
Kantian Addition: A Phenomenology of Arithmetic
Chase Saucier

In the following essay we shall argue that the experiential, intuitive, or ”phenomeno-

logical” basis for arithmetic propositions such as 2+2=4 is essentially of the same sort

as noticing that the following figures can be seen in two different ways:

We should like to make it clear that our intention is not to advocate a strict ”intu-

itionism” à la Brouwer, or to argue that the only meaningful mathematical statements

are those that can be verified through direct intuitive experience. Once the project of

mathematics has gotten off of the ground, so to speak, we are able to use our formal

machinery to look more and more deeply into mathematical structures, in the same

sense that a telescope affords us sights that we could never have seen with the naked

eye. It is our intention, however, to indicate what the ground of mathematics might

be. The ”formalist” who believes mathematics is an empty game of tautologies with

symbols is like an astronomer who assures us that we don’t need our eyes, so long as

we have an impressive telescope. We hope to provide some indication of why it is that

we make just these particular definitions and just these rules of inference; why is it

that we are drawn to just this formalism and not some other? We will explore the

accounts of arithmetic given by Kant, Hegel, Frege, and Wittgenstein, and shall, with

Wittgenstein, defend Kant’s account.

We take the following principle of Wittgenstein’s as the guiding thread of our in-

vestigation:
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There must not be anything hypothetical in our considerations. We must do
away with all explanation, and description alone must take its place...The
problems are solved, not by giving new information, but by arranging what
we have always known. Philosophy is a battle against the bewitchment of
our intelligence by means of language. (10, p.47)

Describing what is happening when we do addition, or what addition is, is difficult

precisely because the synthesizing faculty is assumed in virtually any description. We

mean by this synthesis the act whereby we grasp an object as a single thing (and this

is implicit in our saying ”an” object). This activity is so ubiquitous that it is difficult

to go outside it so that we may describe it at a distance. Kant wrote:

It is true that space and time contain a manifold of pure a priori intuition,
but they belong also to the conditions of the receptivity of our mind—
conditions under which alone it can receive representations of objects, and
which therefore must also always affect the concept of these objects. The
spontaneity of our thought requires that this manifold, in order to be turned
into knowledge, should first be gone through, taken up and combined in a
certain manner. This act I call synthesis. By synthesis, in its most general
sense, I mean the act of putting different representations together, and of
comprehending their manifoldness in one item of knowledge. (6, p.103)

The combination of a manifold in general can never come to us through the
senses...for it is an act of spontaneity by the power of representation...This
act we shall call by the general name of synthesis, in order to show that we
cannot represent to ourselves anything as combined in the object without
having previously combined it ourselves, and that of all representations
combination is the only one which cannot be given through objects, but, as
an act of the subject’s self-activity, can only be carried out by the subject
itself...[the] dissolution [of synthesis], that is, analysis, which seems to be
its opposite, always presupposes it. For where the understanding has not
previously combined, there is nothing for it to dissolve...But the concept
of combination includes, besides the concept of the manifold and of its
synthesis, also the concept of the unity of the manifold. Combination is the
representation of the synthetic unity of the manifold. (6, p.122)

As every appearance contains a manifold, whereby different perceptions
are encountered in the mind indvidually and dispersed, they need to be
combined in a way that they cannot be in sense itself. Hence there exists
in us an active faculty of the synthesis of this manifold. (6, p.157).
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As Kant notes elsewhere, physical objects are always seen to be extended (and how

else could they be visible?):

...the concept of body serves, according to the unity of the manifold which
is thought through it, as a rule for our knowledge of outer appearances...the
concept of body, whenever we perceive something outside us, necessitates
the representation of extension. (6, p. 137)

This means it is implicit that (at least in our mind’s eye) we may divide this ”single”

object into multiple parts. Thus every perceived unity is already a plurality. We note

that the ideal geometric point, which has no spatial parts to speak of, is so defined that

it is impossible to ever actually perceive a single, isolated geometric point in the sense

that we may perceive a marble. From this discussion it should be apparent that there

is no essential difference between grasping an object as a unit, and grasping a collection

of objects as a unit; every object is already implicitly a collection of spatially extended

parts, and it is really only topological considerations that prejudice us towards calling

connected objects ”one” and disconnected objects ”many”.

As Kant notes, the subject (or ”observer” in perhaps more modern terms) must

combine the disparate sensory information into intelligible objects (though we might

say with Kant that ”we are scarcely ever conscious” p.104 of this process; for before

there are objects, what could we be conscious of?). Furthermore, we must combine

our sensory impressions under a particular aspect, as is made obvious from the figures

above. We do not believe that the figure is really a duck or a rabbit; as a figure it

simply takes up a certain area on the page, which can be split into parts having one

shade or the other, and these are what we might call objective, physical facts that are

indifferent to our manner of grasping them. Nevertheless, it is almost impossible to see

the figure without seeing it as either a duck or rabbit, and this should help to illuminate
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the extent of the contribution of the subject observing it.1 We could, of course, have

used any image of either a duck or rabbit to make these points, but images like the

”duck-rabbit” above make it much more clear that any picture is subject to multifarious

interpretations; while we are engrossed in any particular interpretation we can hardly

believe that there could be a radically different way of seeing the picture. The pictures

above both have the remarkable quality that our interpretation of them may suddenly

restructure, reorganize, (re-present?) the image in a flash. They also may serve as rare

examples where we are explicitly ”conscious” of the synthetic process.

The sudden transition between our interpretation of the above images has been

called the ”change of aspect” by Wittgenstein:

”But surely you would say that the picture is altogether different now!” But
what is different: my impression? my point of view?—Can I say? I describe
the alteration like a perception; quite as if the object had altered before my
eyes...(10, p.195)

My visual impression has changed and now I recognize that it has not only
shape and colour but also a quite particular ”organization”. My visual im-
pression has changed;—what was it like before and what is it like now?—If I
represent it by means of an exact copy—and isn’t that a good representation
of it?—no change is shown.(10, p.196)

The expression of a change of aspect is the expression of a new percep-
tion and at the same time of the perception’s being unchanged...Hence the
flashing of an aspect on us seems half visual experience, half thought...(10,
p.196-197)

You only ’see the duck and rabbit aspects’ if you are already conversant
with the shapes of those two animals.(10, p.207)

When the aspect changes parts of the picture go together which before did
not. (10, p.208)

The colour of the visual impression corresponds to the colour of the ob-
ject (this blotting paper looks pink to me, and is pink)—the shape of the
visual impression to the shape of the object (it looks rectangular to me,
and is rectangular)—but what I perceive in the dawning of an aspect is

1If the reader is uncomfortable with bringing the observer into arithmetic, they may want to consider
the importance of the observer in both relativistic and quantum physics.

4



not a property of the object, but an internal relation between it and other
objects...’The echo of a thought in sight’—one would like to say. (10, p.212)

Hegel’s description of what he called Force also may be taken as an apt description

of the ”self-cancelling movement” of the change of aspect:

...the ’matters’ posited as independent directly pass over into their unity,
and their unity directly unfolds its diversity, and this once again reduces
itself to unity. But this movement is what is called Force...the difference,
then, is posited by the Understanding in such a way that, at the same time,
it is expressly stated that the difference is not a difference belonging to the
thing itself. (5, p.81)

What is present here is not merely bare unity in which no difference would
be posited, but rather a movement in which a distinction is certainly made
but, because it is no distinction, is again cancelled. (5, p.95)

It is clear that this movement is nothing else than the movement of perceiv-
ing, in which the two sides, the percipient and what is perceived, are...just
as much in a unity, as this unity, which appears as the middle term over
against the independent extremes, is a perpetual diremption of itself into
just these extremes which exist only through this process. (5, p.82)

This...may be called the simple essence of life, the soul of the world, the
universal blood, whose omnipresence is neither disturbed nor interupted by
any difference, but rather is itself every difference, as also their supersession;
it pulsates within itself but does not move, inwardly vibrates, yet is at rest.
It is self-identical, for the differences are tautological; they are differences
that are none. (5, p.100)

We point out a few observations about the change of aspect: First, it happens

instantaneously. There is no delay to speak of, where in between seeing the duck or

rabbit we see a ”meaningless” figure or an indifferent collection of lines. Furthermore, we

do not see anything like a continuous transition of interpretations between the duck and

rabbit: rather, the change of aspect appears as a radical discontinuity in interpretation.

We also point out a certain analogy between the interpretations of a figure and the

group of rotational symmetries of a figure. Both the change of aspect and a rotational

symmetry, in a sense, leave the figure unchanged: the change of aspect leaves the figure
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completely physically untouched, while applying a rotational symmetry leaves the sub-

set of space occupied by the figure unchanged (though in general a rotational symmetry

will, for instance, permute the vertices of a figure, and so change its orientation). Just

as a figure must have some initial orientation with respect to an observer, so it must

be seen under some interpretation, some ”aspect”.2 To what extent we may speak of a

”group of interpretations” of an object is not yet clear.

There is also a clear connection between the change of aspect and what Frege dis-

tinguished as ”sense” and ”reference”:

It is natural...to think of there being connected with a sign (name, com-
bination of words, letter), besides that to which the sign refers, which may
be called the reference of the sign, also what I should like to call the sense
of the sign, wherein the mode of presentation is contained...the reference
of ’evening star’ would be the same as that of ’morning star’, but not the
sense. (3, p.207-208)

Thus one could refer to the figure as either ”the figure depicting the duck” or

”the figure depicting the rabbit”. One should keep in mind, however, that this purely

linguistic difference in ”sense” (which Frege was concerned with) is based on a much

deeper ”perceptual” change of sense (”mode of presentation”) of the figure. We could

just as easily call the change of aspect a change of sense.3

Finally, we note an analogy between what we have refered to as ”the figure itself”

(that which we see persists through the change of aspect) and what Kant called the

2Conversely, any depiction of a rabbit must take on some fixed physical form, i.e. as portrayed
from some angle with some posture.

3Note we are using an aspect of the figure in order to refer to it. Thus a change in aspect of
the figure corresponds to a change in the sense we might use to refer to it. It might be misleading
though to think there is a complete analogy when we substitute ”sense” for ”aspect of the figure”, and
”reference” for the ”figure itself”, because we would not normally say that the rabbit aspect ”refers”
to the figure itself; rather we would be inclined to say that the figure itself may have been intended
to refer to a rabbit. Several geometrically distinct figures may very well be used to refer to the same
rabbit from different points of view. Thus it’s necessary to say whether you want to take the figure
itself or what the figure depicts to be the reference in our analogy. Of course if we wanted to treat
everything on the same footing we should have to deal with the fact that being able to be ”seen as
words” is merely an aspect of the squiggles on this page.
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”thing-in-itself” (things as they are apart from our experience of them). While the

thing-in-itself is by definition such that it could never enter experience, the figure itself

seems to ”hide in plain sight” behind its aspects. It is as if we must always look

”through” one aspect or another to see the figure, and once we become conscious of

this we may feel that the ”figure itself” is just as elusive as the ”thing-in-itself”4. All

of this is in complete analogy with the fact that the reference (in Frege’s terminology)

functions as a linguistic thing-in-itself, because the reference must always appear under

the guise of some sense, or ”mode of presentation”. It may be useful to think of

references as equivalence classes of the senses which represent them.

We now come to the point: that basic arithmetic propositions such as 2+2=4 are

intuited through nothing other than the change of aspect. When contemplating any col-

lection of objects, the ”mind’s eye” is in the constant process of partitioning and repar-

titioning the collection into sub-collections and collections of collections, each partition

transitioning instantly into the next, exactly in the manner that the rabbit transitions

into the duck, or as the figure of the cube changes its orientation. We see that a collec-

tion of four objects may also be seen as a collection of two sub-collections consisting of

two objects each. 2+2 and 4 represent two different ways to ”synthesize”, in the Kan-

tian sense, the same collection, and we know the collection is the same because, though

the aspect of the collection has changed, the collection itself has remained exactly as it

was.5

It may be objected that 2+2=4 is true in some ideal sense, independently of the

4We note that objects exhibit a ”double hiding”: In Kant’s terminology, the rabbit-in-itself hides
behind its appearances given to us in intuition, while (by our discussion above) in turn each of these
appearances in isolation hides behind its rabbit aspect (among other aspects). In a formula, the rabbit
hides behind its appearances, while each of these appearances hides behind our interpretation of it as
a rabbit. This is why there is some ambiguity as to whether we should take the figure itself or its
rabbit aspect to be the reference in our analogy (see footnote 3).

5If our treatment seems too dependent on the faculty of sight, we could easily produce examples of
synthesis with the other senses; e.g. we can hear a chord as a single musical object or as being made
up of a plurality of distinct notes, etc.
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world and our minds, for some ideal entities ”2” and”4”, but the ideality of arithmetic

consists precisely in the fact that it does not matter which objects6 we use to intuit

arithmetic truths (and in fact we might define as objects anything that we can apply

the rules of arithmetic to). The concept of a number is no more and no less ideal than

the concept of an object. The change of aspect, and thus arithmetic, may be thought

of as the place where subjectivity and objectivity coincide (see the third Hegel quote

above).7

To point out apparent failures of arithmetic, such as where ”adding” one heap to

another heap produces just another single heap (and so would be an apparent demon-

stration that 1+1=1), is only to point out that the union of two sets is itself a single

set, and that in turn the sum of two numbers is a single number. It is not surprising

that in a textbook of Set Theory, before defining the sum of the cardinal numbers of

two disjoint sets A and B to be the cardinality of their union #(A ∪ B), we find the

following preamble:

Our definitions require no comment; they correspond in the most natural
way to our intuitive understanding of the process of adding and multiplying
whole numbers. (7, p.152)

Rather than being problematic, the fact that one thing can be seen as many and

that many can be seen as one is the soul of arithmetic (if not the world). Plato knew

this:

’But surely sight of it does involve this, and in no small degree, he said:

6Of course these could even be imagined (visualized, etc) objects.
7We feel no need to introduce a separate ”Platonic realm of ideal forms”, which would be a sort

of mathematical counterpart to Kant’s thing-in-itself: it is supposed to be where the ”true” or ”un-
conditioned” circle and number 2 exist, while we only ever encounter ”conditioned” representations of
them. The author must confess that he has no conception of what sort of existence the number 2 has
”in itself”. The only experience we have with the number 2 is that intuition given with two objects.
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for we do see the same thing at the same time as one and as unlimited in
multitude.’

’Then since one, I replied, the whole of number is also affected in this same
way?’

’Of course.’ (8, p.241)

We must indicate that, contra Plato above, we do not really see both aspects ”at

the same time”: this is obvious from the two figures above. If we saw both at once,

there would be no perception of a change in aspect, or transition in sense, etc. The

change of aspect appears to obey the law of non-contradiction in its own manner: firstly,

because the object remains as it is; and secondly, because we do not see the two different

interpretations at the exact same time. There would be no sense of novelty if we saw

all the aspects at once. Wittgenstein wrote:

If I see that a figure possesses an organization which previously I hadn’t
noticed, I now see a different figure.Thus I can see |||||| as a special case of
|| || || or of ||| ||| or of | |||| | etc...

Understanding a Gregorian mode doesn’t mean getting used to the sequence
of notes in the sense in which I can get used to a smell and after a while cease
to find it unpleasant. No, it means hearing something new, which I haven’t
heard before, much in the same way—in fact it’s a complete analogy—
as it would be if I were suddenly able to see 10 strokes ||||||||||, which I
had hitherto only been able to see as twice five strokes, as a characteristic
whole. Or suddenly seeing the picture of a cube as a 3-dimensional when I
had previously only been able to see it as a flat pattern. (8, p.281)

It is this novelty that may shed light on why Kant insisted that arithmetic statements

such as 5+7=12 are synthetic, as opposed to being analytic:

Analytic judgments are...those in which the connection of the predicate with
the subject is thought through identity, while those in which this connection
is thought without identity should be called synthetic...in the former nothing
is added through the predicate to the concept of the subject, and the concept
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is only analysed and broken up into its constituent concepts which had all
along been thought in it...while the latter add to the concept of the subject
a predicate that had not been thought in it at all, and that could not be
extracted from it by any analysis. (6, p.43).

The propositions that if equals be added to equals the wholes are equal,
and if equals be taken from equals the remainders are equal, are analytic
propositions, because I am immediately conscious of the identity of the
production of the one magnitude with the production of the other.

7+5=12 is not an analytic proposition. For neither in the representation of
7, nor in that of 5, nor in that of the combination of both, do I think the
number 12 (That I am meant to think this number in the addition of the
two is not the point here; for in an analytic proposition the question is only
whether I actually think the predicate in the subject). (6, p.194)

That 5 should be added to 7, this I had no doubt already thought in the
concept of a sum =7+5, but not that this sum be equal to the number
12. An arithmetical proposition is therefore always synthetic, which is seen
more easily still when we take larger numbers, where it is evident that, turn
and twist our concepts as we may, we could never, by means of the mere
analysis of our concepts and without the help of intuition, arrive at the sum.
(6, p.47)

The fact that Kant requires us to be ”immediately conscious” of the truth of an

analytic proposition suggests that the change of aspect is not an analytic process: for

we do not see the two aspects ”immediately”; that is, at the same time. When Kant

says it’s entirely possible to consider 5+7 without thinking of 12, it is totally analogous

to only seeing, for instance, the rabbit aspect of the figure, without noticing that it also

resembles a duck. The fact that it is possible to see something new in 7+5=12 is what

makes Kant say this proposition is synthetic. Along these lines, we might suggest modi-

fying Kant’s definition of a priori knowledge (”knowledge absolutely independent of all

experience”) to be ”knowledge absolutely independent of any particular experience” in

the case of synthetic a priori knowledge. Though a mathematical result is a priori, we

still need the ”experience” of doing the proof, the construction, the calculation, i.e. the

synthesis, in order to know the result. Because Kant was not clear enough about his

terms, arguments over just which judgments are to be considered analytic and which
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synthetic continue to this day, and it was not long before Hegel defined the terms to

his own liking and argued contra Kant:

...the science of analysis possesses not so much theorems as problems. The
analytical theorem contains the problem as already solved for it...the first
side [of 7+5=12] demands that 5 and 7 shall be combined in one expres-
sion...just as 5 is the result of a counting up in which the counting was
quite arbitrarily broken off and could just have well been continued, so now,
in just the same way, the counting is to be continued with the condition
that the ones to be added shall be seven. The 12 is therefore a result of
5 and 7 and of an operation which is already posited and in its nature is
an act...devoid of any thought, so that it can be performed even by a ma-
chine...it is a mere continuation, that is, repetition, of the same operation
that produced 5 and 7...the proof of a theorem of this kind—and it would
require a proof if it were a synthetic proposition—would consist merely in
the operation of counting on from 5 for a further 7 ones and in discerning
the agreement of the result of this counting with what is otherwise called
12. (4, p.791)

The belief that Kant was wrong about his own terminology persisted all the way to

the work of Frege:

The conclusions we draw from it [arithmetic] extend our knowledge, and
ought therefore, on Kant’s view, to be regarded as synthetic; and yet they
can be proved by purely logical means, and are thus analytic8. The truth
is that they are contained in the definitions, but as plants are contained in
their seeds, not as beams are contained in a house. (2, p.101)

Kant’s own example of an analytic proposition, ”All bodies are extended”, indicates

that ”analysis”, in the Kantian sense, follows from a definition: a body, in Kant’s view,

8To be fair to Frege, he later states that ”I do not claim to have made the analytic character of
mathematical propositions more than probable, because it can still always be doubted that they are
deducible from purely logical laws, or whether some other type of premiss is not involved at some
point in their proof without our noticing it...On these lines what is synthetic and based on intuition
cannot be sharply separated from what is analytic. Nor shall we succeed in compiling with certainty a
complete set of axioms of intuition, such that from them alone we can derive, by means of the laws of
logic, every proof in mathematics.”(2, p.102-103) Gödel would later show that even arithmetic cannot
be derived this way, let alone ”every proof in mathematics”.
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is by definition extended, so that the proposition ”All bodies are extended” should be

taken neither as the announcement of an empirical discovery nor an a priori synthesis

wherein we learn something new about ”bodies”. That ”bodies are extended” is merely

to repeat what we laid down in advance. The point is that, though the sum of 7+5 is

determined a priori ”in advance”, we ourselves do not know that the sum is =12 until

we do the synthesis.

This is related to the confused notion that arithmetic propositions are ”true by

definition”; it is clear, however, that 2+2=4 cannot ”follow from definitions” in the sense

that ”all bachelors are unmarried” or ”all bodies are extended” do. When we define

”bachelor” to denote an unmarried man, we have given meaning to what was before an

empty sound, ”bachelor”. Thus when we say that we ”define” numbers inductively by

1+1=2, 1+2=3, 1+3=4, etc, all we can have accomplished is to define which numbers

the numeral signs ’1’, ’2’, ’3’...etc, shall stand for (and so we give meaning to the empty

signs ’1’, ’2’, ’3’). Such definitions would be of no use to someone who didn’t understand

what we mean by ”numbers”. It is senseless to think that we could be in possession of

the concept of a number without also having to place it in a number system (or that

we could imagine any extension without thereby bringing the whole of Euclidean space

into play), and it is to this extent that arithmetic propositions are true by the very

”meaning” of the terms appearing in them.

When we determine the truth tables for logical connectives, however, it seems that

there is nothing but the meaning9 of the terms ”and”, ”not”, ”or”, etc, that can lead us

to posit that (for instance) the conjunction of two truths should itself be true. Though

evaluating the truth value of a complicated truth function may take some effort (and

so may appear to have the same synthetic quality as an arithmetic calculation), the

9Wittgenstein might have objected that truth tables provide the ”rules of usage” for logical con-
nectives, and that their meaning is ”constituted” by these rules, but we are still left with the question:
why is it that just these rules turn out to be so useful in practice?
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difference is to be seen in how we obtain the basic statements (e.g. 1+1=2 and not-

T=F) on which we base all our other calculations. The determination of the truth tables

of logical connectives does not seem to depend upon a change of aspect or a synthesis

in the way that arithmetic does: nothing new is to be found in a formula like not-T=F

(and similarly for the tables of ”and”, ”or”, etc). While it would be tempting to assert

that the entire truth function calculus is a formalization of the way we ”synthesize” the

truth values of the component propositions of a statement into a single truth value, at

each step our judgment is analytic. Sensuous intuition seems to have far less a role to

play here than in arithmetic; hence the feeling that logic is ”empty”. This is not to

say that logic is a mere game symbols: once the calculus has been laid down, we can

of course treat it as a ”game with symbols”, but it would be disingenuous to pretend

that the ”rules” of the game were invented in as arbitrary a manner as, for instance,

the rules of checkers.10

Tautological and contradictory truth-functional schemata, such as ”p or not-p” and

”p and not-p” respectively, can be characterized as ”constant” truth functions: they are

invariant under a change in the truth values of their component propositions. They are

”trivial” in the sense that they are only apparently functions of the truth values of their

component propositions, in the way that f(x) = x−x = 0 is only apparently a function

of x. Wittgenstein eventually argued against the view that arithmetic propositions are

derived from logical tautologies:

If you write ’(E |||||) and (E |||||||) implies (E ||||||||||||)’ [call it the proposition
A], you may be in doubt as to how I obtained the numerical sign in the right-
hand bracket if I dont know that it is the result of adding the two left-hand

10In logic and mathematics there is the temptation to assert, in addition to our ”rules” such as
not-T=F, that these rules describe something objectively true. This temptation never arises with the
rules of a mere game: it would be very strange to insist, after telling someone the rules of chess, that
these rules are also ”true”. This is because we do not think of the rules we stipulate for games as
judgments about anything.
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signs. I believe that makes it clear that this expression is only an application
of 5+7=12 but doesn’t represent this equation itself.

Suppose I wrote out the proposition A but put the wrong number of strokes
in the right-hand bracket, then you would and could only come upon this
mistake by comparing the structures, not by applying theorems of logic. If
I asked you how do you know that this number of strokes in the right-hand
bracket is correct, I can only justify it by a comparison of the structures...For
if I look at it as a tautology I merely perceive features of its structure and
can now perceive the addition theorem in them, while disregarding other
characteristics that are essential to it as a proposition. The addition theorem
is in this way to be recognized in it (among other places), not by means of
it. ( 8, p.126-127)

He then dismisses an argument very similar to that of Hegel’s against Kant (though

we do not know if Wittgenstein was aware of Hegel’s argument):

You could reply:....I combine the first five strokes of the of the right-hand
bracket, which stand in 1-1 correspondence with the five in one of the left-
hand brackets, with the remaining 7 strokes, which stand in 1-1 correspon-
dence with the seven in the other left-hand bracket, to make 12 strokes...But
even if I followed this train of thought, the fundamental insight would still
remain, that the 5 strokes and the 7 combine precisely to make 12 (and
so for example to make the same structure as do 4 and 4 and 4). It is al-
ways only insight into the internal relations of the structures and not some
proposition or other or some logical consideration which tells us this. And,
as far as this insight is concerned, everything in the tautology apart from
the numerical structures is mere decoration; they are all that matters for
the arithmetical proposition (Everything else belongs to the application of
the arithmetical proposition). (8, p.127)

He then vindicates Kant in an uncharacteristic appeal to ”direct insight”11:

No investigation of concepts, only direct insight can tell us that 3+2=5...What
I said earlier about the nature of arithmetical equations and about an equa-
tion’s not being replaceable by a tautology explains—I believe—what Kant
means when he insists that 7+5=12 is not an analytic proposition, but
synthetic a priori. (8, p.127-129)

11In our edition there is an editorial note indicating there was ’a mark of dissatisfaction under the
words ”direct insight”’.
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Any attempt to explain arithmetic judgments by recourse to a one-to-one corre-

spondence completely obscures the fact that we see directly that 2+2=4: during the

change of aspect, there are not two collections before us, one consisting of 4 objects and

the other consisting of 2+2, that we ”match up” in order to draw the conclusion. In

fact, one-to-one correspondence in itself can only tell us that two collections have the

same number; it cannot tell us what that number is. The one-to-one correspondence

in the change of aspect, if there is any to speak of at all, consists only in the fact that

the object itself has remained completely as it was. In other words, the one-to-one cor-

respondence reduces here to the law of identity: X = X. If we attempted to describe

the ”equivalence” of the two orientations of the cube in this form we should have the

useless equation12:

=

which fails spectacularly in expressing the change of aspect, and gives some indication

that the change of aspect cannot itself be depicted.13 It is clear that I cannot force you

to see the aspect I intend when I draw a picture. I cannot put the aspect I intend ”in”

the picture, in the same sense that if I am forced to communicate with you by a specific

code, it would be of no use for me to tell you how to decipher the code from within the

language of that code.

If (as Frege noted) our equations are to have any content, if ’A = B’ is to express

anything other than that B is defined as A, we must work on the level of the ”sense”

rather than the ”reference”. The ’X’ in ’X = X’ above refers to ”the figure itself”,

12See the second of Wittgenstein’s remarks about the change of aspect above.
13Compare this to Wittgenstein in the Tractatus:”What a picture must have in common with reality,

in order to be able to depict it–correctly or incorrectly—in the way it does, is its pictoral form. A
picture cannot, however, depict its pictorial form: it displays it.”
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which we see remains the same. If, however, by ’A’ and ’B’ we denote the different

aspects, it is tempting to write A = X = B, and think of the figure X as ”mediating”

between its different aspects A and B. This notation, however, would lead us to confuse

the aspects of the figure with the figure itself. The figure is not literally the duck aspect;

as Wittgenstein notes, if you are not familiar with ducks, you will not see the figure

as a duck. It may be more useful to think of the ”group of aspects” as the ”preimage

of X under our interpretation”. We could even consider X as a subset of the space

Y it is situated in, and think of the group of aspects of X to be the group of aspects

F (X) associated to X by the ”interpretation sheaf F on Y ”. This way of speaking

keeps senses on another level than their reference, and lets us think of interpretation

as a ”bundle projection” from senses to their reference (from aspects to the object

they belong to), or as a sheaf associating to subspaces of some space their groups of

aspects.14

14Recently an (admittedly incredible) attempt to apply sheaf-theoretic ideas to phenomenology has
been carried out by Badiou (who, by the way, also claims to have shown Kant was wrong about 7+5=12
being synthetic); it is too bad the entire weight of his system depends on his

...function of appearing, which, given two elements of that world, measures their degree
of identity...But what are the values of the function of appearing? What measures the
degree of identity between two appearances of multiplicities? Here...there is no general
or totalizing answer. (1, p.156)

With this concession we have already left the realm of phenomenology and have put our faith into
a hypothetical formalism.
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