Advanced Calculus 2, Dr. Block, Lecture Notes, 4-17-2020

We will go over three problems.
Problem 1. Determine whether the given series converges or diverges.

$$
\sum \sin \left(\ln \left(1+\frac{1}{k^{2}}\right)\right)
$$

Solution: We try to use the Limit Comparison Test (Theorem 25 in the Lecture Notes 4-8-2020). Let $\sum a_{k}$ be the given series, and let $\sum b_{k}$ be the series $\sum \frac{1}{k^{2}}$. We have

$$
\begin{gathered}
\lim _{k \rightarrow \infty} \frac{a_{k}}{b_{k}}=\lim _{t \rightarrow 0^{+}} \frac{\sin (\ln (1+t))}{t} \\
=(\text { L'Hopital }) \lim _{t \rightarrow 0+}\left(\cos (\ln (1+t)) \cdot \frac{1}{1+t}\right)=1
\end{gathered}
$$

So by Theorem 25 Part a (in the Lecture Notes 4-8-2020) either both series converge or both series diverge. Since we know that $\sum b_{k}$ converges (as it is a p-series with $p=2>1$; see Theorem 21, (in the Lecture Notes 4-6-2020), it follows that the given series also converges.

Problem 2. Determine whether the given series converges or diverges.

$$
\sum_{k=2}^{\infty} \frac{\int_{1}^{k} e^{-x^{2}} d x}{k^{3}-5}
$$

Solution: Let c denote the value of the improper integral $\int_{1}^{\infty} e^{-x^{2}} d x$. Then c is a real number, since we have seen that the improper integral converges. Moreover, since $e^{-x^{2}}>0$ for all x, it follows that $c>0$ and for each $k \geq 2$, we have

$$
0 \leq \int_{1}^{k} e^{-x^{2}} d x \leq c
$$

Hence, we have for each integer $k \geq 2$,

$$
0 \leq \frac{\int_{1}^{k} e^{-x^{2}} d x}{k^{3}-5} \leq \frac{c}{k^{3}-5}
$$

So, if we can show that the series $\sum_{k=2}^{\infty} \frac{c}{k^{3}-5}$ converges, it will follow that the given series also converges by the Comparison Test (Theorem 22, Part a, in the lecture Notes 4-8-2020).

We show that the series $\sum_{k=2}^{\infty} \frac{c}{k^{3}-5}$ does indeed converge. We use the Limit Comparison Test and compare this series with the p-series $\sum \frac{1}{k^{3}}$. We have

$$
\lim _{k \rightarrow \infty} \frac{\frac{c}{k^{3}-5}}{\frac{1}{k^{3}}}=\lim _{k \rightarrow \infty} \frac{c k^{3}}{k^{3}-5}=c .
$$

Since the p-series $\sum \frac{1}{k^{3}}$ converges, it follows by Theorem 25 Part a (in the Lecture Notes 4-8-2020) that the series $\sum_{k=2}^{\infty} \frac{c}{k^{3}-5}$ also converges.

We conclude by what we saw above that the series

$$
\sum_{k=2}^{\infty} \frac{\int_{1}^{k} e^{-x^{2}} d x}{k^{3}-5}
$$

converges.
Problem 3. Determine whether the given series converges absolutely, converges conditionally, or diverges.

$$
\sum(-1)^{k} \sin \left(\frac{1}{k}\right)
$$

Solution: First, we test for absolute convergence. We consider the series

$$
\sum\left|(-1)^{k} \sin \left(\frac{1}{k}\right)\right|
$$

Since, $\sin \frac{1}{k}>0$ for all $k \geq 1$ we see that this series is the same as the series $\sum \sin \frac{1}{k}$.

We use the Limit Comparison Test, comparing this series with the series $\sum \frac{1}{k}$. We have

$$
\lim _{k \rightarrow \infty} \frac{\sin \left(\frac{1}{k}\right)}{\frac{1}{k}}=\lim _{t \rightarrow 0^{+}} \frac{\sin t}{t}=1
$$

We know that the harmonic series $\sum \frac{1}{k}$ diverges (Theorem 11 in the Lecture Notes 4-1-2020). (Also, the harmonic series is a p-series with $p=1$, so we could apply Theorem 21 in the Lecture Notes 4-6-2020.) It follows from Theorem 25 Part a (in the Lecture Notes 4-8-2020) that the series $\sum \sin \frac{1}{k}$ also diverges. We conclude that the given series does not converge absolutely.

Since $\sin \left(\frac{1}{k}\right)>0$ for all $k \geq 1$, the given series is an alternating series. We check that the hypotheses of the Alternating Series Test (in the Lecture Notes 4-15-2020) are satisfied. First, we observe that $\lim _{k \rightarrow \infty} \sin \left(\frac{1}{k}\right)=0$.

Next we show that the sequence $\left\{\sin \left(\frac{1}{k}\right)\right\}$ is decreasing. We consider the function $f(x)=\sin \left(\frac{1}{x}\right)$. We see that $f^{\prime}(x)=\frac{-\cos \left(\frac{1}{x}\right)}{x^{2}}<0$ for all $x \geq 1$. It follows that the sequence $\left\{\sin \frac{1}{k}\right\}$ is decreasing. So the given series converges by the Alternating Series Test.

Finally, since the given series converges, but does not converge absolutely, it follows by definition that the given series converges conditionally.

