Advanced Calculus 2, Dr. Block, Lecture Notes, 4-13-2020

We continue discussing material from Section 7.3 of the text. Please work on the following exercises: Page 315-317, Exercises 2, 4, 7, 10, 13, 14 (all parts of each).

Today we will look at two versions of the root test.
Theorem 29. (Root Test) Let $\sum a_{k}$ be a series with all terms positive.
a. Suppose that there is a positive integer J and a real number $\alpha<1$ such that $\sqrt[n]{a_{n}} \leq \alpha$ for all $n \geq J$. Then the series $\sum a_{k}$ converges.
b. Suppose that there is a positive integer J such that $\sqrt[n]{a_{n}} \geq 1$ for all $n \geq J$. Then the series $\sum a_{k}$ diverges.

Proof of Part a. Suppose that the hypothesis is satisfied. Then for each integer $n \geq J$, we have $a_{n} \leq \alpha^{n}$. Now, we know that the series $\sum \alpha^{k}$ converges (geometric series). It follows from the Comparison Test that the series $\sum a_{k}$ converges.

Proof of Part b. Suppose that the hypothesis is satisfied. Then $a_{n} \geq 1$ for all $n \geq J$. It follows that the sequence $\left\{a_{n}\right\}$ does not converge to zero. Thus, the series $\sum a_{k}$ diverges, by the Test for Divergence.

We also have the following Corollary.
Corollary 30. (Cauchy's Root Test) Let $\sum a_{k}$ be a series with all terms positive. Suppose that

$$
\lim _{n \rightarrow \infty} \sqrt[n]{a_{n}}=L
$$

where L is a real number or ∞.
a. If $L<1$, then the series $\sum a_{k}$ converges.
b. If $L>1$, then the series $\sum a_{k}$ diverges.

Proof of Part a. Suppose that the hypothesis is satisfied. Set $\alpha=$ $\frac{1+L}{2}$. Then $L<\alpha<1$. It follows from the definition of a limit of a sequence
that there is a positive integer J such that $\sqrt[n]{a_{n}}<\alpha$ for all $n \geq J$. So the series $\sum a_{k}$ converges, by Theorem 29 (Part a).

Proof of Part b. Suppose that the hypothesis is satisfied. It follows from the definition of a limit of a sequence that there is a positive integer J such that $\sqrt[n]{a_{n}}>1$ for all $n \geq J$. So the series $\sum a_{k}$ diverges, by Theorem 29 (Part b).

Here is an example. This is Exercise 13 on Page 317 of the text.
Problem 31. Determine whether the given series converges or diverges.

$$
\sum a_{k}=\frac{1}{3}+\frac{1}{2^{2}}+\frac{1}{3^{3}}+\frac{1}{2^{4}}+\frac{1}{3^{5}}+\ldots
$$

Solution. Observe that for the given series we have for each positive integer n,

$$
a_{n}=\left\{\begin{array}{l}
\frac{1}{3^{n}} \text { if } n \text { is odd } \\
\frac{1}{2^{n}} \text { if } n \text { is even }
\end{array}\right.
$$

It follows that for each positve integer n we have

$$
\sqrt[n]{a_{n}}=\left\{\begin{array}{l}
\frac{1}{3} \text { if } n \text { is odd } \\
\frac{1}{2} \text { if } n \text { is even }
\end{array}\right.
$$

Thus, for each positve integer n we have $\sqrt[n]{a_{n}} \leq \frac{1}{2}$. It follows from Theorem 29 Part a, with $\alpha=\frac{1}{2}$, that the given series converges.

Note that we could not apply Corollary 30 (Cauchy's Root Test) because the limit $\lim _{n \rightarrow \infty} \sqrt[n]{a_{n}}$ does not exist.

Here is an alternate solution for the same problem.

Alternate Solution. Set

$$
b_{k}=\frac{1}{2^{k}}=\left(\frac{1}{2}\right)^{k}
$$

We know that the series $\sum b_{k}$ converges (geometric series). Also,

$$
a_{k} \leq b_{k}
$$

for each positive integer k. It follows that the series $\sum a_{k}$ also converges by the Comparison Test.

Now, let's see that the ratio test is inconclusive for the series in this same problem.

First, suppose that k is odd. Then

$$
\frac{a_{k+1}}{a_{k}}=\frac{\frac{1}{2^{k+1}}}{\frac{1}{3^{k}}}=\frac{3^{k}}{2^{k+1}}=\frac{1}{2} \cdot\left(\frac{3}{2}\right)^{k} .
$$

It follows that there is a subsequence of the sequence $\left\{\frac{a_{k+1}}{a_{k}}\right\}$ which diverges to infinity.

Second, suppose that k is even. Then

$$
\frac{a_{k+1}}{a_{k}}=\frac{\frac{1}{3^{k+1}}}{\frac{1}{2^{k}}}=\frac{2^{k}}{3^{k+1}}=\frac{1}{3} \cdot\left(\frac{2}{3}\right)^{k} .
$$

It follows that there is a subsequence of the sequence $\left\{\frac{a_{k+1}}{a_{k}}\right\}$ which converges to zero.

So neither of the two ratio tests from the last lecture can be applied.

Finally, we go over a problem from Section 7.1 of the text (Exercise 8 on Page 301).

Problem 32. Suppose that $\sum a_{k}$ is a series of positive terms that converges. Prove that $\sum \frac{1}{a_{k}}$ is divergent. Is the converse true?

Solution. Suppose that $\sum a_{k}$ is a series of positive terms that converges. By the Test for Divergence we have

$$
\lim _{k \rightarrow \infty} a_{k}=0 .
$$

It follows that

$$
\lim _{k \rightarrow \infty} \frac{1}{a_{k}}=\infty .
$$

So, the series $\sum \frac{1}{a_{k}}$ is divergent, by the Test for Divergence.
Now, let's look at the converse. I would state the converse as follows:
Converse. Suppose that $\sum a_{k}$ is a series of positive terms. Suppose that the series $\sum \frac{1}{a_{k}}$ is divergent. Then the series $\sum a_{k}$ converges.

We prove that this is false by giving a counterexample. Consider the series $\sum a_{k}$ where $a_{k}=1$ for each positive integer k. Then, also $\frac{1}{k}=1$ for each positive integer k. So both series $\sum a_{k}$ and $\sum \frac{1}{a_{k}}$ diverge, by the Test for Divergence.

