Advanced Calculus, Dr. Block, Chapter 1 notes, 9-10-2019

1. In this class, we adopt an informal approach to set theory. A set is

a collection of things called elements. We use the notation x € A to
denote that x is an element of the set A. We use the notation z ¢ A
to denote that x is not an element of the set A. Two sets are equal
if and only if they contain exactly the same elements. A set S may
be either finite or infinite. If S is a finite set, the cardinality of S is
the number of elements in S.

. The unique set with cardinality zero is called the empty set and
denoted ¢.

. We let R denote the set of real numbers, Q the set of rational num-
bers, Z the set of integers, Z = {...,—3,—2,—1,0,1,2,3,...}, and
N the set of positive integers, N = {1,2,3,...}. Note that

NCZCQCR.

. We often use set builder notation to define a set. For example, the
set of rational numbers is given by

Q={zeRjz= P for somep, q € Zwithq # 0}.
q

. Suppose that A and B are sets. We let A x B denote the set of
ordered pairs (a,b) such that a € A and b € B. Two ordered pairs
(¢,d) and (v, w) are equal if and only if ¢ = v and d = w.

. More generally, if n is a positive integer and Aq, A, ... A, are sets,
we define the Cartesian poroduct of these sets by

Ay xAgx - x Ay ={(x1,29,...,2,) 121 € A, k9 € Ag, ...z, € Ay}

The expression (1,x2,...,x,) is called an ordered n-tuple. Two
ordered n-tuples (z1,x9,...,x,) and (y1,¥2, ..., y,) are equal if and
only if x; = y; for each + = 1,2,...,n. Note the meaning of ...

(dots).
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If Ais a set and n is a positive integer we define the Cartesian power
A" by

A=A X Ay x --- X A,
where A; = A for each i =1,2,...,n.

Suppose that A and B are sets. We say that A is a subset of B,
denoted A C B, if and only if every element of A is also an element
of B. Note that two sets A and B are equal if and only if A C B
and B C A. Using this to prove that two sets are equal is sometimes
called the method of double containment.

Note that for any set A, we have ¢ C A.

Suppose that A and B are sets. There exist sets AN B, AU B, and
A\ B given by

re€ ANBifand only if z € A and z € B,
reAUBifandonlyifx € Aor x € B,
re A\ Bifandonly if x € A and x ¢ B.

The set AN B is called the intersection of the sets A and B. The set

AU B is called the union of the sets A and B. The set A\ B is called
the complement of B in A.

Suppose that S is a set, and for each s € S, a set Ay is defined.
We assume that there are sets denoted by |J,.¢ As and [),.q As such
that © € |J,.q As if and only if there exists s € S with z € A, and
x € (,eg As if and only if for every s € S we have x € A.

The set S is called an index set, the family of sets A, is called an
indexed family of sets, the set | J,.q As is called the union of the
indexed family of sets, and the set [,.o A is called the intersection
of the indexed family of sets.

If S =4{1,2,...,n}, instead of |J
AiUAU---UA,.

If S =N, instead of |
AJUAU. ...

The same is true for [),.q As.

seS

. n
weg As we often write J;_; A; or

«eg As we often use the notation [ J;°; A; or
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Definition. Suppose that A and B are sets. A relation from A to B
is just a subset of A x B.

Suppose that f is a relation from A to B. We say that f is a function
from A to B if and only if for every a € A there is a unique b € B
such that (a,b) € f. We use the notation f : A — B to indicate that
f is a function from A to B. Also, if a € A, we let f(a) denote the
unique b € B such that (a,b) € f. The set A is called the domain
of the function. The set B is called the target space of the function.
The range of the function is the set of all y € B such that there
exists z € X with f(z) =y.

Remark. Suppose that f and ¢ are functions from A to B. Then
f = g if and only if for all a € A we have f(a) = g(a).

Definition. Suppose that f : A — B and g : B — (. The com-
position go f : A — (' is defined as follows: For a € A set

(g0 f)la) = g(f(a)).

Definition and Remark. Suppose that f : A — B. We say that f
is injective or one-to-one if and only if for all a; € A and ay € A if
f(a1) = f(a2) then a; = as. We say that f is surjective or onto if
and only if for every b € B there exists a € A with f(a) = b. Note
that f is onto if and only if B is the range of f.

Definition and Remark. Suppose that f : A — B. Suppose that
D C A. The image of D under f is given by

f(D) ={y € B| 3z € Dwith f(x) = y}.

Here, the symbol 4 means ”there exists”. Note that the image of A
under f is the range of f.

Definition and Remark. Suppose that f : A — B. Suppose that
E C B. The inverse image of E under f is given by

fUE) ={z € Alf(z) € E}.

Note that the inverse image of a set under f is defined for all functions
f, and is independent of the existence of an inverse function.
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Axiom. Every nonempty subset of N has a smallest element.
Theorem. (Mathematical Induction). Suppose j € N. Suppose that
P(z) is a statement for each x € N. Suppose that

1. P(j) and

2. For all £ € N with £ > j if P(k) holds then P(k + 1) also holds.
Then for all n € N with n > j we have P(n).

Remark. Similar to Mathematical Induction, we sometimes use re-
cusive definitions. We may define a function f with domain N by
defining f(0) and defining f(k+ 1) in terms of f(k). For example, if

x is a real number we may define z" by

k+1) k

20 =1 and 2! = xx”.

Theorem. (Mathematical Induction, Strong Form). Suppose j € N.
Suppose that P(z) is a statement for each = € N. Suppose that
1. P(j) and

2. For all k € N with k£ > 7 if P(s) holds for all s € Nwith j < s <k
then P(k + 1) also holds.

Then for all n € N with n > j we have P(n).
Theorem. (Binomial Theorem). Suppose that a,b € R and n € N.

Then .
(a+b)" = Z (Z) a" v,

k=0

(1) = w5

Definition. Suppose that R is a relation from A to B. We define the
inverse relation R~! from B to A by

where

R'={(y,z) € B x A|(x,y) € R}.

Definition. Suppose that S is a set. The identity function on S is
the function ig : S — S given by ig(z) = z for all x € S.
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Remark and Theorem. Suppose that f : A — B. Then f is also
a relation from A to B. So the inverse relation f~! is defined and
is a relation from B to A. We have the following theorem: f~! is
a function from B to A if and only if f is one-to-one and onto.
Moreover, in this case we have f 1o f =i4 and fo f~! =ip.

Theorem: Suppose that f : A — B and g : B — A. Suppose also
that go f =i4 and fog =ip. Then g = f~ 1.

Definition. A field is a triple, (I, +, ), where F is a set and + and
- are binary operations (functions from F x F to F ) called addition
and multiplication respectively satisfying the following:

For every z,y € F we have x +y = y + x and zy = yz;

For every z,y,z € F we have (x +y)+ 2=z + (y+ z) and (xy)z =
z(y2);
There is an element 0 € F such that 0 + w = w for every w € F;

There is an element 1 € F, distinct from 0, such that 1w = w for
every w € [F;

For each z € F there is an element —z € F such that x 4+ (—z) = 0;
For each  # 0 in [, there is an element ! € F such that z-z~! = 1;
For every z,y € F we have (x + y)z = xz + yz.

Definition. An ordered field (F,+,-, <) consists of a field (F,+,-)
and a relation < on F such that,

For each x,y € F, exactly one of the following hold,

<Y, yY<z IT=Y;

If x,y,z € F satisfy x < y and y < z, then also x < z.
If x,y,z € Fand z <y, then x 4+ z < y + z;
If x,y,z € F satisfy x <y and 0 < z, then zz < yz.

Remark. Both R and Q with the usual addition, multiplication, and
ordering are ordered fields.
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Remark. In an odered field, from the symbol < we define the symbols
<, > and > in the usual way.

Remark. Other properties of ordered fields which can be proved from
the definition may be found in the text.

Definition. Let S be a subset of an ordered field F. We say that S
is bounded above if and only if there is a b € [F such that b > s
for all s € S. Any b € F such that b > s for all s € S is called an
upper bound for S.

Lemma. Let S be a subset of an ordered field F and suppose that
both b and o' are upper bounds for S. If b and o' both have the
property that if ¢ € F is an upper bound for S, then ¢ > b and
c>U, thenb=1"".

Definition. The least upper bound or supremum of a subset S
of an ordered field F, if it exists, is a b € F such that b is an upper
bound for S; and if ¢ € F is an upper bound for S, then ¢ > b.

Remark. The Lemma above justifies the use of the phrase ”the least
upper bound” as opposed to ”a least upper bound.”

Definition. An ordered field F is call a complete ordered field if and
only if every nonempty subset of F which is bounded above has a
least upper bound.

Axiom. The set of real numbers R (with the usual addition, multi-
plication, and ordering) is a complete ordered field.

Theorem. Suppose that S is a nonempty subset of R and k is an
upper bound of S. Then £ is the least upper bound of S if and only
if for every € > 0 there exists s € S such that k — € < s.

Definition. Let S be a subset of an ordered field F. We say that .S is
bounded below if and only if there is a b € I such that b < s for
all s € S. Any b € IF such that b < s for all s € S is called a lower
bound for S.
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Lemma. Let S be a subset of an ordered field F and suppose that
both b and b are lower bounds for S. If b and b both have the
property that if ¢ € F is a lower bound for S, then ¢ < b and ¢ < ¥,
then b =0'.

Definition. The greatest lower bound or infimum of a subset S
of an ordered field F, if it exists, is a b € F such that b is a lower
bound for S; and if ¢ € F is an upper bound for S, then ¢ < b.

Remark. The Lemma above justifies the use of the phrase ”the
greatest lower bound” as opposed to "a greatest lower bound.”

Theorem. Every nonempty subset of R which is bounded below has
a greatest lower bound.

Theorem. Suppose that a and b are real numbers with a < b. Then
the open interval (a,b) contains both a rational number and an irra-
tional number.

Theorem. (Archimedean Order Property of R). If x € R, then there
is a natural number greater that z.

Definition. Let x € R. The absolute value of z is denoted |x| and
defined by:

lz| =z if x > 0and |z| = -z if z <0.

Theorem. (Properties of Absolute Value). Suppose that z,y € R.
Then:

|z > 0;

|z| <y if and only if y > 0 and —y < = < y;

|z| >y if and only if y <O orz < —y or z > y;

|-yl =[] - |y;

|z +y| < |z]+[yl.



