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1. In this class, we adopt an informal approach to set theory. A set is
a collection of things called elements. We use the notation x ∈ A to
denote that x is an element of the set A. We use the notation x /∈ A
to denote that x is not an element of the set A. Two sets are equal
if and only if they contain exactly the same elements. A set S may
be either finite or infinite. If S is a finite set, the cardinality of S is
the number of elements in S.

2. The unique set with cardinality zero is called the empty set and
denoted φ.

3. We let R denote the set of real numbers, Q the set of rational num-
bers, Z the set of integers, Z = {. . . ,−3,−2,−1, 0, 1, 2, 3, . . . }, and
N the set of positive integers, N = {1, 2, 3, . . . }. Note that

N ⊆ Z ⊆ Q ⊆ R.

4. We often use set builder notation to define a set. For example, the
set of rational numbers is given by

Q = {x ∈ R|x =
p

q
for some p, q ∈ Zwith q 6= 0}.

5. Suppose that A and B are sets. We let A × B denote the set of
ordered pairs (a, b) such that a ∈ A and b ∈ B. Two ordered pairs
(c, d) and (v, w) are equal if and only if c = v and d = w.

6. More generally, if n is a positive integer and A1, A2, . . . An are sets,
we define the Cartesian poroduct of these sets by

A1×A2×· · ·×An = {(x1, x2, . . . , xn) : x1 ∈ A, x2 ∈ A2, . . . , xn ∈ An}.

The expression (x1, x2, . . . , xn) is called an ordered n-tuple. Two
ordered n-tuples (x1, x2, . . . , xn) and (y1, y2, . . . , yn) are equal if and
only if xi = yi for each i = 1, 2, . . . , n. Note the meaning of . . .
(dots).



7. If A is a set and n is a positive integer we define the Cartesian power
An by

An = A1 × A2 × · · · × An,

where Ai = A for each i = 1, 2, . . . , n.

8. Suppose that A and B are sets. We say that A is a subset of B,
denoted A ⊆ B, if and only if every element of A is also an element
of B. Note that two sets A and B are equal if and only if A ⊆ B
and B ⊆ A. Using this to prove that two sets are equal is sometimes
called the method of double containment.

9. Note that for any set A, we have φ ⊆ A.

10. Suppose that A and B are sets. There exist sets A ∩B, A ∪B, and
A \B given by

x ∈ A ∩B if and only if x ∈ A and x ∈ B,
x ∈ A ∪B if and only if x ∈ A or x ∈ B,
x ∈ A \B if and only if x ∈ A and x /∈ B.
The set A∩B is called the intersection of the sets A and B. The set
A∪B is called the union of the sets A and B. The set A\B is called
the complement of B in A.

11. Suppose that S is a set, and for each s ∈ S, a set As is defined.
We assume that there are sets denoted by

⋃
s∈S As and

⋂
s∈S As such

that x ∈
⋃

s∈S As if and only if there exists s ∈ S with x ∈ As, and
x ∈

⋂
s∈S As if and only if for every s ∈ S we have x ∈ As.

The set S is called an index set, the family of sets As is called an
indexed family of sets, the set

⋃
s∈S As is called the union of the

indexed family of sets, and the set
⋂

s∈S As is called the intersection
of the indexed family of sets.

If S = {1, 2, . . . , n}, instead of
⋃

s∈S As we often write
⋃n

i=1Ai or
A1 ∪ A2 ∪ · · · ∪ An.

If S = N, instead of
⋃

s∈S As we often use the notation
⋃∞

i=1Ai or
A1 ∪ A2 ∪ . . . .
The same is true for

⋂
s∈S As.



12. Definition. Suppose that A and B are sets. A relation from A to B
is just a subset of A×B.

13. Suppose that f is a relation from A to B. We say that f is a function
from A to B if and only if for every a ∈ A there is a unique b ∈ B
such that (a, b) ∈ f. We use the notation f : A→ B to indicate that
f is a function from A to B. Also, if a ∈ A, we let f(a) denote the
unique b ∈ B such that (a, b) ∈ f. The set A is called the domain
of the function. The set B is called the target space of the function.
The range of the function is the set of all y ∈ B such that there
exists x ∈ X with f(x) = y.

14. Remark. Suppose that f and g are functions from A to B. Then
f = g if and only if for all a ∈ A we have f(a) = g(a).

15. Definition. Suppose that f : A → B and g : B → C. The com-
position g ◦ f : A → C is defined as follows: For a ∈ A set
(g ◦ f)(a) = g(f(a)).

16. Definition and Remark. Suppose that f : A → B. We say that f
is injective or one-to-one if and only if for all a1 ∈ A and a2 ∈ A if
f(a1) = f(a2) then a1 = a2. We say that f is surjective or onto if
and only if for every b ∈ B there exists a ∈ A with f(a) = b. Note
that f is onto if and only if B is the range of f.

17. Definition and Remark. Suppose that f : A → B. Suppose that
D ⊆ A. The image of D under f is given by

f(D) = {y ∈ B| ∃x ∈ Dwith f(x) = y}.

Here, the symbol ∃ means ”there exists”. Note that the image of A
under f is the range of f.

18. Definition and Remark. Suppose that f : A → B. Suppose that
E ⊆ B. The inverse image of E under f is given by

f−1(E) = {x ∈ A|f(x) ∈ E}.

Note that the inverse image of a set under f is defined for all functions
f, and is independent of the existence of an inverse function.



19. Axiom. Every nonempty subset of N has a smallest element.

20. Theorem. (Mathematical Induction). Suppose j ∈ N. Suppose that
P (x) is a statement for each x ∈ N. Suppose that

1. P (j) and

2. For all k ∈ N with k ≥ j if P (k) holds then P (k + 1) also holds.

Then for all n ∈ N with n ≥ j we have P (n).

21. Remark. Similar to Mathematical Induction, we sometimes use re-
cusive definitions. We may define a function f with domain N by
defining f(0) and defining f(k+ 1) in terms of f(k). For example, if
x is a real number we may define xn by

x0 = 1 and x(k+1) = xxk.

22. Theorem. (Mathematical Induction, Strong Form). Suppose j ∈ N.
Suppose that P (x) is a statement for each x ∈ N. Suppose that

1. P (j) and

2. For all k ∈ N with k ≥ j if P(s) holds for all s ∈ N with j ≤ s ≤ k

then P (k + 1) also holds.

Then for all n ∈ N with n ≥ j we have P (n).

23. Theorem. (Binomial Theorem). Suppose that a, b ∈ R and n ∈ N.
Then

(a+ b)n =
n∑

k=0

(
n

k

)
an−k bk,

where (
n

k

)
=

n!

k! (n− k)!
.

24. Definition. Suppose that R is a relation from A to B. We define the
inverse relation R−1 from B to A by

R−1 = {(y, x) ∈ B × A|(x, y) ∈ R}.

25. Definition. Suppose that S is a set. The identity function on S is
the function iS : S → S given by iS(x) = x for all x ∈ S.



26. Remark and Theorem. Suppose that f : A → B. Then f is also
a relation from A to B. So the inverse relation f−1 is defined and
is a relation from B to A. We have the following theorem: f−1 is
a function from B to A if and only if f is one-to-one and onto.
Moreover, in this case we have f−1 ◦ f = iA and f ◦ f−1 = iB.

27. Theorem: Suppose that f : A → B and g : B → A. Suppose also
that g ◦ f = iA and f ◦ g = iB. Then g = f−1.

28. Definition. A field is a triple, (F,+, ·), where F is a set and + and
· are binary operations (functions from F× F to F ) called addition
and multiplication respectively satisfying the following:

For every x, y ∈ F we have x+ y = y + x and xy = yx;

For every x, y, z ∈ F we have (x+ y) + z = x+ (y + z) and (xy)z =
x(yz);

There is an element 0 ∈ F such that 0 + w = w for every w ∈ F;

There is an element 1 ∈ F, distinct from 0, such that 1w = w for
every w ∈ F;

For each x ∈ F there is an element −x ∈ F such that x+ (−x) = 0;

For each x 6= 0 in F, there is an element x−1 ∈ F such that x·x−1 = 1;

For every x, y ∈ F we have (x+ y)z = xz + yz.

29. Definition. An ordered field (F,+, ·, <) consists of a field (F,+, ·)
and a relation < on F such that,

For each x, y ∈ F, exactly one of the following hold,

x < y, y < x, x = y;

If x, y, z ∈ F satisfy x < y and y < z, then also x < z.

If x, y, z ∈ F and x < y, then x+ z < y + z;

If x, y, z ∈ F satisfy x < y and 0 < z, then xz < yz.

30. Remark. Both R and Q with the usual addition, multiplication, and
ordering are ordered fields.



31. Remark. In an odered field, from the symbol < we define the symbols
≤, > and ≥ in the usual way.

32. Remark. Other properties of ordered fields which can be proved from
the definition may be found in the text.

33. Definition. Let S be a subset of an ordered field F. We say that S
is bounded above if and only if there is a b ∈ F such that b ≥ s
for all s ∈ S. Any b ∈ F such that b ≥ s for all s ∈ S is called an
upper bound for S.

34. Lemma. Let S be a subset of an ordered field F and suppose that
both b and b′ are upper bounds for S. If b and b′ both have the
property that if c ∈ F is an upper bound for S, then c ≥ b and
c ≥ b′, then b = b′.

35. Definition. The least upper bound or supremum of a subset S
of an ordered field F, if it exists, is a b ∈ F such that b is an upper
bound for S; and if c ∈ F is an upper bound for S, then c ≥ b.

36. Remark. The Lemma above justifies the use of the phrase ”the least
upper bound” as opposed to ”a least upper bound.”

37. Definition. An ordered field F is call a complete ordered field if and
only if every nonempty subset of F which is bounded above has a
least upper bound.

38. Axiom. The set of real numbers R (with the usual addition, multi-
plication, and ordering) is a complete ordered field.

39. Theorem. Suppose that S is a nonempty subset of R and k is an
upper bound of S. Then k is the least upper bound of S if and only
if for every ε > 0 there exists s ∈ S such that k − ε < s.

40. Definition. Let S be a subset of an ordered field F. We say that S is
bounded below if and only if there is a b ∈ F such that b ≤ s for
all s ∈ S. Any b ∈ F such that b ≤ s for all s ∈ S is called a lower
bound for S.



41. Lemma. Let S be a subset of an ordered field F and suppose that
both b and b′ are lower bounds for S. If b and b′ both have the
property that if c ∈ F is a lower bound for S, then c ≤ b and c ≤ b′,
then b = b′.

42. Definition. The greatest lower bound or infimum of a subset S
of an ordered field F, if it exists, is a b ∈ F such that b is a lower
bound for S; and if c ∈ F is an upper bound for S, then c ≤ b.

43. Remark. The Lemma above justifies the use of the phrase ”the
greatest lower bound” as opposed to ”a greatest lower bound.”

44. Theorem. Every nonempty subset of R which is bounded below has
a greatest lower bound.

45. Theorem. Suppose that a and b are real numbers with a < b. Then
the open interval (a, b) contains both a rational number and an irra-
tional number.

46. Theorem. (Archimedean Order Property of R). If x ∈ R, then there
is a natural number greater that x.

47. Definition. Let x ∈ R. The absolute value of x is denoted |x| and
defined by:

|x| = x if x ≥ 0 and |x| = −x if x < 0.

48. Theorem. (Properties of Absolute Value). Suppose that x, y ∈ R.
Then:

|x| ≥ 0;

|x| < y if and only if y > 0 and −y < x < y;

|x| ≥ y if and only if y ≤ 0 or x ≤ −y or x ≥ y;

|x · y| = |x| · |y|;
|x+ y| ≤ |x|+ |y|.


