1. In this class, we adopt an informal approach to set theory. A set is a collection of things called elements. We use the notation $x \in A$ to denote that x is an element of the set A. We use the notation $x \notin A$ to denote that x is not an element of the set A. Two sets are equal if and only if they contain exactly the same elements. A set S may be either finite or infinite. If S is a finite set, the cardinality of S is the number of elements in S.

2. The unique set with cardinality zero is called the empty set and denoted \emptyset.

3. We let \mathbb{R} denote the set of real numbers, \mathbb{Q} the set of rational numbers, \mathbb{Z} the set of integers, $\mathbb{Z} = \{\ldots, -3, -2, -1, 0, 1, 2, 3, \ldots \}$, and \mathbb{N} the set of positive integers, $\mathbb{N} = \{1, 2, 3, \ldots \}$. Note that $\mathbb{N} \subseteq \mathbb{Z} \subseteq \mathbb{Q} \subseteq \mathbb{R}$.

4. We often use set builder notation to define a set. For example, the set of rational numbers is given by

$$\mathbb{Q} = \{x \in \mathbb{R} | x = \frac{p}{q} \text{ for some } p, q \in \mathbb{Z} \text{ with } q \neq 0\}.$$

5. Suppose that A and B are sets. We let $A \times B$ denote the set of ordered pairs (a, b) such that $a \in A$ and $b \in B$. Two ordered pairs (c, d) and (v, w) are equal if and only if $c = v$ and $d = w$.

6. More generally, if n is a positive integer and $A_1, A_2, \ldots A_n$ are sets, we define the Cartesian product of these sets by

$$A_1 \times A_2 \times \cdots \times A_n = \{(x_1, x_2, \ldots, x_n) : x_1 \in A, x_2 \in A_2, \ldots, x_n \in A_n\}.$$

The expression (x_1, x_2, \ldots, x_n) is called an ordered n-tuple. Two ordered n-tuples (x_1, x_2, \ldots, x_n) and (y_1, y_2, \ldots, y_n) are equal if and only if $x_i = y_i$ for each $i = 1, 2, \ldots, n$. Note the meaning of \ldots (dots).
7. If A is a set and n is a positive integer we define the Cartesian power A^n by

$$A^n = A_1 \times A_2 \times \cdots \times A_n,$$

where $A_i = A$ for each $i = 1, 2, \ldots, n$.

8. Suppose that A and B are sets. We say that A is a subset of B, denoted $A \subseteq B$, if and only if every element of A is also an element of B. Note that two sets A and B are equal if and only if $A \subseteq B$ and $B \subseteq A$. Using this to prove that two sets are equal is sometimes called the method of double containment.

9. Note that for any set A, we have $\emptyset \subseteq A$.

10. Suppose that A and B are sets. There exist sets $A \cap B$, $A \cup B$, and $A \setminus B$ given by

$x \in A \cap B$ if and only if $x \in A$ and $x \in B$,

$x \in A \cup B$ if and only if $x \in A$ or $x \in B$,

$x \in A \setminus B$ if and only if $x \in A$ and $x \notin B$.

The set $A \cap B$ is called the intersection of the sets A and B. The set $A \cup B$ is called the union of the sets A and B. The set $A \setminus B$ is called the complement of B in A.

11. Suppose that S is a set, and for each $s \in S$, a set A_s is defined. We assume that there are sets denoted by $\bigcup_{s \in S} A_s$ and $\bigcap_{s \in S} A_s$ such that $x \in \bigcup_{s \in S} A_s$ if and only if there exists $s \in S$ with $x \in A_s$, and $x \in \bigcap_{s \in S} A_s$ if and only if for every $s \in S$ we have $x \in A_s$.

The set S is called an index set, the family of sets A_s is called an indexed family of sets, the set $\bigcup_{s \in S} A_s$ is called the union of the indexed family of sets, and the set $\bigcap_{s \in S} A_s$ is called the intersection of the indexed family of sets.

If $S = \{1, 2, \ldots, n\}$, instead of $\bigcup_{s \in S} A_s$ we often write $\bigcup_{i=1}^n A_i$ or $A_1 \cup A_2 \cup \cdots \cup A_n$.

If $S = \mathbb{N}$, instead of $\bigcup_{s \in S} A_s$ we often use the notation $\bigcup_{i=1}^\infty A_i$ or $A_1 \cup A_2 \cup \ldots$.

The same is true for $\bigcap_{s \in S} A_s$.
12. Definition. Suppose that A and B are sets. A relation from A to B is just a subset of $A \times B$.

13. Suppose that f is a relation from A to B. We say that f is a function from A to B if and only if for every $a \in A$ there is a unique $b \in B$ such that $(a, b) \in f$. We use the notation $f : A \to B$ to indicate that f is a function from A to B. Also, if $a \in A$, we let $f(a)$ denote the unique $b \in B$ such that $(a, b) \in f$. The set A is called the domain of the function. The set B is called the target space of the function. The range of the function is the set of all $y \in B$ such that there exists $x \in X$ with $f(x) = y$.

14. Remark. Suppose that f and g are functions from A to B. Then $f = g$ if and only if for all $a \in A$ we have $f(a) = g(a)$.

15. Definition. Suppose that $f : A \to B$ and $g : B \to C$. The composition $g \circ f : A \to C$ is defined as follows: For $a \in A$ set $(g \circ f)(a) = g(f(a))$.

16. Definition and Remark. Suppose that $f : A \to B$. We say that f is injective or one-to-one if and only if for all $a_1, a_2 \in A$ if $f(a_1) = f(a_2)$ then $a_1 = a_2$. We say that f is surjective or onto if and only if for every $b \in B$ there exists $a \in A$ with $f(a) = b$. Note that f is onto if and only if B is the range of f.

17. Definition and Remark. Suppose that $f : A \to B$. Suppose that $D \subseteq A$. The image of D under f is given by

$$f(D) = \{y \in B | \exists x \in D \text{ with } f(x) = y\}.$$

Here, the symbol \exists means ”there exists”. Note that the image of A under f is the range of f.

18. Definition and Remark. Suppose that $f : A \to B$. Suppose that $E \subseteq B$. The inverse image of E under f is given by

$$f^{-1}(E) = \{x \in A | f(x) \in E\}.$$

Note that the inverse image of a set under f is defined for all functions f, and is independent of the existence of an inverse function.
19. Axiom. Every nonempty subset of \(\mathbb{N} \) has a smallest element.

20. Theorem. (Mathematical Induction). Suppose \(j \in \mathbb{N} \). Suppose that
 \(P(x) \) is a statement for each \(x \in \mathbb{N} \). Suppose that
 1. \(P(j) \) and
 2. For all \(k \in \mathbb{N} \) with \(k \geq j \) if \(P(k) \) holds then \(P(k + 1) \) also holds.
 Then for all \(n \in \mathbb{N} \) with \(n \geq j \) we have \(P(n) \).

21. Remark. Similar to Mathematical Induction, we sometimes use recursive definitions. We may define a function \(f \) with domain \(\mathbb{N} \) by defining \(f(0) \) and defining \(f(k + 1) \) in terms of \(f(k) \). For example, if \(x \) is a real number we may define \(x^n \) by
 \(x^0 = 1 \) and \(x^{(k+1)} = xx^k \).

22. Theorem. (Mathematical Induction, Strong Form). Suppose \(j \in \mathbb{N} \). Suppose that \(P(x) \) is a statement for each \(x \in \mathbb{N} \). Suppose that
 1. \(P(j) \) and
 2. For all \(k \in \mathbb{N} \) with \(k \geq j \) if \(P(s) \) holds for all \(s \in \mathbb{N} \) with \(j \leq s \leq k \) then \(P(k + 1) \) also holds.
 Then for all \(n \in \mathbb{N} \) with \(n \geq j \) we have \(P(n) \).

23. Theorem. (Binomial Theorem). Suppose that \(a, b \in \mathbb{R} \) and \(n \in \mathbb{N} \). Then
 \[
 (a + b)^n = \sum_{k=0}^{n} \binom{n}{k} a^{n-k} b^k,
 \]
 where
 \[
 \binom{n}{k} = \frac{n!}{k!(n-k)!}.
 \]

24. Definition. Suppose that \(R \) is a relation from \(A \) to \(B \). We define the inverse relation \(R^{-1} \) from \(B \) to \(A \) by
 \[
 R^{-1} = \{(y, x) \in B \times A | (x, y) \in R\}.
 \]

25. Definition. Suppose that \(S \) is a set. The identity function on \(S \) is the function \(i_S : S \to S \) given by \(i_S(x) = x \) for all \(x \in S \).
26. Remark and Theorem. Suppose that \(f : A \rightarrow B \). Then \(f \) is also a relation from \(A \) to \(B \). So the inverse relation \(f^{-1} \) is defined and is a relation from \(B \) to \(A \). We have the following theorem: \(f^{-1} \) is a function from \(B \) to \(A \) if and only if \(f \) is one-to-one and onto. Moreover, in this case we have \(f^{-1} \circ f = i_A \) and \(f \circ f^{-1} = i_B \).

27. Theorem: Suppose that \(f : A \rightarrow B \) and \(g : B \rightarrow A \). Suppose also that \(g \circ f = i_A \) and \(f \circ g = i_B \). Then \(g = f^{-1} \).

28. Definition. A field is a triple, \((\mathbb{F}, +, \cdot)\), where \(\mathbb{F} \) is a set and \(+ \) and \(\cdot \) are binary operations (functions from \(\mathbb{F} \times \mathbb{F} \) to \(\mathbb{F} \)) called addition and multiplication respectively satisfying the following:

For every \(x, y \in \mathbb{F} \) we have \(x + y = y + x \) and \(xy = yx \);

For every \(x, y, z \in \mathbb{F} \) we have \((x + y) + z = x + (y + z) \) and \((xy)z = x(yz) \);

There is an element \(0 \in \mathbb{F} \) such that \(0 + w = w \) for every \(w \in \mathbb{F} \);

There is an element \(1 \in \mathbb{F} \), distinct from \(0 \), such that \(1w = w \) for every \(w \in \mathbb{F} \);

For each \(x \in \mathbb{F} \) there is an element \(-x \in \mathbb{F} \) such that \(x + (-x) = 0 \);

For each \(x \neq 0 \) in \(\mathbb{F} \), there is an element \(x^{-1} \in \mathbb{F} \) such that \(x \cdot x^{-1} = 1 \);

For every \(x, y \in \mathbb{F} \) we have \((x + y)z = xz + yz \).

29. Definition. An ordered field \((\mathbb{F}, +, \cdot, <)\) consists of a field \((\mathbb{F}, +, \cdot)\) and a relation \(<\) on \(\mathbb{F} \) such that,

For each \(x, y \in \mathbb{F} \), exactly one of the following hold,

\[x < y, \quad y < x, \quad x = y; \]

If \(x, y, z \in \mathbb{F} \) satisfy \(x < y \) and \(y < z \), then also \(x < z \).

If \(x, y, z \in \mathbb{F} \) and \(x < y \), then \(x + z < y + z \);

If \(x, y, z \in \mathbb{F} \) satisfy \(x < y \) and \(0 < z \), then \(xz < yz \).

30. Remark. Both \(\mathbb{R} \) and \(\mathbb{Q} \) with the usual addition, multiplication, and ordering are ordered fields.
31. Remark. In an ordered field, from the symbol $<$ we define the symbols \leq, $>$ and \geq in the usual way.

32. Remark. Other properties of ordered fields which can be proved from the definition may be found in the text.

33. Definition. Let S be a subset of an ordered field \mathbb{F}. We say that S is **bounded above** if and only if there is an $b \in \mathbb{F}$ such that $b \geq s$ for all $s \in S$. Any $b \in \mathbb{F}$ such that $b \geq s$ for all $s \in S$ is called an **upper bound** for S.

34. Lemma. Let S be a subset of an ordered field \mathbb{F} and suppose that both b and b' are upper bounds for S. If b and b' both have the property that if $c \in \mathbb{F}$ is an upper bound for S, then $c \geq b$ and $c \geq b'$, then $b = b'$.

35. Definition. The **least upper bound** or **supremum** of a subset S of an ordered field \mathbb{F}, if it exists, is a $b \in \mathbb{F}$ such that b is an upper bound for S; and if $c \in \mathbb{F}$ is an upper bound for S, then $c \geq b$.

36. Remark. The Lemma above justifies the use of the phrase ”the least upper bound” as opposed to ”a least upper bound.”

37. Definition. An ordered field \mathbb{F} is called a **complete** ordered field if and only if every nonempty subset of \mathbb{F} which is bounded above has a least upper bound.

38. Axiom. The set of real numbers \mathbb{R} (with the usual addition, multiplication, and ordering) is a complete ordered field.

39. Theorem. Suppose that S is a nonempty subset of \mathbb{R} and k is an upper bound of S. Then k is the least upper bound of S if and only if for every $\epsilon > 0$ there exists $s \in S$ such that $k - \epsilon < s$.

40. Definition. Let S be a subset of an ordered field \mathbb{F}. We say that S is **bounded below** if and only if there is an $b \in \mathbb{F}$ such that $b \leq s$ for all $s \in S$. Any $b \in \mathbb{F}$ such that $b \leq s$ for all $s \in S$ is called a **lower bound** for S.
41. Lemma. Let \(S \) be a subset of an ordered field \(\mathbb{F} \) and suppose that both \(b \) and \(b' \) are lower bounds for \(S \). If \(b \) and \(b' \) both have the property that if \(c \in \mathbb{F} \) is a lower bound for \(S \), then \(c \leq b \) and \(c \leq b' \), then \(b = b' \).

42. Definition. The **greatest lower bound** or **infimum** of a subset \(S \) of an ordered field \(\mathbb{F} \), if it exists, is a \(b \in \mathbb{F} \) such that \(b \) is a lower bound for \(S \); and if \(c \in \mathbb{F} \) is an upper bound for \(S \), then \(c \leq b \).

43. Remark. The Lemma above justifies the use of the phrase "the greatest lower bound" as opposed to "a greatest lower bound."

44. Theorem. Every nonempty subset of \(\mathbb{R} \) which is bounded below has a greatest lower bound.

45. Theorem. Suppose that \(a \) and \(b \) are real numbers with \(a < b \). Then the open interval \((a,b)\) contains both a rational number and an irrational number.

46. Theorem. (Archimedean Order Property of \(\mathbb{R} \)). If \(x \in \mathbb{R} \), then there is a natural number greater that \(x \).

47. Definition. Let \(x \in \mathbb{R} \). The absolute value of \(x \) is denoted \(|x| \) and defined by:
\[
|x| = x \text{ if } x \geq 0 \text{ and } |x| = -x \text{ if } x < 0.
\]

48. Theorem. (Properties of Absolute Value). Suppose that \(x, y \in \mathbb{R} \). Then:
\[
|x| \geq 0;
\]
\[
|x| < y \text{ if and only if } y > 0 \text{ and } -y < x < y;
\]
\[
|x| \geq y \text{ if and only if } y \leq 0 \text{ or } x \leq -y \text{ or } x \geq y;
\]
\[
|x \cdot y| = |x| \cdot |y|;
\]
\[
|x + y| \leq |x| + |y|.
\]