.
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Figure 1: Distribution of average payment (in US dollars) and the number of payments related to opioid, catego-
rized by the ratio of opioid to non-opioid drugs promoted during each payment.
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Figure 2: Summary of the payments to physicians in different quarters of pre-treatment period by the states that
did and did not pass medical marijuana laws. The MML states are ‘FL’, ‘LA’, ‘OH’ and ‘PA’; the non MML states
are ‘AL’, ‘GA’, ‘IN’, ‘NC’, ‘NE’, ‘SC’, ‘TX’, ‘UT’, ‘VA’ and ‘WI’. The plots on the top two panels show the 85th,
50th and 15th percentiles of log payments.

Figure 3: Distribution of average annual payments (in US dollars) to pain-medicine physicians and the corre-
sponding average number of prescriptions (in ’000s) written by those physicians across our analysis window (i.e.,
2014-2017).
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Figure 4: Two sets of simulated data in each the tree columns from the three simulation models. The three treated
units from the three clusters are in colors ‘black’, ‘dark gray’ and ‘gray’ respectively; the vertical line shows the
treatment adoption time.
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Figure 5: Synthetic counterpart analysis for MML passage on payments to physicians from 13 states in the US.
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Figure 6: Synthetic control analysis for MML passage on payments to pain medicine physicians in Florida. The
dashed line pretends MML passage in FL happened in the second quarter of 2016.

Jul Sep Nov Jan

0
5
0

1
0
0

1
5
0

2
0
0

Date: June−Dec 2017

R
o
lli

n
g
 a

ve
ra

g
e
 p

a
y
m

e
n
ts

Figure 7: Payments to physicians in Florida between June and Dec 2017 in the cities without any marijuana
dispensary at that time in red and with a marijuana dispensary at that time in green.
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Figure 8: Effect heterogeneity by physician gender and year of graduation.

34



−400

−200

0

50000 100000 150000

Median income of population

E
ff
e

c
t 

o
n

 p
h
y
s
ic

ia
n

 p
a
y
m

e
n

ts

−400

−200

0

30 40 50

Median age of population

E
ff
e

c
t 

o
n

 p
h
y
s
ic

ia
n

 p
a
y
m

e
n

ts
Figure 9: Effect heterogeneity by median income and the age of the zip code.
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Figure 10: Effect heterogeneity by racial composition of the zip code.
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Supplement to Using Penalized Synthetic Controls on Truncated
data: A Case Study on Effect of Marijuana Legalization on Direct
Payments to Physicians by Opioid Manufacturers

S1 Proofs and Other Section 3.3 Details

An example of the additive mixture model with illustration of the inferential challenges. Compared

to the latent factor model analyzed in Abadie et al. (2010), it is more challenging to construct efficient SC

estimates in (3). In figure S1, we show an example of (3). We consider K = 3, Φ1b ∼ Uniform(10, 60),

Φ2b = 1, Φ3b = 2, µ1t = 1, µ2t = t(mod4), and µ2t = ⌊t/4⌋. Considering each time period as a quarter,

the second and third factors represent seasonal changes and yearly trends respectively. We consider T =

100 and Gaussian noise of variance 25. We also consider 3 unique ∆ sequences with ∆̄h = −80
∑

j∈Jh ej

for h = 1, 2, 3 where ej is the jth canonical basis vector of R100 and J1 = {20, . . . , 24} ∪ {70, . . . , 74},

J2 = J1+10 and J3 = J2+10. Consider one of the blue curves in the bottom most sub-plot of figure S1 as

the treated unit and the others as controls. Then, minimizing Imsep+ ν Impool can lead to a PSC estimate

with positive weights from green or blue controls. This however can create a problem in prediction at time

t = T as the red, blue and green curve have different dampening sequences. We would like to estimate

blue treated units by only blue controls so that we do not have controls with different ∆s than the treated

unit. In this aspect, Pensep in (1) helps us in correctly learning the coefficients ϕb for any treated unit b.

Notations. With ν = 0, the optimization of (1) decouples in optimization for each treated unit separately.

For b ∈ B, denote the unit specific imbalance and penalty:

Im(w, b) =
T−1∑
t=1

(
ybt −

C∑
c=1

wc yct

)2

and

Penλ(w, b) =
T−1∑
t=1

C∑
c=1

wc exp

{
λ

(
yct I{ybt = 0}+ ybtI{yct = 0}

)}
.

1



Figure S1: Simulated illustration of the additive mixture model. Top panel is based on the first unit and plots the
observations y1t, the factor model and noise f1t + ϵ1t and ∆1t in black points, dotted blue line and dotted red line
respectively for t = 1, . . . , 100 time points. In the middle and bottom panel, we plotted observations from 15 units
over the 100 time-points. The middle panel shows the latent pay-off zits and the bottom panel shows the truncated
observed payments yit. The three different colors in the middle and bottom plots represent the three different groups
based on latent ∆ sequences.

Henceforth, for the remainder of this section we consider minimizing the following criterion:

Im(w, b) + Penλ(w, b) . (S1)
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Recall,

Ĉb = {c ∈ C : yct ≤ ψ−1 if ybt = 0 and yct > 0 if ybt ≥ ψ−1 for all t = 1, . . . , T − 1}.

Note that, non-asymptotically there are differences between the proposed penalty in (1) and a penalty

that restricts the control set to Ĉb. In the proposed penalty, when ybt = 0 and yct ̸= 0 the magnitude of yct

also plays a role in setting its weight based on the optimization in (1). A penalty that restricts the control

set to Ĉb, would treat all non-zero ycts as same until they are below some threshold ψ−1. We concentrate

on an asymptotic analysis in this section. Let τb = {1 ≤ t ≤ T − 1 : ybt > ψ−1}. Partition Im(w, b) into

Imp(w, b, ψ) and Imz(w, b, ψ) based on τb and its complement. Let Ŵb = {w ∈ W : wi = 0 for i /∈ Ĉb}

be the weight space with support concentrated on the control subset Ĉb. We present the proofs for the

arbitrary bth treated unit. For notational convenience, henceforth the dependence on bwill be kept implicit

unless it is needed to be mentioned.

Proof of Lemma 1. By definition of Ĉb, for any w ∈ W \ Ŵb we have

Penλ(w; b) ≥ (CT )−1 exp(λψ−1) = CT (log T )2. (S2)

Define the subset D̂b of C as D̂b = {c ∈ C :
∑T−1

t=1 I{yct = 0}I{ybt = 0} + I{yct ̸= 0}I{ybt ̸= 0} =

T − 1}. Let ŴD be the set of all weights in W that have support contained in D̂b. Note, that for any

weights w ∈ ŴD, Penλ(w; b) = 0 and thus, ŴD ⊆ Ŵb.

By assumptions A1 to A4, we have: P (Ĉb ⊆ D̂b) ≤ 1 − T−2. Let Sb = {1 ≤ t ≤ T − 1 : δbt ̸= 0}.

Decompose the sum of squared imbalances Im(w, b) into Im1(w, b) and Im2(w, b) based on Sb and

its complement. Then, by (4) of Assumption A5, it follows that with probability 1 − T−2 we have

minw∈ŴD
Im1(w, b) ≤ O(T log T ). Also, by A1 to A4, we have minw∈ŴD

Im2(w, b) = O(log T ) with

probability 1− 1/T 2. Thus, the minimal value of the optimization criterion Im(w, b) + Penλ(w, b) over

w ∈ ŴD is O(T log T ) with probability 1 − T−2 which is less than the penalty in (S2). Thus, the result

follows.

Proof of Lemma 2. First note that by construction of Ĉb we have for all c ∈ Ĉb: (a) yct ≤ ψ−1 ⇔
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ybt = 0, and (b) yct > 0 ⇔ ybt ≥ ψ−1. The following two identities directly follow from these

relations:

P (ybt < ψ−1) + P (ybt ≥ ψ−1 and inf
c∈Cb

yct > 0) = 1 (S3)

P ( inf
c∈Cb

yct = 0) + P (ybt ≥ ψ−1 and inf
c∈Cb

yct > 0) = 1. (S4)

Now, for some c ∈ Cb if ∆c ̸= ∆b then by A4 there exists some t such that |δct − δbt| ≥ f ∗ + γ.

Consider the following two sets: At = {δbt = 0 and δct ≤ −f ∗ − γ for some c} and Bt = {δbt ≤

−f ∗ − γ and δct = 0 for some c}. Note that, P (∆c ̸= ∆b for some c) ≤
∑T

t=1 P (At) + P (Bt).

We first concentrate on set At. Note that on At, we have P (ybt < ψ−1|At) ≤ P (ϵbt < −f∗ + ψ−1) ≤

P (ϵbt < −γ + ψ−1), where the last inequality follows by assumption A1. Also, in this case note that,

P ( inf
c∈Cb

yct > 0|At) ≤ P (sup
c∈Cb

ϵct + f ∗ ≤ −δct|At) ≤ P (sup
c∈Cb

ϵct ≤ γ).

By (S3) we have:

P (At) ≤ P ( inf
c∈Cb

yct > 0|At) + P (ybt ≥ ψ−1 and inf
c∈Cb

.yct > 0|At)

The right side above is again upper bounded by P (ϵbt < −γ+ψ−1)+P (supc∈Cb ϵct ≤ γ) ≤ 2(log T )−1/2T−2.

On Bt, we compute P (infc∈Cb yct = 0|Bt) and P (ybt ≥ ψ−1|Bt). Again as before using (S4) we have

P (Bt) ≤ P ( inf
c∈Cb

ϵct ≤ −γ) + P (ϵbt > γ + ψ−1) ≤ 2(log T )−1/2T−2.

Thus, we have, P (∆c ̸= ∆b for some c) ≤
∑T

t=1 P (At) + P (Bt) ≤ 4(log T )−1/2T−1.

Proof of Theorem 1. First, note that when ybT = 0, then by Assumption A3 and lemma 2 it follows

that with probability 1 − T−1(log T )−α, for α < 1/2, we have ycT = 0 for all c ∈ Ĉb. Thus, in this case

ŷbT − ybT = 0, with probability 1− T−1(log T )−α.

Henceforth, we concentrate on the case where ybT > 0. Then, ybT = zbT . As ybT > 0, using

4



Assumption A1, A3 and Lemma 2 again, it follows that

P

(
inf
c∈Ĉb

YcT > 0

)
≥ 1− T−1(log T )−α.

Thus, in this case with the aforementioned probability ybT − ŷbT reduces to zbT −
∑

c∈Ĉb wczcT . We focus

on providing probabilistic control on this difference: zbT −
∑

cwczcT for weights w ∈ Wb. For any

w ∈ Wb, define ẑbt(w) =
∑

cwczct for all t ∈ τb. As all weights in Wb have support in Ĉb, ẑbt(w) is

well-defined for all t ∈ τb. When, t = T , we define ẑbT (w) =
∑

cwczcT when infc:wc>0 ycT > 0; else it

is set to −∞. From (3), we know that for all t ∈ τb,

zbt − ẑbt = Rf (t) +Rδ(t) +Rϵ(t), where, Rf (t) =
K∑
k=1

µkt

(
ϕkb −

∑
c

wbcϕkc

)
,

Rδ(t) =
∑
c

wbc(δ̄h(b),t − δ̄h(c),t), and Rϵ(t) = ϵbt −
∑
c

wbcϵct.

Note that, unlike (7) we have kept the dependence on w implicit here. We only consider weights w ∈ Wb.

Consider the set A = {supc∈Cb |∆c −∆b| = 0}. By Lemma 2, P (A) ≥ 1− 4T−1(log T )−1/2.

Consider the following vector Rz = {zbt − ẑbt : t ∈ τb}. It is of dimension |τb| := size(τb) = sb.

Stacking the above equation in vector format for t ∈ τb we have:

Rz = Mb · Rϕ +Rδ +Rϵ , (S5)

where, Rδ = (Rδ(t) : t ∈ τb), Rϵ = (Rϵ(t) : t ∈ τb) are sb dimensional vectors and Rϕ is the K

dimensional vector (ϕkb −
∑

cwbcϕkc : 1 ≤ k ≤ K). The matrix Mb is of s × K dimension and

(Mb)ij = µji. Note that if τb = 1, . . . , T − 1 then Mb = M which is the matrix of all latent factors and

thus, Mb depends on b only through τb. Note that, Mb does not depend on w. Further note that,

M′M =
T−1∑
t=1

µ′
tµt = H and M′

bMb =
∑
t∈τb

µ′
t µt = Hb,

5



where, µt = (µkt : 1 ≤ k ≤ K) is a K dimensional vector. Next, note that,

zbT − ẑbT = µ′
T Rϕ +Rδ(T ) +Rϵ(T ) = µ′

T H̄b(Rz −Rδ −Rϵ) +Rδ(T ) +Rϵ(T ), (S6)

where, H̄b = (M′
bMb)

−1M′
b and the second equation follows by inverting (S5). On the set A, we have

Rδ = 0 and Rδ(T ) = 0. And so, on the set A, we have

|zbT − ẑbT | ≤ |µ′
T H̄bRz|+ |µ′

T H̄bRϵ|+ |Rϵ(T )| ≤ ||µT ||2 ||H̄bRz||2 + ||µT ||1||H̄bRϵ||∞ + |Rϵ(T )|.

The bounds on the right side above can be further simplified. Note that,

||H̄b Rz||2 ≤ {σ1(H̄ ′
bH̄b)}1/2 · ||Rz||2 ≤ κb s

−1/2
b m

−1/2
b {Imp(w, b)}1/2,

where, σ1(H̄ ′
bH̄b) is the largest eigenvalue of H̄ ′

bH̄b. The second inequality follows by noting that

||Rz||22 = Imp(w, b, ψ) ≤ Imp(w, b, 0) = Imp(w, b) and σ1(H̄ ′
bH̄b) ≤ κbm

−1
b where κb is the condi-

tion number and mb is the lowest eigenvalue of s−1
b Hb.

Now note that, Rϵ(T )
d
= N(0, vT ) where vT = σ2(1 +

∑
cw

2
bc) ≤ 2σ2 as

∑
cwbc = 1 and wbc ≥ 0.

Next, we use the naive bound: ||H̄bRϵ||∞ ≤ ||H̄bRb,ϵ||∞ + ||H̄bRC,ϵ||∞. For any fixed w, Rϵ(T ),Rb,ϵ

and RC,ϵ are independent among themselves. Also, H̄bRb,ϵ
d
= N(0, σ2H̄bH

′
b) = N(0, σ2H−1

b ). Thus,

||H̄bRb,ϵ||∞ is stochastically bounded by σm̌−1/2
b X1 where m̌b = mbsb and X1 is the maximum of s in-

dependent Chi-square random variables. Similarly, ||H̄bRC,ϵ||∞ is stochastically bounded by 2σm̌
−1/2
b X2

whereX2
d
= X1 and independent ofX1. Thus, we have: ||H̄bRϵ||∞ ≤ 2σm̌

−1/2
b X3 whereX3 = X1+X2.

Accumulating the above bound we obtain the following bound for all events in the set A:

|zbT − ẑbT | ≤ s
−1/2
b m

−1/2
b ||µT ||2

(
κb {Imp(w, b)}1/2 + 2σX3

)
+
√
2σX4,

where X4
d
= χ(1) is independent of X3.

Now, let l = 2 log sb and h = log log sb. Consider the set D = {X3 ≤ 2
√
l + h and X4 ≤

√
l}.

As X3 and X4 are independent using tails bounds on the Mill’s ratio it follows that P (D) ≥ (1 −

6



s−1
b (log sb)

−1/2)2. On A ∩D we have:

|zbT − ẑbT | ≤ m
−1/2
b ||µT ||2

(
κb {s−1

b Imp(w, b)}1/2 + 4σ
√
(l + h)/τb

)
+ σ

√
2l,

and the result follows as P (A ∩ D) ≥ 1 − P (Ac) − P (Dc) ≥ 1 − 4T−1(log T )−1/2 − {1 − (1 −

s−1
b /(log sb)

2} ≥ 1− 3s−1
b /(log sb)

−1/2,

|zbT − ẑbT | ≤ m
−1/2
b ||µT ||2

(
κb {τ−1

b Imp(w, b)}1/2 + 8(sb/T )
−1σ

√
T−1 log T

)
+ 2σ

√
log T .

Proof of Lemma 3. Here, we first exhibit an instance of ΘT over which the risk of the SC estimate is very

high with high probability. The risk bound on the PSC estimate follows from the result in Theorem 1.

Consider an asymptotic set-up with C fixed and T → ∞. Let σ = 1 and ℓ = (4 log T )−1/2. With

out loss of generality assume, δb,T−1 = δb,T = 0. Consider a control a which satisfies ϕa = ϕb = ℓ and

δa,t = δb,t for t = 1, . . . , T − 2 and δa,T−1 = ℓ and δa,T = T δ for some δ > 1. The, f∗ and f ∗ are both

O(ℓ). Let all other controls c ∈ C are based on parameters in (3) of the form: ϕck = ϕbk + ℓ for k =

1, . . . , K and ∆c = ∆b for c ∈ C \ {a}.

Consider minimization of the criterion (2) when λ = 0. For this set of parameter θ (defined above)

it follows that the SC estimate ŷbT (wsc) satisfies Pθ

(
ŷbT (wsc) = yaT

)
≥ 1 − T−1, which implies that

Pθ

(
|ŷbT (wsc)− ybT | ≥ T δ

)
≥ 1− T−1 as δb,T = 0 and δa,T = T δ.

On the other hand, minimization of the criterion (2) when λ ≥ λT produces PSC estimate ŷbT (wpsc)

which satisfies: Pθ

(
ŷbT (wpsc) = O(log T )

)
≥ 1−T−1. To derive the above results first note that the set-

up satisfies all the assumption A1-A6 mentioned in the main paper. In particular, assumption A5 follows

from the fast that for any c ∈ C \ {a} we have Pθ(
∑T−1

t=1 (ybt − yct)
2 ≤ T (ℓ2 + ℓ2K2ζ)) ≥ 1 − 2−1T−1,

where, ζ = supk ||µk||∞. The result follow from (9) in the main paper.
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S2 Additional empirical evaluations

Choice of λ

Our proposed penalized synthetic control method includes a penalty parameter λ. We proposed a cross-

validation based method to select this penalty parameter. To assess the accuracy of this choice, we con-

ducted an empirical evaluation. We used the simulation models in Section 4 and ran our method over a

grid of choices of λs. The two panels of Figure S2 plot the relative RMSEs for ITT and ATT at these

λ values, compared to the RMSEs for the cross-validated choice of λ. The plot shows that the RMSEs

are the lowest at the proposed choice. While for λ larger than the proposed choice the RMSEs are much

higher, for λs slightly smaller than the proposed choice, we see relatively smaller losses of accuracy.

Overall, this empirical evaluation provides a justification for the proposed choice of λ.
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Figure S2: Ratio of RMSEs vs Ratio of λs. The solid, dashed and dotted lines correspond to simulation models in
in Section 4 where clusters are probabilistically similar, probabilistically dissimilar, and deterministic and different,
respectively. The cross-validated choice of λ results in the lowest RMSEs.
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Comparison to the L1 penalty

An alternative penalty to our proposed penalty would be to penalize the L1 difference between the treated

and control units’ pre-treatment outcomes. However, unlike the proposed penalty, the weighted L1 dif-

ference based penalty does not distinguish between non-zero and zero values of ybt. As a consequence,

penalized synthetic control estimates of ybT based on the weighted L1 difference based penalty can con-

tain controls that are generated from a different dampening sequence in the censored additive factor model

(1). Due to this, the component of the risk Rδ in (6) from the dampening sequencing is unbounded.

We conducted a detailed simulation to compare the proposed penalized method to this L1 difference

based penalty. In this simulation, we consider a simulation model where the factor model part only

includes an intercept at 25, there is i.i.d. gaussian noise of standard deviation 20 and there is no treatment

effect. Additionally, the dampening model is as in our simulation model in Section 4. Notice that the

noise variance in this simulation is large compared to the simulation models there. Finally, we consider

only 5 units per cluster, as compared to 10 units in our simulation in Section 4, to emphasize that the L1

penalty will have a higher chance of making mistakes in picking the synthetic controls. Our simulation

results are presented in Table S1. The results show a much better performance of the proposed penalized

method compared to using L1 penalty.

Table S1: Simulation comparison for different synthetic control methods when τi = 0 for all: best performance in
each row is in bold. Results are based on averaging over 500 simulations; standard errors are in the parentheses

Synthetic control Pooled SC Proposed Penalized SC L1 Penalized SC
clusters are probabilistically similar

l2 Imbalance 25.51 (0.27) 18.79 (0.20) 15.95 (0.13) 18.05 (0.19)
RMSE for ITT 25.61 (0.36) 20.32 (0.29) 18.76 (0.25) 19.80 (0.28)

RMSE for ATT 14.57 (0.39) 10.63 (0.32) 6.96 (0.20) 9.19 (0.29)
clusters are probabilistically different

l2 Imbalance 26.14 (0.27) 18.53 (0.20) 15.92 (0.13) 17.93 (0.20)
RMSE for ITT 25.89 (0.33) 20.21 (0.29) 18.63 (0.25) 19.73 (0.22)

RMSE for ATT 13.35 (0.37) 10.46 (0.32) 6.93 (0.20) 9.15 (0.25)
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A calibrated simulation study

For a more informative simulation study for our physician data, we conduct a simulation study “cali-

brated” to the main data set as in Kern et al. (2016). In particular, we consider the following simulation

model.

There are 100 units observed over 13 time periods, among which 10 are pre-treatment time periods.

The pre-treatment data for the units are sampled randomly from our physician payments data for the 10

pre-treatment time periods. Thus, the longitudinal observational in each simulated data set is representa-

tive of the data in our empirical study.

Next, we describe how the treated units are selected. The sampled control data are clustered using a

k-means cluster on their vector of indicators if the observation is 0 or not. Thus, the k-means algorithm

takes 100 binary vectors of size 10 as input, and we create 3 clusters by the clustering method. One unit

each is selected from the three clusters as a treated unit randomly.

We consider two different post-treatment outcomes to capture different complexities in our empirical

study. First, we use a linear outcome model that follows the same pattern in the three post-treatment

periods as in time periods 1–3. More concretely, yit = y̌it = yi(t−10) − yi(t−10) + yi10 for t = 11, 12, 13.

Second, we use a quadratic outcome model where y̌it =
√
yi(t−10)yi(t−7) for t = 11, 12, 13. While, the

post-treatment outcome for the treated units are yi11 = y̌i11 × .9, yi11 = y̌i11 × .7 and yi11 = y̌i11 × .8.

Thus, the treatment effects are heterogeneous, varies over time and exits only when there is a non-zero

counterfactual payment.

We report the simulation methods in Figure S3 comparing the proposed penalized synthetic control

method to the pooled synthetic control method. The plots show the l2 imbalance and RMSEs for esti-

mating ITT and ATT. The proposed method shows overall better performance across all the measures.
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Figure S3: Result comparing pooled SC and the proposed penalized SC method on two calibrated data generating
models. Based on 500 data sets.
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S3 Additional findings and notes on physician payments study

Entry of new opioids during post-treatment period

In our current analysis we use the opioids drugs manufactured by five companies and their subsidiaries,

namely, Depomed, INSYS, Janssen, Purdue Pharma, and Teva Pharmaceuticals. In 2017, our post-period,

FDA approved Arymo ER (January), Vantrela ER (January), and RoxyBond (April).1 Among these par-

ticular brands, it is pertinent to note that Vantrela ER is manufactured by Teva Pharmaceuticals. Our

dataset encompasses the overall marketing activities associated with Teva Pharmaceuticals. Egalet Cor-

poration, which manufactures Arymo ER, were involved in promoting this drug in the later part of 2017.2

However, RoxyBond, distributed by Protega Pharmaceuticals, was not commercially launched in 2017.3

Therefore, we expect limited interference due to new brand entry in our empirical analyses.

Balance diagnostics

For a synthetic control to be reliable, we need to make sure that the synthetic control matches are good.

The standardized mean difference is commonly used to assess quality of a match in the traditional match-

ing of a treated group to a control group. Recently, Parast et al. (2020) proposed a new type of measure

that is similar to the original standardized differences for balance diagnosis of a synthetic control analy-

sis. We use their balance measure to assess the quality of our synthetic control fit. They suggest that the

synthetic control is reliable if the values of this measure are below the threshold of 0.10 on the absolute

scale.

Figure S4 plots the standardized differences as suggested by Parast et al. (2020) for each physician

and their synthetic counterpart. Except for a handful of cases only in the first two time periods, we see

that all standardized differences are below the desired 0.10 on the absolute scale. The average of the

absolute standardized differences is below 0.10 for all physicians in our data, which is recommended

1https://www.fda.gov/drugs/information-drug-class/timeline-selected-fda-activities-and-significant-events-addressing-
substance-use-and-overdose

2https://www.sec.gov/Archives/edgar/data/1586105/000110465917019839/a17-10087 1ex99d1.htm
3https://www.globenewswire.com/news-release/2022/07/06/2474928/0/en/Protega-Pharmaceuticals-LLC-Announces-

Commercialization-of-RoxyBond-oxycodone-hydrochloride-Tablets-CII-in-the-U-S.html

12



2014.Q1 2014.Q3 2015.Q1 2015.Q3 2016.Q1

−0.2

−0.1

0.0

0.1

0.2

Balance check for pain medicine physicians

Quarter

S
ta

n
d

a
rd

iz
e

d
 d

if
fe

re
n

c
e

2014.Q1 2014.Q3 2015.Q1 2015.Q3 2016.Q1

−0.2

−0.1

0.0

0.1

0.2

Balance check for Anesthesiologists

Quarter

S
ta

n
d

a
rd

iz
e

d
 d

if
fe

re
n

c
e

Figure S4: Standardized mean difference for the penalized synthetic control fit for pain-medicine physicians and
anesthesiologists. This plot corresponds to Figure 5 of the main paper.

guide to judging a good match (Parast et al., 2020).

Two-way fixed effects model for the excluded units

Recall from Section 2 that about 8% of the units were removed for our synthetic control analysis because

their outcomes had extreme values. Here, we try to assess if excluding these physicians could have

severely changed our findings.

We have run a two-way fixed effects analysis with time and state fixed effects on the physicians who

were removed because of unusually high payments. The analysis shows a significant negative effect of

MML passage consistent with the findings from our SC analysis. We see a significant negative coefficient

for the treatment. Note that the standard errors are based on cluster robust standard errors with states as

clusters. A two-way fixed effects model would have been a typical choice for analyzing this data.

Results for Two-Way Fixed Effects Model
===========================================

Dependent variable:
---------------------------

I(log(pay + 10))
-------------------------------------------
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MML -1.362*** (-2.210, -0.513)
time -0.023 (-0.073, 0.028)
as.factor(st)2 3.082*** (1.992, 4.172)
as.factor(st)3 -1.784*** (-3.061, -0.508)
as.factor(st)4 -0.348 (-2.016, 1.320)
as.factor(st)5 -0.040 (-1.427, 1.347)
as.factor(st)6 1.071 (-0.206, 2.348)
as.factor(st)7 -3.103*** (-4.620, -1.585)
as.factor(st)8 -0.984 (-2.797, 0.828)
as.factor(st)9 -1.727** (-3.203, -0.251)
as.factor(st)10 -2.733*** (-4.166, -1.300)
as.factor(st)11 -0.575 (-2.213, 1.064)
as.factor(st)12 -1.082 (-2.854, 0.690)
as.factor(st)13 -0.372 (-2.043, 1.299)
as.factor(st)14 1.882*** (0.547, 3.217)
as.factor(st)15 -0.886 (-2.663, 0.891)
as.factor(st)16 -1.476** (-2.921, -0.030)
as.factor(st)17 0.050 (-1.606, 1.706)
as.factor(st)18 2.078*** (0.951, 3.205)
as.factor(st)19 -1.068 (-2.593, 0.458)
as.factor(st)20 -1.936** (-3.551, -0.321)
as.factor(st)21 -0.970 (-2.543, 0.603)
as.factor(st)22 -0.500 (-1.907, 0.906)
as.factor(st)23 -2.104*** (-3.472, -0.736)
as.factor(st)24 -0.913 (-2.393, 0.568)
as.factor(st)25 -1.274 (-3.068, 0.520)
as.factor(st)26 0.617 (-0.751, 1.984)
as.factor(st)27 -2.782*** (-4.023, -1.540)
as.factor(st)28 -1.244 (-2.775, 0.287)
as.factor(st)29 -2.234*** (-3.789, -0.679)
as.factor(st)30 0.008 (-1.665, 1.682)
Constant 7.227*** (6.136, 8.318)
-------------------------------------------
R2 0.300
Adjusted R2 0.252
===========================================
Note: *p<0.1; **p<0.05; ***p<0.01

However, it generally does not build on a causal framework and recent literature has argued that the

two-way fixed effects results may be hard to give causal interpretation (Imai and Kim, 2021, Imbens et

al., 2021). Thus, in our main analysis, we chose the synthetic control method that builds on a causal

framework.
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