Advnced Calculus 2, Dr. Block, Lecture Notes, 3-18-2020

We begin Section 6.5. First, we look at Definition 27 from the Chapter 6 notes.

Definition 27. Let $a \in \mathbb{R}$, and let $f:[a, \infty) \rightarrow \mathbb{R}$. Suppose that f is Riemann integrable on $[a, b]$ for each $b>a$. If $\lim _{b \rightarrow \infty} \int_{a}^{b} f$ exists and is some real number L, then we say that the improper integral $\int_{a}^{\infty} f$ converges to L and write $\int_{a}^{\infty} f=L$.

Here is an Example.
Problem 1. For which $p>0$ does the integral $\int_{1}^{\infty} \frac{1}{x^{p}} d x$ converge?
Solution. We consider three cases.
Case 1. $p>1$. Then

$$
\begin{gathered}
\int_{1}^{\infty} \frac{1}{x^{p}} d x=\lim _{b \rightarrow \infty} \int_{1}^{b} \frac{1}{x^{p}} d x=\lim _{b \rightarrow \infty}\left(\left.\frac{x^{1-p}}{1-p}\right|_{1} ^{b}\right) \\
=\lim _{b \rightarrow \infty}\left(\frac{b^{1-p}}{1-p}-\frac{1}{1-p}\right)=\frac{1}{p-1} .
\end{gathered}
$$

So in this case the improper integral converges.
Case 2. $p<1$. Then

$$
\begin{gathered}
\int_{1}^{\infty} \frac{1}{x^{p}} d x=\lim _{b \rightarrow \infty} \int_{1}^{b} \frac{1}{x^{p}} d x=\lim _{b \rightarrow \infty}\left(\left.\frac{x^{1-p}}{1-p}\right|_{1} ^{b}\right) \\
=\lim _{b \rightarrow \infty}\left(\frac{b^{1-p}}{1-p}-\frac{1}{1-p}\right)=\infty
\end{gathered}
$$

So in this case the improper integral diverges.
Case 3. $p=1$. Then

$$
\begin{aligned}
\int_{1}^{\infty} \frac{1}{x^{p}} d x & =\lim _{b \rightarrow \infty} \int_{1}^{b} \frac{1}{x} d x=\left.\lim _{b \rightarrow \infty} \ln x\right|_{1} ^{b} \\
& =\lim _{b \rightarrow \infty} \ln b=\infty
\end{aligned}
$$

So in this case the improper integral diverges.
We conclude that the integral $\int_{1}^{\infty} \frac{1}{x^{p}} d x$ converges if $p>1$ and diverges if $p \leq 1$.

The conclusion of the previous problem will be useful to remember when using the Comparison Test (Theorem 30 in the Chapter 6 notes), which we will discuss later. We now look at another type of improper integral.

Definition 28. Let $a, b \in \mathbb{R}$ with $a<b$, and let $f:(a, b] \rightarrow \mathbb{R}$ be a function which is not bounded. Suppose that f is Riemann integrable on $[c, b]$ for each c in the open interval (a, b). If $\lim _{c \rightarrow a^{+}} \int_{c}^{b} f$ exists and is some real number L, then we say that the improper integral $\int_{a}^{b} f$ converges to L and write $\int_{a}^{b} f=L$.

Note that in this definition we take the limit as c approaches a from the right of a. So c approaches a from inside the interval $(a, b]$.

Here is an Example.
Problem 2. For which $p>0$ does the integral $\int_{0}^{1} \frac{1}{x^{p}} d x$ converge?
Solution. We consider three cases.
Case 1. $p>1$. Then

$$
\begin{gathered}
\int_{0}^{1} \frac{1}{x^{p}} d x=\lim _{c \rightarrow 0^{+}} \int_{c}^{1} \frac{1}{x^{p}} d x=\lim _{c \rightarrow 0^{+}}\left(\left.\frac{x^{1-p}}{1-p}\right|_{c} ^{1}\right) \\
=\lim _{c \rightarrow 0^{+}}\left(\frac{1}{1-p}-\frac{c^{1-p}}{1-p}\right)=\infty
\end{gathered}
$$

So in this case the improper integral diverges.
Case 2. $p<1$. Then

$$
\int_{0}^{1} \frac{1}{x^{p}} d x=\lim _{c \rightarrow 0^{+}} \int_{c}^{1} \frac{1}{x^{p}} d x=\lim _{c \rightarrow 0^{+}}\left(\left.\frac{x^{1-p}}{1-p}\right|_{c} ^{1}\right)
$$

$$
=\lim _{c \rightarrow 0^{+}}\left(\frac{1}{1-p}-\frac{c^{1-p}}{1-p}\right)=\frac{1}{1-p} .
$$

So in this case the improper integral converges.
Case 3. $p=1$. Then

$$
\begin{gathered}
\int_{0}^{1} \frac{1}{x^{p}} d x=\lim _{c \rightarrow 0^{+}} \int_{c}^{1} \frac{1}{x} d x=\left.\lim _{c \rightarrow 0^{+}} \ln x\right|_{c} ^{1} \\
=\lim _{c \rightarrow 0^{+}}-\ln c=-(-\infty)=\infty .
\end{gathered}
$$

So in this case the improper integral converges.
We conclude that the integral $\int_{0}^{1} \frac{1}{x^{p}} d x$ converges if $p<1$ and diverges if $p \geq 1$.

Again, the conclusion of the previous problem will be useful to remember when using the Comparison Test (Theorem 30 in the Chapter 6 notes), which we will discuss later.

We sometimes consider improper integrals which are improper in two ways. Here is an example.

Problem 3. For which $p>0$ does the integral $\int_{0}^{\infty} \frac{1}{x^{p}} d x$ converge?
Note that the given function is unbounded at 0 . Also, note that the upper limit of integration is ∞. We have not yet defined what it means for this improper integral to converge. The definition amounts to the following:

The improper integral $\int_{0}^{\infty} \frac{1}{x^{p}} d x$ converges if and only if both of the improper integrals $\int_{0}^{1} \frac{1}{x^{p}} d x$ and $\int_{1}^{\infty} \frac{1}{x^{p}} d x$ converge. So we split the given improper integral into two improper integrals each of which is improper in one way only. Instead of splitting the integrals using the real number 1 we could use 2,3 or any positive real number.

So the answer to Problem 3 follows from the answers to Problems 1 and 2. The improper integral $\int_{0}^{\infty} \frac{1}{x^{p}} d x$ diverges for all $p>0$.

