Advanced Calculus 2, Dr. Block, Lecture Notes, 4-8-2020

We continue discussing material from Section 7.2 of the text. Please work on this assignment:

Section 7.2, Page 309-311, Exercises 1, 5, 8, 10, 15, 16 (all parts of each).

Theorem 22. (Comparison Test) Let $\sum a_{k}$ and $\sum b_{k}$ be series. Suppose that there is a positive integer J such that $0 \leq a_{n} \leq b_{n}$ for all $n \geq J$.
a. If $\sum b_{k}$ converges, then $\sum a_{k}$ converges.
b. If $\sum a_{k}$ diverges, then $\sum b_{k}$ diverges.

Proof. We prove part a. We may assume, without loss of generality (by Remark 13 in the Lecture notes for 4-1-2020), that both series begin with the integer J.

Suppose that $\sum_{k=J}^{\infty} b_{k}$ converges.
Let W_{n} denote the n-th partial sum for the series $\sum_{k=J}^{\infty} b_{k}$.
Let S_{n} denote the n-th partial sum for the series $\sum_{k=J}^{\infty} a_{k}$.
Since $0 \leq a_{n} \leq b_{n}$ for all $n \geq J$, it follows that for each positive integer n, we have

$$
0 \leq S_{n} \leq W_{n} .
$$

By Theorem 15 (in the Lecture notes for 4-3-2020), the sequence $\left\{W_{n}\right\}$ is bounded. By the displayed inequality the sequence $\left\{S_{n}\right\}$ is also bounded. It follows from Theorem 15 that the series $\sum a_{k}$ converges. This proves part a.

Finally, observe that the statement in Part b is the contrapositive of the statement in Part a. So, Part b follows from Part a.

Remark 23. We know that the sequence $\left\{\left(1+\frac{1}{k}\right)^{k}\right\}$ converges to e. It can be proved that this sequence is increasing. It follows that for each
positive integer k, we have

$$
\left(1+\frac{1}{k}\right)^{k} \leq e
$$

We will use this fact in our next example.
Problem 24. Determine whether the given series converges or diverges.

$$
\sum \frac{1}{\left(1+\frac{1}{k}\right)^{k \ln k}}
$$

Solution. We start with the displayed inequality in Remark 23 above. Taking each side of the inequality and raising to the power $\ln k$ we have

$$
\left(1+\frac{1}{k}\right)^{k \ln k} \leq e^{\ln k}=k
$$

It follows that

$$
\frac{1}{\left(1+\frac{1}{k}\right)^{k \ln k}} \geq \frac{1}{k} .
$$

We know that the series $\sum \frac{1}{k}$ diverges, as this is a p-series with $p=1$. It follows that the given series diverges by the Comparison Test.

We now come to our second test for today.
Theorem 25 (Limit Comparison Test) Let $\sum a_{n}$ and $\sum b_{n}$ be series with all terms positive.
a. Suppose that there is a positive real number c such that $\lim _{n \rightarrow \infty} \frac{a_{n}}{b_{n}}=$ c. Then either both series converge or both series diverge.
b. Suppose that $\lim _{n \rightarrow \infty} \frac{a_{n}}{b_{n}}=0$. If $\sum b_{n}$ converges, then $\sum a_{n}$ converges.
c. Suppose that $\lim _{n \rightarrow \infty} \frac{a_{n}}{b_{n}}=\infty$. If $\sum b_{n}$ diverges, then $\sum a_{n}$ diverges.

Proof of Part a. Suppose that there is a positive real number c such that $\lim _{n \rightarrow \infty} \frac{a_{n}}{b_{n}}=c$. Then there is a positive integer J such that for each integer $n \geq J$ we have:

$$
0 \leq \frac{c}{2} \leq \frac{a_{n}}{b_{n}} \leq 2 c
$$

It follows that for each integer $n \geq J$ we have $\frac{c}{2} \cdot b_{n} \leq a_{n} \leq 2 c \cdot b_{n}$. We consider 2 cases.

Case 1. The series $\sum b_{n}$ converges. Then the series $\sum 2 c \cdot b_{n}$ also converges. Hence the series $\sum a_{n}$ converges by the Comparison Test.

Case 2. The series $\sum b_{n}$ diverges. Then the series $\sum \frac{c}{2} \cdot b_{n}$ also diverges. Hence the series $\sum a_{n}$ diverges by the Comparison Test.

We conclude from the two cases that either both series converge or both series diverge.

Proof of Part b. Suppose that $\lim _{n \rightarrow \infty} \frac{a_{n}}{b_{n}}=0$ and also $\sum b_{n}$ converges. Then there is a positive integer J such that for each integer $n \geq J$ we have $\frac{a_{n}}{b_{n}} \leq 1$. It follows that for each integer $n \geq J$ we have $a_{n} \leq b_{n}$. So the series $\sum a_{n}$ converges by the Comparison Test.

Proof of Part c. Suppose that $\lim _{n \rightarrow \infty} \frac{a_{n}}{b_{n}}=\infty$ and also $\sum b_{n}$ diverges. Then there is a positive integer J such that for each integer $n \geq J$ we have $\frac{a_{n}}{b_{n}} \geq 1$. It follows that for each integer $n \geq J$ we have $a_{n} \geq b_{n}$. So the series $\sum a_{n}$ diverges by the Comparison Test.

Here is an example.
Problem 24. Determine whether the given series converges or diverges.

$$
\sum \sin \left(\frac{1}{k}\right)
$$

Solution. We use the Limit Comparison Test, comparing the given series with the series $\sum \frac{1}{k}$. We have

$$
\lim _{n \rightarrow \infty} \frac{\sin \left(\frac{1}{n}\right)}{\frac{1}{n}}=\lim _{t \rightarrow 0} \frac{\sin t}{t}=1
$$

By the Limit Comparison Test, Part a, either both series converge or both series diverge. Since we know that the series $\sum \frac{1}{k}$ diverges, we conclude that the series $\sum \sin \left(\frac{1}{k}\right)$ also diverges.

