
Advanced Calculus 2, Dr. Block, Lecture Notes, 4-3-2020

We continue discussing material from Section 7.1 of the text. Please
work on this assignment:

Section 7.1, Page 300 - 302, Exercises 1, 4, 5, 8, 9, 10, 16, 19, 20 (all
parts of each).

First we have a remark.

Remark 14. Suppose that we are given a sequence {an}∞n=1 and
consider the corresponding series

∑∞
n=1 an. Let’s also look at the series∑∞

n=3 an and compare this to the series
∑∞

n=1 an.

Let Vj denote the j-th partial sum for the series
∑∞

n=1 an.

Let Wj denote the j-th partial sum for the series
∑∞

n=3 an. Then we
have for any positive integer j:

Wj = a3 + a4 + a5 + · · ·+ aj+2.

Vj+2 = a1 + a2 + a3 + a4 + a5 + · · ·+ aj+2 = (a1 + a2) + Wj.

It follows that the sequence {Vj} converges if and only if the sequence
{Wj} converges. So, by definition, the series

∑∞
n=1 an coverges if and

only if the series
∑∞

n=3 an converges. Moreover, we see that if both series
converge, then we can write

∞∑
n=1

an = (a1 + a2) +
∞∑
n=3

an..

In the same way we can see that for any integer p ≥ 2, the series∑∞
n=1 an coverges if and only if the series

∑∞
n=p an converges. For this

reason, when dealing with theorems or problems involving determining
whether a series converges or diverges, the place where we start the series
is not important. So, we will often just write

∑
an instead of

∑∞
n=p an.

We next look at two theorems which we will use later.



Theorem 15. Let
∑

an be a series such that an ≥ 0 for each n. Then
the series

∑
an converges if and only if the sequence of partial sums is

bounded.
Proof. The hypothesis implies that the sequence of partial sums in

increasing. So the conclusion follows from two basic theorems about
sequences:

1. A bounded increasing sequence converges.
2. A convergent sequence is bounded.

�

For the next theorem we will use a result from last time. Recall the
following:

Theorem 12. Suppose that
∑∞

n=p an = A and
∑∞

n=p bn = B, where
A and B are real numbers. Then

∞∑
n=p

(an + bn) = A + B

and ∞∑
n=p

(an − bn) = A−B.

Also, if c is a real constant then,

∞∑
n=p

can = cA.

We can now prove the following theorem.

Theorem 16. If the series
∑∞

n=1 |an| converges, then the series
∑∞

n=1 an
converges.

Proof. Suppose that the series
∑∞

n=1 |an| converges. Then by Theorem
15, there is an upper bound B for the sequence of partial sums of this
series.



Consider the sequence {bn} given by bn = |an| − an. We have for each
n ≥ 1,

0 ≤ bn ≤ 2|an|.
So, for any positive integer k we have

0 ≤ b1 + b2 + · · ·+ bk ≤ 2(|a1|+ +|a2|+ · · ·+ |ak|) ≤ 2B.

It follows that the sequence of partial sums for the series
∑∞

n=1 bn is
bounded. Hence, the series

∑∞
n=1 bn converges.

Now, as bn = |an| − an, we have an = |an| − bn. So, by Theorem 12 the
series

∑∞
n=1 an converges.
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