Advanced Calculus 2, Dr. Block, Lecture Notes, 4-10-2020

We begin discussing material from Section 7.3 of the text. Today we will look at two versions of the ratio test.

Theorem 25. (d'Alembert's Ratio Test) Let $\sum a_k$ be a series with all terms positive.

a. Suppose that there is a positive integer J and a real number $\alpha < 1$ such that $\frac{a_{n+1}}{a_n} \leq \alpha$ for all $n \geq J$. Then the series $\sum a_k$ converges.

b. Suppose that there is a positive integer J such that $\frac{a_{n+1}}{a_n} \ge 1$ for all $n \ge J$. Then the series $\sum a_k$ diverges.

Proof of Part a. Suppose that the hypothesis is satisfied. We observe the following:

$$a_{J+1} \le \alpha \cdot a_J$$
$$a_{J+2} \le \alpha \cdot a_{J+1} \le (\alpha)^2 \cdot a_J$$

and for each positive integer n,

$$a_{J+n} \le (\alpha)^n \cdot a_J.$$

Now, we know that the series $\sum (\alpha)^k$ converges (geometric series). So the series $\sum ((\alpha)^k \cdot a_J)$ also converges. It now follows from the Comparison Test that the series $\sum a_k$ converges.

Proof of Part b. Suppose that the hypothesis is satisfied. Then $a_{n+1} \ge a_n$ for all $n \ge J$. It follows that $a_n \ge a_J$ for all $n \ge J$. Since Since a_J is a positive constant, it follows that the sequence $\{a_n\}$ does not converge to zero. Thus, the series $\sum a_k$ diverges, by the Test for Divergence.

We also have the following Corollary.

Corollary 26. (Cauchy's Ratio Test) Let $\sum a_k$ be a series with all terms positive. Suppose that

$$\lim_{n \to \infty} \frac{a_{n+1}}{a_n} = L$$

where L is a real number or ∞ .

a. If L < 1, then the series $\sum a_k$ converges.

b. If L > 1, then the series $\sum a_k$ diverges.

Proof of Part a. Suppose that the hypothesis is satisfied. Set $\alpha = \frac{1+L}{2}$. Then $L < \alpha < 1$. It follows from the definition of a limit of a sequence that there is a positive integer J such that $\frac{a_{n+1}}{a_n} < \alpha$ for all $n \ge J$. So the series $\sum a_k$ converges, by Theorem 25 (Part a).

Proof of Part b. Suppose that the hypothesis is satisfied. It follows from the definition of a limit of a sequence that there is a positive integer J such that $\frac{a_{n+1}}{a_n} > 1$ for all $n \ge J$. So the series $\sum a_k$ diverges, by Theorem 25 (Part b).

Here is an example.

Problem 27. Determine whether the given series converges or diverges.

$$\sum \frac{(k!)^2}{(2k)!}$$

Solution We try to use one of the ratio tests. We have

$$\frac{a_{k+1}}{a_k} = \frac{((k+1)!)^2}{(2(k+1))!} \cdot \frac{(2k)!}{(k!)^2} = \frac{(k+1)^2}{(2k+2)(2k+1)}$$

It follows that

$$\lim_{k \to \infty} \frac{a_{k+1}}{a_k} = \frac{1}{4}.$$

So, Cauchy's Ratio Test (Part a) can be applied, and we conclude that the given series converges.

Next, we will go over Problem 16 from Section 7.1 of the text.

Problem 28. If a series $\sum |a_k|$ converges, and a sequence $\{b_n\}$ is bounded, prove that $\sum a_k b_k$ converges.

Proof. Suppose that the series $\sum |a_k|$ converges, and the sequence $\{b_n\}$ is bounded. We can assume without loss of generality that the series $\sum |a_k|$ and the sequence $\{b_n\}$ start at the integer 1. We will prove that the series $\sum |a_k b_k|$ converges. Let T_n denote the *n*-th term in the sequence of partial sums for the series $\sum |a_k|$. Then

$$T_n = |a_1| + \dots + |a_n|.$$

Since the series $\sum |a_k|$ converges, the sequence $\{T_n\}$ is bounded. (See Theorem 15, from the Lecture notes 4-3-2020.) So there is some real number D such that $T_n \leq D$ for each positive integer n. Also, as the sequence $\{b_n\}$ is bounded, there is some real number B such that

$$|b_n| \le B$$

for each positive integer n. Now, let S_n denote the n-th term in the sequence of partial sums for the series $\sum |a_k b_k|$. Then for each postive integer n we have

$$S_n = |a_1||b_1| + \dots + |a_n||b_n| \le B \cdot T_n \le B \cdot D.$$

Hence, the sequence $\{S_n\}$ is bounded. It follows (again from Theorem 15) that the series $\sum |a_k b_k|$ converges. Finally, by Theorem 16 from the Lecture notes 4-3-2020, the series $\sum a_k b_k$ also converges.