Advanced Calculus 2, Dr. Block, Lecture Notes, 3-13-2020

First, we recall the theorem proved last time:
23. Theorem. (Change of Variables) Suppose that $g:[c, d] \rightarrow[a, b]$ is differentiable with $g(c)=a$ and $g(d)=b$. Suppose also that $g^{\prime} \in R[c, d]$. Finally, suppose that $f:[a, b] \rightarrow \mathbb{R}$ is continuous. Then

$$
\int_{c}^{d}(f \circ g) \cdot g^{\prime}=\int_{a}^{b} f .
$$

We give two examples where this theorem may be useful in evaluating an integral. The first example is Exercise7a, Section 6.4 of the text.

Example 1. Evalutate the integral.

$$
\int_{0}^{\frac{1}{2}} \frac{x^{3}}{\sqrt{1-x^{2}}} d x
$$

Here, we let

$$
a=0, b=\frac{1}{2}, f(x)=\frac{x^{3}}{\sqrt{1-x^{2}}} .
$$

So the given integral is $\int_{a}^{b} f$. To evaluate this integral we let

$$
c=0, d=\frac{\pi}{6}, g(u)=\sin u
$$

Note that all of the hypotheses of the theorem are satisfied. Also,

$$
f(g(u))=\frac{\sin ^{3} u}{\sqrt{1-\sin ^{2} u}}
$$

and $g^{\prime}(u)=\cos u$. So by the theorem we have:

$$
\int_{0}^{\frac{1}{2}} \frac{x^{3}}{\sqrt{1-x^{2}}} d x=\int_{0}^{\frac{\pi}{6}} \frac{\sin ^{3} u}{\sqrt{1-\sin ^{2} u}} \cdot \cos u d u
$$

The integral on the right is equal may be simplified by cancelling to obtain:

$$
\int_{0}^{\frac{\pi}{6}} \sin ^{3} u d u
$$

This integral may be evaluated by noting that:

$$
\sin ^{3} u=\sin ^{2} u \cdot \sin u=\left(1-\cos ^{2} u\right) \cdot(\sin u)
$$

In situations where the Change of Variables Theorem applies, we may think of applying the theorem by making a substitution. In this example the substitution is simply described by writing $x=\sin u, d x=\cos u d u$.

Example 2. Evaluate the integral:

$$
\int_{0}^{2} 2 x \sqrt{x^{2}+1} d x
$$

Here we let:

$$
c=0, d=2, a=1, b=5, g(x)=x^{2}+1, f(u)=\sqrt{u}
$$

Then the given integral is equal to:

$$
\int_{c}^{d}(f \circ g) \cdot g^{\prime}
$$

Again, we can check that all of the hypotheses of the Change of Variables theorem are satisfied. So this integral is equal to:

$$
\int_{a}^{b} f=\int_{1}^{5} \sqrt{u} d u
$$

The latter integral may be evaluated using the power rule.
Again, we may think of applying the theorem by making a substitution. In this example the substitution is simply described by writing

$$
u=x^{2}+1, d u=2 x d x .
$$

We now proceed to Theorem 24 in the Chapter 6 course notes:
24. Theorem. Suppose that $g:[c, d] \rightarrow[a, b]$ is differentiable, and $f:[a, b] \rightarrow \mathbb{R}$ is continuous. Define $H:[c, d] \rightarrow \mathbb{R}$ by

$$
H(x)=\int_{a}^{g(x)} f(t) d t
$$

Then H is differentiable and $H^{\prime}(x)=(f(g(x))) \cdot g^{\prime}(x)$.
Before giving the proof of Theorem 24 we recall the following theorem:
22. Theorem. Suppose that $f \in R[a, b]$. Define a function $F:[a, b] \rightarrow$ \mathbb{R} by $F(x)=\int_{a}^{x} f$. Suppose that $c \in[a, b]$. If f is continuous at c, then F is differentiable at c and $F^{\prime}(c)=f(c)$.

We now prove Theorem 24.
Proof: Consider the function $F:[a, b] \rightarrow \mathbb{R}$ given by $F(x)=\int_{a}^{x} f$. By Theorem 22, F is differeintable on $[a, b]$ and $F^{\prime}=f$. Now, for all $x \in[c, d]$ we have

$$
H(x)=\int_{a}^{g(x)} f(t) d t=F(g(x))
$$

By the Chain rule, H is differentiable and

$$
H^{\prime}(x)=\left(F^{\prime}(g(x))\right) \cdot g^{\prime}(x)=(f(g(x))) \cdot g^{\prime}(x)
$$

Here is an example.
Example 3. If $H(x)=\int_{0}^{x^{3}} \sin ^{2} t d t$, find $H^{\prime}(x)$.
We apply Theorem 24 with $g(x)=x^{3}$ and $f(t)=\sin ^{2} t$. We have

$$
H^{\prime}(x)=(f(g(x))) \cdot g^{\prime}(x)=\left(\sin ^{2}\left(x^{3}\right)\right) \cdot 3 x^{2}
$$

