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Abstract. When making causal inferences from observational data, researchers must con-

sider the effects of confounding. In a regression discontinuity design (RDD), individuals

receive a treatment based on whether they score below or above a threshold value mea-

sured on a continuous variable. By assuming continuous regression lines for the potential

outcomes at the threshold, RDD methods remove the confounding bias in estimating the

treatment effect at the threshold. This effect is estimated by the jump in the regression

line for the observed outcome at the threshold. Although RDD methods have gained de-

served attention in economics, social sciences and epidemiology, we show that inferences

from RDDs using the local and global linear regression estimators are prone to regression

to the mean bias in certain situations. A common situation is when a running variable has

a normal distribution and the cutoff is relatively far from the mean of this distribution.

We derive the expression for the limiting bias in this case. In general, the bias occurs

when some units receive (or do not receive) treatment when their running variable values

are extreme relative to the typical value of the running variable. Through simulations,

we show that the regression to the mean bias can lead to inflated type I error rates and

bias toward the null in typical settings. Simulations show that the RTM effect can be

different for different estimators. We develop a novel method to correct this bias and

provide valid inferences. We verify our correction method in simulations and apply it to a

real-life example of the incumbency advantage in U.S. House elections.
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1 Introduction

A regression discontinuity design is concerned with the effect of a treatment that

is determined fully or in part by an observed continuous ‘running variable’ exceed-

ing a threshold. This paper focuses on sharp regression discontinuity designs where

study units are assigned to the treatment exactly when the running variable crosses

the threshold. Although it originated in the works of Thistlethwaite and Campbell

(1960), the regression discontinuity design (RDD) only now has attained its peak

in popularity among empirical researchers driven by new theoretical clarity (Hahn

et al., 2001; Lee, 2008), estimation methods (Porter, 2003; Imbens and Kalyanara-

man, 2011; Calonico et al., 2014), methods for testing validity of the design using

observed data (McCrary, 2008; Smith et al., 2016), and a growing number of applica-

tions of the design in diverse fields, e.g., education (Jacob and Lefgren, 2004; Banks

and Mazzonna, 2012), housing (Rischard et al., 2021), healthcare (Zuckerman et al.,

2006) and policy evaluation (Bakolis et al., 2016). RDD has also been extended to

more complex situations, e.g., multiple running variables (Keele and Titiunik, 2015),

geographical discontinuity (Keele and Titiunik, 2015) and ordinal running variable

(Suk et al., 2022). Additionally, researchers, e.g., Cattaneo et al. (2015), Branson

et al. (2019) and Sales and Hansen (2020), have provided new methods for inference

using RDD.

Basing on the original framework of Hahn et al. (2001), this paper shows that

even when the identification assumptions in an RDD is satisfied, inference from the

design can be severely biased by regression to the mean bias.

Regression to the mean (RTM) is among the oldest statistical phenomena which

typically refers to the fact that extreme measurements of a random measurement tend

to have a value nearer to the expected value in the next measurement. Regression
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to the mean has been known to induce bias in many statistical procedures. Our

interest is in the investigation of the RTM’s effect on RDD. Particularly, if there are

extreme values of the running variable that influences whether the corresponding unit

is assigned treatment or not then regression to the mean value may affect the unit’s

outcomes. Imagine, the running variable and the outcome are positively correlated.

If the threshold is a high number compared to typical values of the running variable,

units crossing the threshold will tend to see their outcomes regressed downwards.

We investigate how this phenomena affects the RDD estimates for commonly used

estimators.

In earlier literature, Trochim (Trochim, 1984, Chapter 5) notes, “When groups

represent distinct populations, measurement error and regression to the mean can

operate separately within the groups. Thus, even in the absence of the program,

within-group attenuation of slope will lead to pseudo-effects.” Although, Trochim

provides no elaboration or illustration of the bias.

But recent writings in epidemiology seem to suggest either that regression to the

mean does not affect estimation in an RDD or it works in favor of the design. van

Leeuwen et al. (2016) write “A high baseline measurement will on expectation regress

down to a lower value and a low baseline measurement will on expectation regress up

to a higher value. However, as this will occur equally on both sides of the [threshold],

the measurement error in the end will be irrelevant for the correct estimation of the

treatment effect.” While Vandenbroucke and Le Cessie (2014) write “The beauty

of the regression discontinuity design, however, is that it exploits the regression-to-

the-mean phenomenon by estimating the regression-to-the-mean line from a group of

persons on one side of the intervention threshold and then by extrapolating the line

at the other side of the threshold to represents the ‘expected outcomes’.”

In this paper we first provide a brief overview of the basic structure and analysis
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of an RDD. Next, we show the data structure that leads to the RTM bias. Then,

using simulation experiments, we illustrate the impact of the regression to the mean

bias in an RDD. We complement these illustrations by demonstrating the bias also

in synthetic data created from data from the Current Population Survey. We then

propose a method for correcting the bias. We test this method in simulated data

sets and then in a real data exercise based on the work of Lee (2008). We use the R

package “rdd” (Dimmery, 2022) for our estimation and standard error calculations in

the local linear regression-based strategies.

2 ROLE OF THE RUNNING VARIABLE IN AN RDD

There are n units sampled from a population. For the unit i we observe, a continuous

running variable Ri, outcome Yi and treatment indicator Zi. The threshold r0 deter-

mines whether the unit i receives the treatment, i.e., Zi = 1 if and only if Ri ≥ r0.

In the following, we define the estimand, and provide the identification strategy and

estimation methods. A more complete discussion can be found in Hahn et al. (2001);

Lee (2008); Lee and Lemieux (2014); Bor et al. (2014).

Let Yi(1) and Yi(0) denote the two potential outcomes of unit i depending on

if it received or did not receive the treatment. Then, our observed outcome Yi =

Yi(1)Zi + Yi(0)(1− Zi). The treatment effect of interest is the expected difference in

the potential outcomes at the threshold, i.e., τ = E(Yi(1) − Yi(0) | Ri = r0). Unlike

the commonly used average treatment effect, this effect is local only for Ri = r0.

Let µ1(r) = E(Yi(1) | Ri = r) and µ0(r) = E(Yi(0) | Ri = r). If both these

functions are continuous at the point r = r0 then

τ = lim
s↓0

µ1(r0 + s)− lim
s↓0

µ0(r0 − s).
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The two parts of the above equation can be estimated using the observed data by

regressions that estimate the functions µ1 and µ0 near the threshold. If the functional

forms of the µ’s can be speculated up to a small number of parameters, then we

can estimate the µ’s using data on each side of the threshold. However, lacking

the knowledge of the functional form, the literature suggest a better strategy for

estimating µ0 near the threshold as fitting a linear model of Yi on Ri using points

with r0 − h ≤ Ri < r0. Thus, the linearity is used as a local approximation of the

unknown regression function µ0(r) near the threshold. Similarly, we can estimate

µ1 near the threshold by a linear regression model inside r0 < Ri ≤ r0 + h which

approximates the unknown regression function µ1(r) near the threshold.

Operationally, this involves fitting the following local linear regression model re-

stricted to the data points i’s with r0 − h ≤ Ri ≤ r0 + h:

Yi ∼ α0 + α1Zi + β0(Ri − r0) + β1Zi(Ri − r0). (1)

An estimate β̂1 in (1) gives an estimate of τ . When the probability of observing Ri

near r0 is positive, as the sample size increases and we appropriately decrease the

bandwidth h, β̂1 will converge to τ (Hahn et al., 2001). When h = ∞, we have a

global regression model for the RD. If the functional forms of the regression functions

are non-linear, a global regression fit is likely to The standard error of the estimator

is calculated as the typical Huber-White robust standard error of this linear model

(Lee and Lemieux, 2014).

We now remark on the role of the distribution of Ri in RDD analysis. First, the

estimand does not change if the distribution of Ri were different. Second, the exact

distribution of Ri is ancillary to the above estimation method. The identification of

the parameter only requires that Ri has a positive probability in a neighborhood of
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r0. Third, the distribution of Ri is relevant for determining a good choice of h when

the functional forms of the µ’s are unknown. If there are only a few points near

Ri = r0 then a wider bandwidth might be needed to get a good approximation of the

functions in terms of lower mean squared error (if µj is non-linear near the threshold,

taking a wider bandwidth will increase the bias, while taking a narrower bandwidth

will increase variance). Still, with a hypothetical or actual large sample, the density

of Ri is also irrelevant in the above estimation method so long as its probability near

r0 is positive.

Yet, contrary to the above, we demonstrate in the following sections that certain

distributions of the running variable can bias the estimator even in a large sample and

even when the identification assumptions are satisfied. Specifically, this can happen

when some units receive the treatment because of larger (or smaller) than a typical

value of Ri and/or do not receive the treatment because of smaller (or larger) than

a typical value of Ri. This bias is thus because of regression to the mean. The

RTM artifact may affect specific estimators differently, while the identification of the

local treatment effect under the continuity assumption is unaffected. We detail the

limiting bias for the global linear regression estimator in the following section. Next,

we demonstrate the bias in simulations where it affects both the Type-I error and

power adversely. Then, we show the bias in a synthetic example where a drastic

change in the inference is seen by changing the distribution of the running variable

and nothing else.

3 JUSTIFICATION OF THE RTM BIAS IN SHARP RDD

We present a technical discussion of the source of RTM bias in sharp RDD. Consider

the population model where Ri and Yi(0) are jointly normally distribution with means
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(r0+∆, 0) and variances σ2
r , σ

2
y and correlation ρ. In other words, Ri ∼ N(r0, σ

2
r) and

Yi(0) = ρ
σy

σr

(Ri − r0 −∆) +
√

1− ρ2σyϵi,

where ϵi are standard normal random variables and independent of the running

variable Ri. Also, let Yi(1) = Yi(0) (= Yi). The treatment effect at r0 is τ =

E(Yi(1) − Yi(0) | Ri = r0) = E(Yi(0) − Yi(0) | Ri = r0) = 0, i.e., a null effect.

The estimand is lims↓0E(Yi | Ri = r0 + s)− lims↓0E(Yi | Ri = r0 − s).

The calculations below show the effect of RTM on the bias of the global linear

regression estimator when the threshold r0 is extreme relative to the distribution of

Ri. Thus, notice the role of ∆ – the distance of the mean of the running variable from

the threshold – relative to σr – the standard deviation of the running variable. When

∆ > 0 and σr is smaller relative to ∆, the threshold point is far from the distribution

of the running variable. Thus, the regression to the mean bias will become pronounced

when ∆/σr is large and ρ is large positive or negative. The explicit expression of the

limiting bias is derived below.

For a concrete discussion, fix ρ > 0 and ∆ > 0. Consider the global regression

model to estimate the treatment effect where we fit two regressions of Yi on Ri for the

data to the right of r0 and to the left of r0, respectively. Estimate τ by the difference

of the fitted values of these regressions at r0. By standard results of least squares

regression, this estimator consistently estimates

{E(Yi | Ri > r0)+
σry|r0+

σ2
r|r0+

(r0−E(Ri | Ri > r0))}−{E(Yi | Ri < r0)+
σry|r0−

σry|r0−
(r0−E(Ri | Ri < r0))},

(2)

where the first two terms are for the regression to the right of r0 and the second

two terms are for the regression to the left of r0; σry|r0+ = cov(Ri, Yi | Ri > r0) and
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σ2
r|r0+ = var(Ri, Ri | Ri > r0) and σry|r0− and σ2

r|r0− are defined similarly with the

conditioning event changed to Ri < r0.

Focus for the moment on the regression fit to the right of r0. Some calculations

show, E(Yi | Ri > r0) +
σry|r0+
σ2
r|r0+

(r0 − E(Ri | Ri > 0)) is

−ρσy
ϕ(−∆/σr)

1− Φ(−∆/σr)
+

σry|r0+

σ2
r|r0+

{
−∆+ σr

ϕ(−∆/σr)

1− Φ(−∆/σr)

}
,

where ϕ and Φ are the density and distribution functions of a standard normal random

variable, respectively. Consequently, the limiting bias of this estimator for estimating

lims↓0E(Yi | Ri = r0 + s) = E(Yi(1) | Ri = r0) is

ρ
σy

σr

∆− ρσy
ϕ(−∆/σr)

1− Φ(−∆/σr)
+

σry|r0+

σ2
r|r0+

{
−∆+ σr

ϕ(−∆/σr)

1− Φ(−∆/σr)

}

Rearranging,

σr

{
−∆/σr +

ϕ(−∆/σr)

1− Φ(−∆/σr)

}{
σry|r0+

σ2
r|r0+

− ρ
σy

σr

}
.

The term
σry|r0+
σ2
r|r0+

−ρσy

σr
, inside the second parenthesis, is the difference of the limits

of two regression slopes: (i) the first is for the regression of Yi on Ri using the data

Ri > r0, and (ii) the second is for the regression fit of Yi on Ri using all the data.

For ∆ > 0 and ρ > 0, the regression to the mean effect manifests as a less steep slope

for the regression (i) compared to (ii); thus,
σry|r0+
σ2
r|r0+

− ρσy

σr
< 0. This is because, as

r0 < E(Ri) and ρ > 0, the outcomes Yi tend to be regressed upwards near r0. For

moderately large to large ∆/σr, the term −∆/σr +
ϕ(−∆/σr)

1−Φ(−∆/σr)
< 0; resulting in a

positive limiting bias.

Similarly, the limiting bias in estimating lims↓0E(Yi | Ri = r0 − s) = E(Yi(0) |
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Ri = r0) by the last two terms of (2) is

−σr

{
∆/σr +

ϕ(−∆/σr)

Φ(−∆/σr)

}{
σry|r0−

σ2
r|r0−

− ρ
σy

σr

}
.

This time, because of RTM,
σry|r0−
σ2
r|r0−

− ρσy

σr
> 0, which results in a negative limiting

bias for estimating lims↓0E(Yi | Ri = r0 − s).

Subtracting the two limiting biases, we get an overall positive limiting bias for the

global regression based estimator for estimating τ . Notably, the above calculations

show the terms that add to the regression to the mean bias, σr and ∆/σr. When

both are large, the RTM bias is large.

In the above, the running variable Ri is a single normal distribution. The data

structure above is seen in many RDD studies. For example, Seaver and Quarton

(1976) study the Dean’s list effect using grade point average as the running variable.

Clearly, the threshold for getting into the Dean’s list is extreme relative to an average

student’s GPA. In a second example, Chen et al. (2018) use daily max air quality

index as a running variable to study the effect of the air quality alert system in

Toronto, Canada on health outcomes. Alert is rung for larger than typical values of

the air quality index; see their Figure S1.

In our simulations below the running variable’s distribution is a mixture of two

normals. The liming bias for the global regression based estimator under this model

is obtained using similar calculations as above and the result shows the same effect

of the RTM bias. The bias in that case depends on a number of parameters, e.g., the

means of the mixtures, their standard deviations and correlation.

We focus primarily on RDD methods using linear regression based estimators

as they are popular in practice. It is worth noting that the bias is relative to the

estimator in use. Different estimators may have different biases; this is also shown
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in our simulations for global and local linear regression estimators and for different

bandwidth selection methods. Note that other methods have been proposed for RDD

based inference, such as Cattaneo et al. (2015), Branson et al. (2019) and Sales and

Hansen (2020). It will be interesting to investigate the possibility of the regression to

the mean bias in these methods. We leave this for future research.

4 ILLUSTRATIONS OF THE BIAS

4.1 TYPE-I ERROR RATE

Consider the model

Yi(0) = 0.5Ri + vi

and Yi(1) = Yi(0). Therefore, the local treatment effect τ = 0. We generate the

running variable using Ri = r⋆i + ui, where the noise parts (ui, vi) are jointly drawn

i.i.d. from a bi-variate normal distribution with means (0, 0), variances 0.1 each and

correlation ρ. Finally, the r⋆i ’s are drawn i.i.d. from the density shown in Figure 1,

which is an equal mixture of two normal densities with the same variance 0.52 but

centered at −1 and 0.5, respectively. Let the threshold r0 = 0.

The parameter ρ is the correlation between the noise terms in the running variable

and the potential outcome. Along with the sample size n, we vary the correlation

parameter ρ in our simulations. As the previous section suggests, a larger correlation

leads to a larger RTM bias in the global regression. Notice that, in the mixture

normal distribution, the mean of the right normal component is closer to the threshold

compared to that of the left normal component. This feature is not necessary for the

RTM effect, neither is a mixture distribution. The RTM effect occurs when some

units receive (or do not receive) treatment when their running variable values are
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Figure 1: Probability density function of the running variable without noise in the
simulation example. The vertical line shows the threshold at 0.

extreme relative to the typical value of the running variable.

Table 1: Type-I error rates at 5% significance level for testing against H1 : τ < 0
using a global linear regression model

Sample size
ρ 500 1000 1500
0.2 0.14 0.23 0.28
0.4 0.35 0.56 0.71
0.6 0.62 0.86 0.96
0.8 0.81 0.98 0.99

We calculated Table 1 of type-I error rates for the linear model (1) on all the data,

i.e., h = ∞ for a global linear regression based estimator. This model is correctly

specified for the above data generating process since Yi and Ri are linearly related.

Still, the type-I error rates for testing H0 : τ = 0 against H1 : τ < 0 are all beyond

the nominal level 0.05 (5%).
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Table 2: Type-I error rates at 5% significance level for testing against H1 : τ < 0
using local linear regression models

Imbens-Kalyanaraman Bandwidth Cross-Validation Bandwidth
Sample size Sample size

ρ 500 1000 1500 ρ 500 1000 1500
0.2 0.10 0.15 0.18 0.2 0.10 0.15 0.18
0.4 0.20 0.31 0.38 0.4 0.22 0.31 0.36
0.6 0.33 0.47 0.52 0.6 0.32 0.45 0.47
0.8 0.48 0.57 0.60 0.8 0.43 0.49 0.49

As we showed in the previous section, the bias observed in the table occurs because

of a regression to the mean. Some of the points with Ri larger than the threshold

are too extreme relative to the ‘left’ normal component in Figure 1. Since Ri has

a positive correlation with Yi, the outcomes for these points tend to be regressed

downward. Similar things happen for the points left to the threshold, making Yi

values regress upward for points just below the threshold. As the RDD estimates the

treatment effect by the difference in the outcomes just above and below the threshold,

we observe a spurious negative effect of the treatment. In Table 1, this bias gets larger

with larger values of ρ. Additionally, Table 2 shows that the type-I errors using local

linear regression models with two different popular methods for selecting bandwidth

are also inflated; see Imbens and Kalyanaraman (2011) for the Imbens-Kalyanaraman

optimal bandwidth selection method and Imbens and Lemieux (2008) for the cross-

validation based bandwidth selection method.

We explore the bias by further plotting the point estimate and standard errors for

the cross-validated bandwidth selection method. Figure 2 shows larger negative biases

with larger ρ and also slighty larger standard errors for larger ρ. The point estimate

stabilizes with larger sample size. On the other hand, the standard error decreases

with larger sample size. Consequently, a larger sample and a larger correlation both

increase the type-I error.
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Figure 2: Point estimate and standard error for the cross-validated bandwidth selec-
tion. True τ = 0. The point estimates are more negatively biased for ρ = 0.8 than
ρ = 0.6, while the standard errors are slightly larger for ρ = 0.8 than ρ = 0.6

We next vary the standard deviation of the running variable’s ‘left’ normal com-

ponent. As seen in Section 3, the effect of the standard deviation is not monotone on

the bias. In the notation of Section 3, increasing σr decreases ∆/σr; however, when

both are large, the RTM bias is large. Yet, for a large enough standard deviation,

the bias is expected to be lowered as points near the threshold are no longer extreme

relative to the running variable’s distribution. This is seen in Figure 3 where the den-

sity plot of the t-statistics for standard deviation 0.5 is shifted to the left, indicating

a larger bias, than the density plot of the t-statistics for standard deviation 0.9.

While the true data generating model is linear on both sides of the threshold,

one may still choose to over-specify the regression function as a higher-order poly-

nomial. Then, a polynomial model can capture some of the effect of regression to

the mean near the threshold. At the same time, Gelman and Imbens (2019) have

demonstrated several disadvantages, including noisy estimates and poor coverage, of

using higher order polynomials. Their suggestion is to use local linear or quadratic

regression. Similar to local linear regression above, a local quadratic polynomial is
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Figure 3: Density of the standardized t-statistic for the estimator with the cross-
validated bandwidth for two different standard deviations of the ’left’ normal com-
ponent of mixture normal. The black and grey curves are for standard deviations .5
and .9 respectively.

Table 3: Type-I error rates at 5% significance level for testing against H1 : τ < 0
using local quadratic regression model and cross-validated bandwidth

Sample size
ρ 4000 6000 8000

0.2 0.08 0.08 0.08
0.4 0.11 0.12 0.13
0.6 0.15 0.15 0.17

also influenced by the regression to the mean. Table 3 reports the type-I error rates of

a local quadratic model with cross-validated bandwidth. Type-I error is still inflated;

although it is smaller compared to the results in the right table of Table 2. In other

words, the limiting bias is smaller is magnitude for this method.

Thus, as noted before, the choice of the estimator, e.g., bandwidth selection

method and the degree of polynomial, affects the RTM bias. We further investi-

gated the point estimates and standard errors of this local quadratic regression based

estimator across different ρ and sample size n. The patterns are the same as for the

local linear regression models, shown in Figure 2.
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4.2 BIAS TOWARD THE NULL FOR A NON-NULL TREATMENT EFFECT

The previous simulation showed the bias in an RDD analysis that finds a spurious

treatment effect. The regression to the mean bias can also result in a bias toward the

null when there is a treatment effect. To illustrate this, in the previous simulation

model, consider a constant additive treatment effect τ . The observed outcome under

this model is Yi = 0.5Ri + τ + ui if ri ≥ 0, and Yi = 0.5Ri + ui otherwise. When

τ is positive and Ri and Yi have a positive correlation near r0, the bias will work in

the opposite direction to the treatment effect which will lower the rejection rate of

the null hypothesis of no treatment effect against the upper sided alternative H1 :

τ > 0. For sample size 1000, Figure 4 provides the empirical rejection rates for this

testing problem using a local linear model with optimal bandwidth of Imbens and

Kalyanaraman (2011).

Figure 4 shows that as the regression to the mean effect increases with an increase

in the ρ since the power decreases for all effect sizes. These results and those from

the previous section show that depending on the direction of the treatment effect and

the magnitude and direction of the correlation, the RDD method can result in either

a bias toward the null or a bias away from the null for regression to the mean bias.

4.3 ILLUSTRATION IN A SYNTHETIC DATA SET

We now illustrate the bias using information on yearly earnings in 1974 and 1975

for 15,992 individuals from the Current Population Survey. Following Gelman and

Imbens (2019), we consider the earnings in 1975 in thousands of dollars as the outcome

and the earnings in 1974 in thousands of dollars as the running variable.

In this exercise we pretend that the threshold for the yearly earning is 12 (thou-

sands dollars). Earning $12000 in 1974 does not have any special significance. There
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Figure 4: Empirical proportion of rejects of the null hypothesis of H0 : τ = 0 against
H1 : τ > 0 at 5% significance level for different ρ’s. The estimated power is reduced
for a large positive correlation.
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is no reason to expect a sharp jump in 1975 earnings for people who earned just above

this threshold in 1974 from the people who earned just below this threshold. Thus,

we would expect that the treatment effect is nearly zero.
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Figure 5: Distribution of the running variable based on income in 1974 (in thousands
of dollars) and the histogram of the Z-scores. In (a) and (b) data are simulated from
the original data set with replacement using equal weights; in (c) and (d) data are
simulated with replacement using unequal weights that vary with the value of the
running variable.

We consider two synthetic data sets from this data which differ only in the dis-

tributions of the running variable. The first data set is created by drawing a simple
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random sample of size 5,000 with replacement from the 15,992 individuals. The sec-

ond data set, also of size 5,000, is drawn with replacement from the 15,992 individuals

using a probability sampling, where individuals with income in 1974 closer to either

$7,000 or $19,000 get larger sampling weights than other individuals. Figures 5(b)

and (d) show the distributions of the running variable in these two synthetic data

generating models.

We use the RDD method on these two synthetic data sets with r0 = 12. This

process is repeated several times, each time sampling two data sets of sizes 5,000s and

applying the RDD method. Figures 5(a) and (c) show the distribution of the Z-scores

calculated from the RDD methods for the two data generating models, respectively.

These figures illustrate the regression to the mean bias. The histogram in Figure

5(a) is reasonably close to being symmetric around zero as would be expected under

no treatment effect. But, the histogram in Figure 5(c) is skewed to the left because

of the high positive correlation between the running variable and the outcome. These

results demonstrate the significant effect of the distribution of the running variable

on an RDD inference.

5 BIAS CORRECTION AND ANALYSIS USING LEE’S US HOUSE

ELECTIONS STUDY

5.1 CORRECTION

To attempt a correction for the bias, we model the distribution of the running variable

using the flexible family of finite Gaussian mixture models. We describe our bias

correction method using our earlier simulation model for ease of explanation.

In our simulation model, for a reasonable sample size, the finite Gaussian mixture

model will estimate two Gaussian components for the running variable (cf. Figure 1).
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Call the corresponding proportions p1 and p2, centers µ1 and µ2, and variances σ2
1

and σ2
2, respectively. In our simulation, these two components will be on the opposite

sides of the threshold r0 = 0. Assume, µ1 < r0 < µ2. For a point Ri, using the above

values, we can calculate wi1, the probability that it is from the left component.

Before proceeding, recall the following result from probability theory. Consider

bi-variate normal random variables W and V with means (µ, ν), variances (σ2, θ2)

and correlation ρ. Then, for any k

E(V | W > k) = ν − ρθ × ϕ((k − µ)/σ)

1− Φ((k − µ)/σ)
, (3)

and

E(V | W < k) = ν + ρθ × ϕ((k − µ)/σ)

Φ((k − µ)/σ)
. (4)

Here ϕ and Φ denote the standard normal density and distribution function, respec-

tively.

The regression to the mean effect appears when r0 is far relative to one of the

two or both components. Fix a cutoff value κ so that we say that r0 is far from the

first component if 1 − Φ((r0 − µ1)/σ1) < κ, and similarly r0 is far from the second

component if Φ((r0 − µ2)/σ2) < κ. If r0 is not far relative to either component, we

do not make any correction.

If r0 is far relative to the first component, we define the corrected value of Yi with

Ri > r0 as

Ỹi = Yi + wi1 × ρHθH
ϕ((r0 − µ1)/σ1)

1− Φ((r0 − µ1)/σ1)
.

This correction uses formula (3) and adjusts the outcomes upward for those points.

ρH and θH correspond to the correlation and variance term for the points with their

running variable higher than r0. In case r0 is not judged to be far relative to the first
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component we do not make any corrections and define Ỹi = Yi.

If r0 is far relative to the second component, we define the corrected outcome for

the points lower than r0. as

Ỹi = Yi − (1− wi1)× ρLθL
ϕ((r0 − µ1)/σ1)

Φ((r0 − µ1)/σ1)
.

This time, we use equation (4), and ρL and θL are the correlation and variance

respectively for the points with their running variable lower than r0. Again, if r0 is

not far from the second component, we set Ỹi = Yi.

The details of our two step method follow. We first set κ as our sensitivity pa-

rameter. Our method requires estimates of the unknown quantities ρL, ρH , θL and

θH . To keep this estimation process separate from the process where we make in-

ference regarding τ we split our data randomly into two parts of sizes one-third and

two-thirds of the total sample, respectively. We use the cross-validated bandwidth

h (Imbens and Lemieux, 2008) calculated from the (Ri, Yi) values to estimate these

unknown quantities as follows. Use the points in the first data split with their running

variables in [r0 − h, r0) to calculate ρL as the correlation between Ri and Yi, and θL

as the variance of the residual from the regression of Yi on Ri. Calculate ρH and θH

similarly based on the points in (r0, r0 + h].

Next, using these estimates, calculate Ỹi’s for the second data split as defined

above. Finally, we fit model (1) for this corrected set of data points (Ri, Ỹi)’s using

a cross-validated bandwidth h̃ calculated from the corrected data set. We suggest a

different bandwidth for this step because (i) the sample size is smaller for this data set

and (ii) the correction can affect the functional relation between the running variable

and outcome.

We easily generalize the method to more than two mixture components for the
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running variables by modifying the definition of Ỹi. Here Yi for a point to the right

of r0 is corrected for each component to the left of the threshold, and similarly for

the points to the left of r0.

Figure 6: Empirical bias and coverage for inference using the standard local linear
regression model. The solid line shows the bias corrected method with cross-validation
based bandwidth selection. In these simulation models ρ = 0.6.

Figure 6 plots the empirical bias and coverage of this method applied to our

simulated data sets. The negative biases of the other estimators are prominent in the

left plot, which result in poor coverage of the corresponding confidence intervals in the

right plot. We fit the finite Gaussian mixture models using the Mclust function from R

(R Core Team, 2021) package mclust with its default settings and use κ = 0.10. The

confidence intervals are from nonparametric bootstrap. Each bootstrap estimation

applies the above two step process on a with replacement draw of the same size as the

original data set. Figure 6 shows that this method reduces the bias of the estimator

and provides valid 95% coverage of the corresponding confidence intervals.
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5.2 US HOUSE ELECTIONS STUDY

Lee (2008) used an RDD to estimate the effect of an incumbency advantage in US

house elections. Since the majority vote wins, there is a discontinuity in a party being

an incumbent in an election based on the difference in the parties’ vote shares in the

past election. Following Lee Lee (2008), let the running variable be the difference in

the vote shares between the Democratic and Republican parties in the last election,

with the threshold 0, and let the outcome variable be the democratic vote share in

the current election. We use the same data set as Lee (2008) and similarly create the

data set from the original 6,558 observations (districts) by discarding 653 observations

with past vote share differences greater than 0.99 or less than −0.99.

A Gaussian mixture model estimates two components this running variable with

roughly equal proportions 0.505 and 0.495, centers −0.18 and 0.31, and variances

0.0634 and 0.0804, respectively. The probability of a variate from the first component

being larger than r0 = 0 is 24%, and the probability of a variate from the second

component being smaller than r0 = 0 is 14%. These numbers do not seem to be too

small to suggest that there will be a regression to the mean bias. This is also clear

from Figure 7 of the density of the running variable.

Difference in vote share in the last election

−1.0 −0.5 0.0 0.5 1.0

0.0

0.2

0.4

0.6

0.8

1.0

Figure 7: Density for the running variable for the Lee data.
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Thus, previously reported analyses of this data set are not likely influenced by

regression to the mean bias. We redid the analysis using the local linear model where

we selected the bandwidth using cross-validation. The estimate of the effect was

0.0817; see Lee (2008) for further interpretation and discussion.

We created synthetic data sets from this data to test our correction method.

We sampled from the 5,905 observations 3,000 observations without replacement

where the probability of selecting observation i was proportional to .5 × ϕ((Ri +

0.18)/
√
0.05)+ .5×ϕ((Ri+0.31)/

√
0.05). Thus, we use the same centers of the Gaus-

sian mixture as the original data but reduce the variances of the two components. If

these two components are known exactly, the probability for a variate from the first

component being larger than r0 = 0 is 21%, and the probability for a variate from

the second component being smaller than r0 = 0 is 8%. We would not know these

components in our analysis.We repeat this process to create 5,000 such synthetic data

sets.

Figure 8 shows the boxplots of two sets of estimates of the treatment effect, one

without correcting for the bias and the other with a correction for the bias, on these

synthetic data sets. Note the longer lower tail in the first boxplot which shows the

left skewness of the effect estimates due to the regression to mean bias. In contrast,

the estimates calculated after corrections for the bias have a normal boxplot. This

boxplot has a larger variance than its counterpart since the inference process leaves

out one-third of the observations to estimate the required quantities.

The 95% confidence intervals built using the method that does not correct for the

bias have an average length of 0.036 but provide only an empirical coverage of about

90% for the estimate 0.0817 from the original analysis. On the other hand, the 95%

confidence intervals built after correcting for the bias have an average length of 0.048,

and provide an empirical coverage of about 96%. Although, this does not guarantee
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Figure 8: Effect estimates by RDD with (right) and without (left) correction for the
regression to the mean bias for synthetic data sets based on the Lee data.
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that the proposed method provides the correct coverage of the true incumbency effect

at the threshold, which is unknown.

6 DISCUSSION

In this paper we have illustrated the regression to the mean bias in regression dis-

continuity designs. This bias is different in how it affects the inference from recent

works by Daw and Hatfield (2018) and Illenberger et al. (2020) who show the effect

of regression to the mean bias on matching estimators in difference-in-differences and

synthetic controls analysis, respectively. The bias is induced by the distributional

pattern of the running variable where the points near the threshold value are extreme

relative to the masses of the running variable on either or both sides of the threshold.

Because the existing methods of an RDD do not model the running variable, those

methods are susceptible to the regression to the mean bias. We have proposed a

method to correct for the bias by first modeling the running variable and then ad-

justing the outcomes near the threshold when the bias seems possible based on the

first model.

The possibility and direction of the bias may be detected from plots of the density

of the running variable and of the running variable and outcome. These two plots are

commonly produced in an RDD analysis (Lee and Lemieux, 2014; Bor et al., 2014).

However, as an RDD analysis focuses on a neighborhood around the threshold, there

is also a tendency to create these plots only for such a neighborhood. We suggest

plotting the density of the running variable on the complete range of the running

variable.

There are several limitations of our proposed method of bias-corrected analysis.

First, it is important to set the value of κ, the cutoff on the tail probabilities above or
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below the threshold relative to the components for the running variable, appropriately.

If this value is set too large, there may be over-adjustment, resulting in a bias in the

opposite direction. In our experiments, we have found that κ = .10 works well

since this choice removes the empirical bias and gives appropriate coverage of the

confidence interval. Another option is to use synthetic data analyses where we fix the

running variable’s distribution as in the study and simulate the outcome for different

correlations and known effects. Then, these synthetic data analysis results can guide

the choice of κ that gives the smallest mean squared error of the bias corrected

estimator and a desirable empirical coverage of the corresponding confidence intervals

using κ. Further research is needed to determine if a systematic choice of κ is possible.

Currently, we suggest treating κ as a sensitivity parameter, varying it around 0.10,

and observing its influence on the inference. If the statistical inference is unchanged

for κ values in the pre-determined range, e.g., (.07, .12), then the inference is robust to

the effect of the regression to the mean. Additional diagnostic checks might be needed

in this sensitivity analysis as it assumes a bivariate normal model for the outcome and

the running variable in each component of the running variable. We suggest using

checks for normality by looking at the qq-plots of the residual from a regression of the

outcome on the running variable in each component. If there are significant concerns

of non-normality from the diagnostic plots, one should try suitable transformations

of the outcome variables.

Second, the bootstrapping process for calculating the confidence interval is com-

putationally expansive relative to standard methods which calculate the confidence

intervals analytically. But this process is highly parallelizable. As a whole, we suggest

that researchers analyzing an RDD should visually investigate the possibility of the

regression to the mean bias in their analysis and, as needed, provide evidence of the

robustness of their inference to the regression to the mean, which can be done using
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our proposed correction method.
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