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We continue discussing material from Section 7.1 of the text.

We begin with an important result.

Theorem 9. (Test for Divergence) If a series
∑∞

n=p an converges, then
the sequence {an} converges to zero.

Proof. Suppose that the series
∑∞

n=p an converges. Then the sequence
of partial sums {Sj} converges to some real number S. Suppose that j is
a positive integer. We have:

Sj = ap + ap+1 + ap+2 + · · ·+ ap+(j−1).

Also we have

Sj+1 = ap + ap+1 + ap+2 + · · ·+ ap+(j−1) + ap+j.

It follows that
ap+j = Sj+1 − Sj.

Since the sequence {Sj} converges to S, the sequence Sj+1 also converges
to S. So

lim
j→∞

ap+j = lim
j→∞

Sj+1 − lim
j→∞

Sj = S − S = 0.

It follows that the sequence {an} converges to zero.
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Recall that if a statement is true, the contrapositive of the statement
is also true. The contrapositive of a statement of the form ”If P is true,
then Q is true” is the statement ”If Q is false, then P is false. So we can
restate the previous theorem as follows:

Theorem 10. (Test for Divergence, contrapositive form) If a sequence
{an} does not converge to zero, then the series

∑∞
n=p an diverges.

This test can be used as follows. Suppose we are asked to determine
whether a series

∑∞
n=p an converges or diverges. We can evaluate the limit

lim
n→∞

an.



If the limit does not exist or the limit exists but is not zero, we can
conclude that the given series diverges. On the other hand, if

lim
n→∞

an = 0,

the test gives no information. The test for divergence can never
be used to show convergence.

It is important to remember that the following statement if false:

False statement If a sequence {an} converges to zero, then the series∑∞
n=p an converges.
To see that the statement is false, we need to give an example of a

sequence {an} which converges to zero, while the corresponding series∑∞
n=p an diverges. The next theorem does exactly that.

Theorem 11. (harmonic series) The series
∑∞

n=1
1
n diverges.

Please see the proof of this theorem in the text on page 297.

Theorem 12. Suppose that
∑∞

n=p an = A and
∑∞

n=p bn = B, where
A and B are real numbers. Then

∞∑
n=p

(an + bn) = A + B

and ∞∑
n=p

(an − bn) = A−B.

Also, if c is a real constant then,

∞∑
n=p

can = cA.

Proof. We prove the first statement. Let Sj denote the j-th partial
sum for the series

∑∞
n=p(an + bn).

Let Vj denote the j-th partial sum for the series
∑∞

n=p an.
Let Wj denote the j-th partial sum for the series

∑∞
n=p bn.



Then Sj = Vj + Wj. It follows that

lim
j→∞

Sj = lim
j→∞

Vj + lim
j→∞

Wj = A + B.

It now follows from the definition that

∞∑
n=p

(an + bn) = A + B.

Remark 13. Let {an}∞n=p be a sequence. We form a new sequence
{bn}∞n=1 as follows: We set

b1 = ap

b2 = ap+1

and for each positive integer j,

bj = ap+j−1.

Suppose that L is a real number. It is easy to verify using the definition
that the sequence {an}∞n=p converges L if and only if the sequence {bn}∞n=1

converges to L. Moreover, the sequences of partial sums corresponding to
these two sequences are the same:

S1 = b1 = ap

S2 = b1 + b2 = ap + ap+1

and so on.
So the series

∑∞
n=p an converges if and only if the series

∑∞
n=1 bn con-

verges. So, we could replace the one series by the other, when proving
something about convergence of series. Therefore, in most of the Theo-
rems and Exercises this Chapter we can assume, without loss of generality,
that for the sequence {an}∞n=p and the corresponding series

∑∞
n=p an that

we have p = 1. So we only need consider sequences and series of the form
{an}∞n=1 and the corresponding series

∑∞
n=1 an.
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