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where each (Z) is a specific positive integer known as a binomial coefficient. (When an exponent is zero,
the corresponding power expression is taken to be 1 and this multiplicative factor is often omitted from the

n
term. Hence one often sees the right side written as ( 0) 2" + ....) This formula is also referred to as the
binomial formula or the binomial identity. Using summation notation, it can be written as
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The final expression follows from the previous one by the symmetry of x and y in the first expression, and
by comparison it follows that the sequence of binomial coefficients in the formula is symmetrical. A simple
variant of the binomial formula is obtained by substituting 1 for y, so that it involves only a single variable.
In this form, the formula reads
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or equivalently
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Examples
The most basic example of the binomial theorem is the |
formula for the square of x + y: | [
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The binomial coefficients 1, 2, 1 appearing in this H 5 I 1 i
expansion correspond to the second row of Pascal's 1 G ibh 20 15 8 1
triangle. (Note that the top "1" of the triangle is | FIR S S T 5 S 5 7 1

considered to be row 0, by convention.) The Pascal's triangle
coefficients of higher powers of X + ¥ correspond to
lower rows of the triangle:

3o0f13 ‘ 8/28/17, 1:21 PM



