Advanced Calculus 2, Dr. Block, Lecture Notes, 3-23-2020

We will go over Exercise 10 in section 6.4 in the text. Our solution is based on the following item in the Chapter 6 Course notes:

Corollary 11. Suppose that $f \in R[a, b]$. Let $\left\{P_{n}\right\}$ be a sequence of partitions of $[a, b]$ whose norm converges to zero. Suppose that for each positive integer $n, S\left(P_{n}, f\right)$ is a Riemann sum associated to the partition P_{n}. Then

$$
\lim _{n \rightarrow \infty} S\left(P_{n}, f\right)=\int_{a}^{b} f
$$

Recall that we used this to solve Exercise 10(a) from section 6.1 in the text. This is what we proved.

Exercise 10(a), Section 6.2. Suppose that $f \in R[0,1]$. Define a sequence $\left\{a_{n}\right\}$ by

$$
a_{n}=\frac{1}{n} \sum_{k=1}^{n} f\left(\frac{k}{n}\right) .
$$

Then the sequence $\left\{a_{n}\right\}$ converges to $\int_{0}^{1} f$.

Recall that the proof of Exercise 10(a) is based on the following:
Let $a=0$ and $b=1$. For each n let P_{n} be the partition of $[0,1]$ obtained by dividing the interval $[0,1]$ into n equal parts. Then

$$
S\left(P_{n}, f\right)=a_{n} .
$$

We now go to Exercise 10 in section 6.4 in the text.
Exercise 10(a), Section 6.4. Evaluate the limit:

$$
\lim _{n \rightarrow \infty} \frac{1}{n^{16}} \sum_{k=1}^{n} k^{15}
$$

Solution. We wish to rewrite this limit so that exercise 10(a), Section 6.2 may be applied, for some function f. We have

$$
\begin{aligned}
& \lim _{n \rightarrow \infty} \frac{1}{n^{16}} \sum_{k=1}^{n} k^{15}=\lim _{n \rightarrow \infty} \frac{1}{n} \cdot \frac{1}{n^{15}} \sum_{k=1}^{n} k^{15} \\
& =\lim _{n \rightarrow \infty} \frac{1}{n} \sum_{k=1}^{n} \frac{k^{15}}{n^{15}}=\int_{0}^{1} x^{15} d x=\frac{1}{16} .
\end{aligned}
$$

An important step in the solution is recognizing that if we let $f(x)=$ x^{15}, than $f\left(\frac{k}{n}\right)=\frac{k^{15}}{n^{15}}$.

We now go to the other parts of this Exercise.
Exercise 10(b), Section 6.4. Evaluate the limit:

$$
\lim _{n \rightarrow \infty} \frac{1}{n^{15}} \sum_{k=1}^{n} k^{15}
$$

Solution. We use the part (a) above. We have

$$
\lim _{n \rightarrow \infty} \frac{1}{n^{15}} \sum_{k=1}^{n} k^{15}=\lim _{n \rightarrow \infty} n \cdot\left(\frac{1}{n^{16}} \sum_{k=1}^{n} k^{15}\right)=\infty .
$$

Here the limit on the right has the form $\infty \cdot \frac{1}{16}$ (using part (a) above). So we conclude (by a form of the product rule for limits, discussed last semester) that the limit is ∞.

Exercise 10(c), Section 6.4. Evaluate the limit:

$$
\lim _{n \rightarrow \infty} \frac{1}{n^{17}} \sum_{k=1}^{n} k^{15}
$$

Solution. We use the part (a) above. We have

$$
\lim _{n \rightarrow \infty} \frac{1}{n^{17}} \sum_{k=1}^{n} k^{15}=\lim _{n \rightarrow \infty} \frac{1}{n} \cdot\left(\frac{1}{n^{16}} \sum_{k=1}^{n} k^{15}\right)=0 .
$$

Exercise 10(d), Section 6.4. Evaluate the limit:

$$
\lim _{n \rightarrow \infty} n^{-\left(\frac{3}{2}\right)} \sum_{k=1}^{n} \sqrt{k}
$$

Solution. Using the function $f(x)=\sqrt{x}$, we have

$$
\lim _{n \rightarrow \infty} n^{-\left(\frac{3}{2}\right)} \sum_{k=1}^{n} \sqrt{k}=\lim _{n \rightarrow \infty} \frac{1}{n} \sum_{k=1}^{n} \sqrt{\frac{k}{n}}=\int_{0}^{1} \sqrt{x} d x=\frac{2}{3} .
$$

Exercise 10(e), Section 6.4. Conclude from part (d) that

$$
\sqrt{1}+\sqrt{2}+\sqrt{3}+\cdots+\sqrt{n} \approx \frac{2}{3} n^{\frac{3}{2}}
$$

Solution. This problem depends on the following definition. We say the two sequences $\left\{a_{n}\right\}$ and $\left\{b_{n}\right\}$ are asymptotic (denoted by $a_{n} \approx b_{n}$) if and only if

$$
\lim _{n \rightarrow \infty} \frac{a_{n}}{b_{n}}=1
$$

Now, using part (d) above, we have

$$
\begin{gathered}
\lim _{n \rightarrow \infty} \frac{\sqrt{1}+\sqrt{2}+\sqrt{3}+\cdots+\sqrt{n}}{\frac{2}{3} n^{\frac{3}{2}}}=\frac{3}{2} \cdot \lim _{n \rightarrow \infty} \frac{\sqrt{1}+\sqrt{2}+\sqrt{3}+\cdots+\sqrt{n}}{n^{\frac{3}{2}}} \\
=\frac{3}{2} \cdot \lim _{n \rightarrow \infty} n^{-\left(\frac{3}{2}\right)} \sum_{k=1}^{n} \sqrt{k}=\frac{3}{2} \cdot \frac{2}{3}=1 .
\end{gathered}
$$

Exercise 10(e), Section 6.4. Show that

$$
\lim _{n \rightarrow \infty} \sum_{k=1}^{n} \frac{n}{k^{2}+n^{2}}=\frac{\pi}{4} .
$$

Solution. We have

$$
\begin{gathered}
\lim _{n \rightarrow \infty} \sum_{k=1}^{n} \frac{n}{k^{2}+n^{2}}=\lim _{n \rightarrow \infty} \frac{1}{n} \sum_{k=1}^{n} \frac{n^{2}}{k^{2}+n^{2}} \\
=\lim _{n \rightarrow \infty} \frac{1}{n} \sum_{k=1}^{n} \frac{1}{\left(\frac{k}{n}\right)^{2}+1}=\int_{0}^{1} \frac{1}{x^{2}+1}=\left.\arctan x\right|_{0} ^{1}=\frac{\pi}{4} .
\end{gathered}
$$

