## Advanced Calculus, Dr. Block, Chapter 1 notes, 9-10-2019

1. In this class, we adopt an informal approach to set theory. A set is a collection of things called elements. We use the notation $x \in A$ to denote that $x$ is an element of the set $A$. We use the notation $x \notin A$ to denote that $x$ is not an element of the set $A$. Two sets are equal if and only if they contain exactly the same elements. A set $S$ may be either finite or infinite. If $S$ is a finite set, the cardinality of $S$ is the number of elements in $S$.
2. The unique set with cardinality zero is called the empty set and denoted $\phi$.
3. We let $\mathbb{R}$ denote the set of real numbers, $\mathbb{Q}$ the set of rational numbers, $\mathbb{Z}$ the set of integers, $\mathbb{Z}=\{\ldots,-3,-2,-1,0,1,2,3, \ldots\}$, and $\mathbb{N}$ the set of positive integers, $\mathbb{N}=\{1,2,3, \ldots\}$. Note that

$$
\mathbb{N} \subseteq \mathbb{Z} \subseteq \mathbb{Q} \subseteq \mathbb{R}
$$

4. We often use set builder notation to define a set. For example, the set of rational numbers is given by

$$
\mathbb{Q}=\left\{x \in \mathbb{R} \left\lvert\, x=\frac{p}{q}\right. \text { for some } p, q \in \mathbb{Z} \text { with } q \neq 0\right\}
$$

5. Suppose that $A$ and $B$ are sets. We let $A \times B$ denote the set of ordered pairs $(a, b)$ such that $a \in A$ and $b \in B$. Two ordered pairs $(c, d)$ and $(v, w)$ are equal if and only if $c=v$ and $d=w$.
6. More generally, if $n$ is a positive integer and $A_{1}, A_{2}, \ldots A_{n}$ are sets, we define the Cartesian poroduct of these sets by
$A_{1} \times A_{2} \times \cdots \times A_{n}=\left\{\left(x_{1}, x_{2}, \ldots, x_{n}\right): x_{1} \in A, x_{2} \in A_{2}, \ldots, x_{n} \in A_{n}\right\}$.
The expression $\left(x_{1}, x_{2}, \ldots, x_{n}\right)$ is called an ordered $n$-tuple. Two ordered $n$-tuples $\left(x_{1}, x_{2}, \ldots, x_{n}\right)$ and $\left(y_{1}, y_{2}, \ldots, y_{n}\right)$ are equal if and only if $x_{i}=y_{i}$ for each $i=1,2, \ldots, n$. Note the meaning of $\ldots$ (dots).
7. If $A$ is a set and $n$ is a positive integer we define the Cartesian power $A^{n}$ by

$$
A^{n}=A_{1} \times A_{2} \times \cdots \times A_{n}
$$

where $A_{i}=A$ for each $i=1,2, \ldots, n$.
8. Suppose that $A$ and $B$ are sets. We say that $A$ is a subset of $B$, denoted $A \subseteq B$, if and only if every element of $A$ is also an element of $B$. Note that two sets $A$ and $B$ are equal if and only if $A \subseteq B$ and $B \subseteq A$. Using this to prove that two sets are equal is sometimes called the method of double containment.
9. Note that for any set $A$, we have $\phi \subseteq A$.
10. Suppose that $A$ and $B$ are sets. There exist sets $A \cap B, A \cup B$, and $A \backslash B$ given by $x \in A \cap B$ if and only if $x \in A$ and $x \in B$, $x \in A \cup B$ if and only if $x \in A$ or $x \in B$, $x \in A \backslash B$ if and only if $x \in A$ and $x \notin B$.
The set $A \cap B$ is called the intersection of the sets $A$ and $B$. The set $A \cup B$ is called the union of the sets $A$ and $B$. The set $A \backslash B$ is called the complement of $B$ in $A$.
11. Suppose that $S$ is a set, and for each $s \in S$, a set $A_{s}$ is defined. We assume that there are sets denoted by $\bigcup_{s \in S} A_{s}$ and $\bigcap_{s \in S} A_{s}$ such that $x \in \bigcup_{s \in S} A_{s}$ if and only if there exists $s \in S$ with $x \in A_{s}$, and $x \in \bigcap_{s \in S} A_{s}$ if and only if for every $s \in S$ we have $x \in A_{s}$.
The set $S$ is called an index set, the family of sets $A_{s}$ is called an indexed family of sets, the set $\bigcup_{s \in S} A_{s}$ is called the union of the indexed family of sets, and the set $\bigcap_{s \in S} A_{s}$ is called the intersection of the indexed family of sets.
If $S=\{1,2, \ldots, n\}$, instead of $\bigcup_{s \in S} A_{s}$ we often write $\bigcup_{i=1}^{n} A_{i}$ or $A_{1} \cup A_{2} \cup \cdots \cup A_{n}$.
If $S=\mathbb{N}$, instead of $\bigcup_{s \in S} A_{s}$ we often use the notation $\bigcup_{i=1}^{\infty} A_{i}$ or $A_{1} \cup A_{2} \cup \ldots$
The same is true for $\bigcap_{s \in S} A_{s}$.
12. Definition. Suppose that $A$ and $B$ are sets. A relation from $A$ to $B$ is just a subset of $A \times B$.
13. Suppose that $f$ is a relation from $A$ to $B$. We say that $f$ is a function from $A$ to $B$ if and only if for every $a \in A$ there is a unique $b \in B$ such that $(a, b) \in f$. We use the notation $f: A \rightarrow B$ to indicate that $f$ is a function from $A$ to $B$. Also, if $a \in A$, we let $f(a)$ denote the unique $b \in B$ such that $(a, b) \in f$. The set $A$ is called the domain of the function. The set $B$ is called the target space of the function. The range of the function is the set of all $y \in B$ such that there exists $x \in X$ with $f(x)=y$.
14. Remark. Suppose that $f$ and $g$ are functions from $A$ to $B$. Then $f=g$ if and only if for all $a \in A$ we have $f(a)=g(a)$.
15. Definition. Suppose that $f: A \rightarrow B$ and $g: B \rightarrow C$. The composition $g \circ f: A \rightarrow C$ is defined as follows: For $a \in A$ set $(g \circ f)(a)=g(f(a))$.
16. Definition and Remark. Suppose that $f: A \rightarrow B$. We say that $f$ is injective or one-to-one if and only if for all $a_{1} \in A$ and $a_{2} \in A$ if $f\left(a_{1}\right)=f\left(a_{2}\right)$ then $a_{1}=a_{2}$. We say that $f$ is surjective or onto if and only if for every $b \in B$ there exists $a \in A$ with $f(a)=b$. Note that $f$ is onto if and only if $B$ is the range of $f$.
17. Definition and Remark. Suppose that $f: A \rightarrow B$. Suppose that $D \subseteq A$. The image of $D$ under $f$ is given by

$$
f(D)=\{y \in B \mid \exists x \in D \text { with } f(x)=y\}
$$

Here, the symbol $\exists$ means "there exists". Note that the image of $A$ under $f$ is the range of $f$.
18. Definition and Remark. Suppose that $f: A \rightarrow B$. Suppose that $E \subseteq B$. The inverse image of $E$ under $f$ is given by

$$
f^{-1}(E)=\{x \in A \mid f(x) \in E\}
$$

Note that the inverse image of a set under $f$ is defined for all functions $f$, and is independent of the existence of an inverse function.
19. Axiom. Every nonempty subset of $\mathbb{N}$ has a smallest element.
20. Theorem. (Mathematical Induction). Suppose $j \in \mathbb{N}$. Suppose that $P(x)$ is a statement for each $x \in \mathbb{N}$. Suppose that

1. $P(j)$ and
2. For all $k \in \mathbb{N}$ with $k \geq j$ if $P(k)$ holds then $P(k+1)$ also holds.

Then for all $n \in \mathbb{N}$ with $n \geq j$ we have $P(n)$.
21. Remark. Similar to Mathematical Induction, we sometimes use recusive definitions. We may define a function $f$ with domain $\mathbb{N}$ by defining $f(0)$ and defining $f(k+1)$ in terms of $f(k)$. For example, if $x$ is a real number we may define $x^{n}$ by
$x^{0}=1$ and $x^{(k+1)}=x x^{k}$.
22. Theorem. (Mathematical Induction, Strong Form). Suppose $j \in \mathbb{N}$. Suppose that $P(x)$ is a statement for each $x \in \mathbb{N}$. Suppose that

1. $P(j)$ and
2. For all $k \in \mathbb{N}$ with $k \geq j$ if $\mathrm{P}(\mathrm{s})$ holds for all $s \in \mathbb{N}$ with $j \leq s \leq k$ then $P(k+1)$ also holds.
Then for all $n \in \mathbb{N}$ with $n \geq j$ we have $P(n)$.
3. Theorem. (Binomial Theorem). Suppose that $a, b \in \mathbb{R}$ and $n \in \mathbb{N}$. Then

$$
(a+b)^{n}=\sum_{k=0}^{n}\binom{n}{k} a^{n-k} b^{k}
$$

where

$$
\binom{n}{k}=\frac{n!}{k!(n-k)!} .
$$

24. Definition. Suppose that $R$ is a relation from $A$ to $B$. We define the inverse relation $R^{-1}$ from $B$ to $A$ by

$$
R^{-1}=\{(y, x) \in B \times A \mid(x, y) \in R\} .
$$

25. Definition. Suppose that $S$ is a set. The identity function on $S$ is the function $i_{S}: S \rightarrow S$ given by $i_{S}(x)=x$ for all $x \in S$.
26. Remark and Theorem. Suppose that $f: A \rightarrow B$. Then $f$ is also a relation from $A$ to $B$. So the inverse relation $f^{-1}$ is defined and is a relation from $B$ to $A$. We have the following theorem: $f^{-1}$ is a function from $B$ to $A$ if and only if $f$ is one-to-one and onto. Moreover, in this case we have $f^{-1} \circ f=i_{A}$ and $f \circ f^{-1}=i_{B}$.
27. Theorem: Suppose that $f: A \rightarrow B$ and $g: B \rightarrow A$. Suppose also that $g \circ f=i_{A}$ and $f \circ g=i_{B}$. Then $g=f^{-1}$.
28. Definition. A field is a triple, $(\mathbb{F},+, \cdot)$, where $\mathbb{F}$ is a set and + and - are binary operations (functions from $\mathbb{F} \times \mathbb{F}$ to $\mathbb{F}$ ) called addition and multiplication respectively satisfying the following:
For every $x, y \in \mathbb{F}$ we have $x+y=y+x$ and $x y=y x$;
For every $x, y, z \in \mathbb{F}$ we have $(x+y)+z=x+(y+z)$ and $(x y) z=$ $x(y z)$;
There is an element $0 \in \mathbb{F}$ such that $0+w=w$ for every $w \in \mathbb{F}$;
There is an element $1 \in \mathbb{F}$, distinct from 0 , such that $1 w=w$ for every $w \in \mathbb{F}$;
For each $x \in \mathbb{F}$ there is an element $-x \in \mathbb{F}$ such that $x+(-x)=0$;
For each $x \neq 0$ in $\mathbb{F}$, there is an element $x^{-1} \in \mathbb{F}$ such that $x \cdot x^{-1}=1$;
For every $x, y \in \mathbb{F}$ we have $(x+y) z=x z+y z$.
29. Definition. An ordered field $(\mathbb{F},+, \cdot,<)$ consists of a field $(\mathbb{F},+, \cdot)$ and a relation $<$ on $\mathbb{F}$ such that,
For each $x, y \in \mathbb{F}$, exactly one of the following hold,

$$
x<y, \quad y<x, \quad x=y
$$

If $x, y, z \in \mathbb{F}$ satisfy $x<y$ and $y<z$, then also $x<z$.
If $x, y, z \in \mathbb{F}$ and $x<y$, then $x+z<y+z$;
If $x, y, z \in \mathbb{F}$ satisfy $x<y$ and $0<z$, then $x z<y z$.
30. Remark. Both $\mathbb{R}$ and $\mathbb{Q}$ with the usual addition, multiplication, and ordering are ordered fields.
31. Remark. In an odered field, from the symbol < we define the symbols $\leq,>$ and $\geq$ in the usual way.
32. Remark. Other properties of ordered fields which can be proved from the definition may be found in the text.
33. Definition. Let $S$ be a subset of an ordered field $\mathbb{F}$. We say that $S$ is bounded above if and only if there is a $b \in \mathbb{F}$ such that $b \geq s$ for all $s \in S$. Any $b \in \mathbb{F}$ such that $b \geq s$ for all $s \in S$ is called an upper bound for $S$.
34. Lemma. Let $S$ be a subset of an ordered field $\mathbb{F}$ and suppose that both $b$ and $b^{\prime}$ are upper bounds for $S$. If $b$ and $b^{\prime}$ both have the property that if $c \in \mathbb{F}$ is an upper bound for $S$, then $c \geq b$ and $c \geq b^{\prime}$, then $b=b^{\prime}$.
35. Definition. The least upper bound or supremum of a subset $S$ of an ordered field $\mathbb{F}$, if it exists, is a $b \in \mathbb{F}$ such that $b$ is an upper bound for $S$; and if $c \in \mathbb{F}$ is an upper bound for $S$, then $c \geq b$.
36. Remark. The Lemma above justifies the use of the phrase "the least upper bound" as opposed to "a least upper bound."
37. Definition. An ordered field $\mathbb{F}$ is call a complete ordered field if and only if every nonempty subset of $\mathbb{F}$ which is bounded above has a least upper bound.
38. Axiom. The set of real numbers $\mathbb{R}$ (with the usual addition, multiplication, and ordering) is a complete ordered field.
39. Theorem. Suppose that $S$ is a nonempty subset of $\mathbb{R}$ and $k$ is an upper bound of $S$. Then $k$ is the least upper bound of $S$ if and only if for every $\epsilon>0$ there exists $s \in S$ such that $k-\epsilon<s$.
40. Definition. Let $S$ be a subset of an ordered field $\mathbb{F}$. We say that $S$ is bounded below if and only if there is a $b \in \mathbb{F}$ such that $b \leq s$ for all $s \in S$. Any $b \in \mathbb{F}$ such that $b \leq s$ for all $s \in S$ is called a lower bound for $S$.
41. Lemma. Let $S$ be a subset of an ordered field $\mathbb{F}$ and suppose that both $b$ and $b^{\prime}$ are lower bounds for $S$. If $b$ and $b^{\prime}$ both have the property that if $c \in \mathbb{F}$ is a lower bound for $S$, then $c \leq b$ and $c \leq b^{\prime}$, then $b=b^{\prime}$.
42. Definition. The greatest lower bound or infimum of a subset $S$ of an ordered field $\mathbb{F}$, if it exists, is a $b \in \mathbb{F}$ such that $b$ is a lower bound for $S$; and if $c \in \mathbb{F}$ is an upper bound for $S$, then $c \leq b$.
43. Remark. The Lemma above justifies the use of the phrase "the greatest lower bound" as opposed to "a greatest lower bound."
44. Theorem. Every nonempty subset of $\mathbb{R}$ which is bounded below has a greatest lower bound.
45. Theorem. Suppose that $a$ and $b$ are real numbers with $a<b$. Then the open interval $(a, b)$ contains both a rational number and an irrational number.
46. Theorem. (Archimedean Order Property of $\mathbb{R}$ ). If $x \in \mathbb{R}$, then there is a natural number greater that $x$.
47. Definition. Let $x \in \mathbb{R}$. The absolute value of $x$ is denoted $|x|$ and defined by:
$|x|=x$ if $x \geq 0$ and $|x|=-x$ if $x<0$.
48. Theorem. (Properties of Absolute Value). Suppose that $x, y \in \mathbb{R}$. Then:
$|x| \geq 0 ;$
$|x|<y$ if and only if $y>0$ and $-y<x<y ;$
$|x| \geq y$ if and only if $y \leq 0$ or $x \leq-y$ or $x \geq y$;
$|x \cdot y|=|x| \cdot|y| ;$
$|x+y| \leq|x|+|y|$.

