
Advanced Calculus 2, Dr. Block, Lecture Notes, 4-10-2020

We begin discussing material from Section 7.3 of the text. Today we
will look at two versions of the ratio test.

Theorem 25. (d’Alembert’s Ratio Test) Let
∑
ak be a series

with all terms positive.

a. Suppose that there is a positive integer J and a real number α < 1
such that an+1

an
≤ α for all n ≥ J. Then the series

∑
ak converges.

b. Suppose that there is a positive integer J such that an+1

an
≥ 1 for all

n ≥ J. Then the series
∑
ak diverges.

Proof of Part a. Suppose that the hypothesis is satisfied. We observe
the following:

aJ+1 ≤ α · aJ
aJ+2 ≤ α · aJ+1 ≤ (α)2 · aJ

and for each positive integer n,

aJ+n ≤ (α)n · aJ .

Now, we know that the series
∑

(α)k converges (geometric series). So the
series

∑
((α)k · aJ) also converges. It now follows from the Comparison

Test that the series
∑
ak converges.

Proof of Part b. Suppose that the hypothesis is satisfied. Then
an+1 ≥ an for all n ≥ J. It follows that an ≥ aJ for all n ≥ J. Since
Since aJ is a positive constant, it follows that the sequence {an} does
not converge to zero. Thus, the series

∑
ak diverges, by the Test for

Divergence.

�

We also have the following Corollary.

Corollary 26. (Cauchy’s Ratio Test) Let
∑
ak be a series with

all terms positive. Suppose that

lim
n→∞

an+1

an
= L



where L is a real number or ∞.
a. If L < 1, then the series

∑
ak converges.

b. If L > 1, then the series
∑
ak diverges.

Proof of Part a. Suppose that the hypothesis is satisfied. Set α =
1+L
2 . Then L < α < 1. It follows from the definition of a limit of a sequence

that there is a positive integer J such that an+1

an
< α for all n ≥ J. So the

series
∑
ak converges, by Theorem 25 (Part a).

Proof of Part b. Suppose that the hypothesis is satisfied. It follows
from the definition of a limit of a sequence that there is a positive integer
J such that an+1

an
> 1 for all n ≥ J. So the series

∑
ak diverges, by Theorem

25 (Part b).

�

Here is an example.

Problem 27. Determine whether the given series converges or di-
verges. ∑ (k!)2

(2k)!

Solution We try to use one of the ratio tests. We have

ak+1

ak
=

((k + 1)!)2

(2(k + 1))!
· (2k)!

(k!)2
=

(k + 1)2

(2k + 2)(2k + 1)
.

It follows that

lim
k→∞

ak+1

ak
=

1

4
.

So, Cauchy’s Ratio Test (Part a) can be applied, and we conclude that
the given series converges.

�

Next, we will go over Problem 16 from Section 7.1 of the text.

Problem 28. If a series
∑
|ak| converges, and a sequence {bn} is

bounded, prove that
∑
akbk converges.



Proof. Suppose that the series
∑
|ak| converges, and the sequence

{bn} is bounded. We can assume without loss of generality that the
series

∑
|ak| and the sequence {bn} start at the integer 1. We will prove

that the series
∑
|akbk| converges. Let Tn denote the n-th term in the

sequence of partial sums for the series
∑
|ak|. Then

Tn = |a1|+ · · ·+ |an|.

Since the series
∑
|ak| converges, the sequence {Tn} is bounded. (See

Theorem 15, from the Lecture notes 4-3-2020.) So there is some real
number D such that Tn ≤ D for each positive integer n. Also, as the
sequence {bn} is bounded, there is some real number B such that

|bn| ≤ B

for each positive integer n. Now, let Sn denote the n-th term in the
sequence of partial sums for the series

∑
|akbk|. Then for each postive

integer n we have

Sn = |a1||b1|+ · · ·+ |an||bn| ≤ B · Tn ≤ B ·D.

Hence, the sequence {Sn} is bounded. It follows (again from Theorem
15) that the series

∑
|akbk| converges. Finally, by Theorem 16 from the

Lecture notes 4-3-2020, the series
∑
akbk also converges.


