Introduction to Complex Variables
Class Notes
Instructor: Louis Block
Definition 1. (and remark) We consider the complex plane consisting of all \(z = (x, y) = x + iy \), where \(x \) and \(y \) are real. We write \(x = Re z \) (the real part of \(z \)) and \(y = Im z \) (the imaginary part of \(z \)). We define addition and multiplication so that the axioms of a field are satisfied. The complex number \(i \) satisfies \(i^2 = -1 \). Note that any real number \(x \) is also a complex number \(x = x + i0 \). Note also that for any complex number \(z \), we have \(0 \cdot z = 0 \).

Definition 2. Let \(z = x + iy \) where \(x, y \) are real. The complex conjugate of \(z \) is given by \(\bar{z} = x - iy \). The absolute value of \(z \) is given by \(|z| = \sqrt{x^2 + y^2} \).

Proposition 3. Let \(z \) and \(w \) be complex numbers.
1. \(z + \bar{w} = \bar{z} + w \).
2. \(z - w = \bar{z} - \bar{w} \).
3. \(z \cdot w = \bar{z} \cdot \bar{w} \).
4. \(\overline{\frac{z}{w}} = \frac{\bar{z}}{\bar{w}} \).
5. \(z \cdot \bar{z} = |z|^2 \).
6. \(|z + w| \leq |z| + |w| \).
7. \(|z \cdot w| = |z| \cdot |w| \).
8. \(|\frac{z}{w}| = \frac{|z|}{|w|} \).

Remark 4. Let \(z \) and \(w \) be complex numbers. Then \(|z - w| \) is the usual distance between \(z \) and \(w \) considered as points in the plane.

Definition 5. (and remark) For any real number \(\theta \) we set \(e^{i\theta} = \exp(i\theta) = \cos \theta + i \sin \theta \). Then any complex number \(z \) can be written as \(z = re^{i\theta} \), where \(r = |z| \). Any such \(\theta \) is called an argument of \(z \). The set arguments of \(z \) is denoted by \(\arg(z) \). The principal argument of \(z \), denoted by \(\text{Arg}(z) \) is the unique \(\theta \) in \(\arg(z) \) with \(-\pi < \theta \leq \pi\).

Proposition 6. Let \(z_1 = r_1 e^{i\theta_1} \) \(z_2 = r_2 e^{i\theta_2} \) be complex numbers with \(r_1 > 0, r_2 > 0 \).
1. \(z_1 = z_2 \) if and only if \(r_1 = r_2 \) and \(\theta_1 = \theta_2 + 2k\pi \) for some integer \(k \).
2. \(z_1 z_2 = r_1 r_2 e^{i(\theta_1 + \theta_2)} \).
3. \(\frac{z_1}{z_2} = \frac{r_1}{r_2} e^{i(\theta_1 - \theta_2)} \).

Proposition 7. If \(z = re^{i\theta} \) and \(k \) is a positive integer, then \(z^k = r^k e^{ik\theta} \).

Proposition 8. Let \(z_1 \) and \(z_2 \) be complex numbers. Then \(\arg(z_1 z_2) = \arg(z_1) + \arg(z_2) \).

Proposition 9. (and Definition) Let \(z_0 \) be a non-zero complex number with \(z_0 = r_0 e^{i\theta_0} \) and \(r_0 = |z_0| \). Let \(n \) be a positive integer. A complex number \(z \) satisfies \(z^n = z_0 \) if and only if for some \(k = 0, 1, \ldots, n - 1 \) we have \(z = \sqrt[n]{r_0} \exp(i(\frac{\theta_0}{n} + \frac{2k\pi}{n})) \).

We call these complex numbers \(z \), the \(n \)-th roots of \(z_0 \). In the special case \(z_0 = 1 \), we call these complex numbers \(z \), the \(n \)-th roots of unity. Note that the symbol \(\sqrt[n]{r_0} \) denotes the unique positive real number which is an \(n \)-th roots of \(r_0 \). We let \(\left(\frac{z}{z_0} \right)^{\frac{1}{n}} \) denote the set of \(n \)-th roots of \(z_0 \).

Definition 10. (and remark) We will sometimes refer to complex numbers as points. Let \(z_0 \) be a point.
The \(\epsilon \) neighborhood of \(z_0 \) is the set of points given by \(|z - z_0| < \epsilon \).
The deleted \(\epsilon \) neighborhood of \(z_0 \) is the set of points given by \(0 < |z - z_0| < \epsilon \).
Definition 11. Let S be a subset of the set of complex numbers. Let z_0 be a point.

We say that z_0 is an interior point of S if and only if there exists an ϵ neighborhood of z_0 which is a subset of S. We say that z_0 is an exterior point of S if and only if there exists an ϵ neighborhood of z_0 which is a subset of the complement of S.

We say that z_0 is a boundary point of S if and only if z_0 is neither an interior point of S nor an exterior point of S.

The set of boundary points of S is called the boundary of S. We say that S is open if and only if no boundary point of S is an element of S. We say that S is closed if and only if each boundary point of S is an element of S. The closure of S is the union of S and the set of boundary points of S.

Proposition 12. Let S be a subset of the set of complex numbers. S is open if and only if each point of S is an interior point of S. S is closed if and only if the closure of S is S.

Definition 13. (and remark) Let S be an open subset of the set of complex numbers. We say that S is connected if and only if any two points of S can be joined by a finite union of line segments joined end to end that lie entirely in S. This is not the usual topological definition, but is equivalent in this setting.

A nonempty, connected, open set is called a domain.

Definition 14. Let S be a subset of the set of complex numbers. We say that S is bounded if and only if there is a positive real number B such that for all $z \in S$, we have $|z| < B$.

Definition 15. Let S be a subset of the set of complex numbers, and let w be a complex number. We say that w is an accumulation point of S if and only if every deleted neighborhood of w contains at least one point of S.

Proposition 16. Let S be a subset of the set of complex numbers. S is closed if and only if every accumulation point of S is an element of S.

Definition 17. (and remark) We will let \mathbb{C} denote the set of complex numbers. We will study functions $f : D \to \mathbb{C}$ where D is a subset of \mathbb{C}. The set D is called the domain of the function. We may think of a function as a rule which assigns to each element of the domain a unique complex number. If the domain is not specified, we assume the domain is the set of all complex numbers for which the rule makes sense. Observe that for any $f : D \to \mathbb{C}$, there exists a unique pair of real valued functions u, v of the two variables x, y such that

$$f(x + iy) = u(x, y) + iv(x, y)$$

for all complex numbers in D.

Definition 18. Let $f : D \to \mathbb{C}$ where D is a subset of \mathbb{C}. Suppose that z_0 is a complex number, and z_0 is an accumulation point of D. Recall that this holds if there is a deleted neighborhood of z_0 which is a subset of D. Let w_0 be a complex number. We say that $\lim_{z \to z_0} f(z) = w_0$ if and only if for every $\epsilon > 0$, there exists a $\delta > 0$ such that for all $z \in D$ which are in the deleted δ neighborhood of z_0, we have that $|f(z) - w_0| < \epsilon$.

Proposition 19. Let $f : D \to \mathbb{C}$ where D is a subset of \mathbb{C}. Suppose that $z_0 = x_0 + iy_0$ is a complex number, and z_0 is an accumulation point of D. Let $w_0 = u_0 + iv_0$ be a complex number. Then $\lim_{z \to z_0} f(z) = w_0$ if and only if both $\lim_{u(x, y) \to (x_0, y_0)} u(x, y) = u_0$ and $\lim_{v(x, y) \to (x_0, y_0)} v(x, y) = v_0$.

Remark 20. We have the same theorems for limits of sums, products, and quotients that hold for real valued functions of a real variable. See Theorem 2 page 48 of the text for a precise statement.

Definition 21. Let $f : D \to \mathbb{C}$ where D is a subset of \mathbb{C}. Suppose that z_0 is a complex number and z_0 is an accumulation point of D. We say that $\lim_{z \to z_0} f(z) = \infty$ if and only if for every $\epsilon > 0$, there exists a $\delta > 0$ such that for all $z \in D$ which are in the deleted δ neighborhood of z_0, we have that $|f(z)| > \delta$.

Definition 22. Let $f : D \to \mathbb{C}$ where D is a subset of \mathbb{C}. Suppose that there is a positive number B such that the set of z with $|z| > B$ is a subset of D. Let w_0 be a complex number. We say that $\lim_{z \to \infty} f(z) = w_0$ if and only if for every $\epsilon > 0$, there exists a $\delta > 0$ such that for all z with $|z| > \frac{1}{\delta}$ we have that $|f(z) - w_0| < \epsilon$.

Definition 23. Let $f : D \to \mathbb{C}$ where D is a subset of \mathbb{C}. Suppose that there is a positive number B such that the set of z with $|z| > B$ is a subset of D. We say that $\lim_{z \to \infty} f(z) = \infty$ if and only if for every $\epsilon > 0$, there exists a $\delta > 0$ such that for all z with $|z| > \frac{1}{\delta}$ we have $|f(z)| > \frac{1}{\epsilon}$.

Proposition 24. If $\lim_{z \to z_0} \frac{1}{f(z)} = 0$, then $\lim_{z \to z_0} f(z) = \infty$.

Proposition 28. Let $f : D \to \mathbb{C}$ where D is a subset of \mathbb{C}. Suppose that z_0 is an interior point of D. Then f is differentiable at z_0 if and only if for every $\epsilon > 0$, there exists a $\delta > 0$ such that for all $z \in D$ with $|z - z_0| < \delta$ we have $|f(z) - f(z_0)| < \epsilon$.

Proposition 29. Let $f : D \to \mathbb{C}$ where D is a subset of \mathbb{C}. Suppose that $z_0 = x_0 + iy_0$ is an interior point of D. Suppose that $f(x + iy) = u(x,y) + iv(x,y)$ for all points of D. If f is differentiable at z_0, then the first partial derivatives of u and v exist at (x_0, y_0) and we have

$$u_x(x_0, y_0) = v_y(x_0, y_0), \quad u_y(x_0, y_0) = -v_x(x_0, y_0).$$

Moreover, in this case we have $f'(z_0) = u_x(x_0, y_0) + iv_x(x_0, y_0)$.

Definition 30. The equations

$$u_x(x_0, y_0) = v_y(x_0, y_0), \quad u_y(x_0, y_0) = -v_x(x_0, y_0)$$

are called the Cauchy-Riemann equations.

Theorem 31. Let $f : D \to \mathbb{C}$ where D is a subset of \mathbb{C}. Suppose that $z_0 = x_0 + iy_0$ is an interior point of D. Suppose that $f(x + iy) = u(x,y) + iv(x,y)$ for all points of D. Suppose that the first partial derivatives of u and v exist in an ϵ neighborhood of (x_0, y_0) and are continuous at (x_0, y_0). Finally, suppose that the Cauchy-Riemann equations

$$u_x(x_0, y_0) = v_y(x_0, y_0), \quad u_y(x_0, y_0) = -v_x(x_0, y_0).$$

are satisfied. Then $f'(z_0)$ exists, and $f'(z_0) = u_x(x_0, y_0) + iv_x(x_0, y_0)$.

Theorem 32. (Polar form of Cauchy-Riemann equations). Let $f : D \to \mathbb{C}$ where D is a subset of \mathbb{C}. Suppose that $z_0 = r_0e^{i\theta_0}$ is an interior point of D. Suppose that for $z \in D$ with $z = re^{i\theta}$, we have $f(z) = u(r, \theta) + iv(r, \theta)$. Suppose that the first partial derivatives of u and v with respect to r and θ exist in an ϵ neighborhood of z_0 and are continuous at z_0. Finally, suppose that the equations

$$ru_r(r_0, \theta_0) = v_\theta(r_0, \theta_0), \quad u_\theta(r_0, \theta_0) = -rv_r(r_0, \theta_0).$$

are satisfied. Then $f'(z_0)$ exists, and $f'(z_0) = e^{-i\theta_0}(u_r(r_0, \theta_0) + iv_r(r_0, \theta_0))$.
Definition 33. Let \(f : D \rightarrow \mathbb{C} \) where \(D \) is a subset of \(\mathbb{C} \). If \(S \) is an open subset of \(D \), we say that \(f \) is analytic on \(S \) if and only if \(f'(z) \) exists at each \(z \in S \). If \(z_0 \) is an interior point of \(D \), we say that \(f \) is analytic at \(z_0 \) if and only if \(f \) is analytic on some neighborhood of \(z_0 \). Finally, if \(D = \mathbb{C} \) and \(f \) is analytic on \(\mathbb{C} \), we say that \(f \) is an entire function.

Theorem 34. Let \(f : D \rightarrow \mathbb{C} \) where \(D \) is a subset of \(\mathbb{C} \). Suppose that \(D \) is a domain (a nonempty, open, connected set). If \(f'(z) = 0 \) for all \(z \in D \), then \(f \) is constant on \(D \).

Definition 35. Let \(f : D \rightarrow \mathbb{C} \) where \(D \) is a subset of \(\mathbb{C} \). Suppose that \(z_0 \in D \). If every neighborhood of \(z_0 \) includes a point \(z \) such that \(f \) is analytic at \(z \), but \(f \) is not analytic at \(z_0 \), we say that \(z_0 \) is a singular point of \(f \).

Definition 36. Let \(h : D \rightarrow \mathbb{R} \) where \(D \) is a subset of the \(xy \) plane. We say that \(h \) is harmonic in \(D \) if and only if \(h \) has continuous partial derivatives of the first and second order and

\[
h_{xx} + h_{yy} = 0
\]

everywhere in \(D \). This equation is known as Laplace’s equation.

Theorem 37. Let \(f : D \rightarrow \mathbb{C} \) where \(D \) is a subset of \(\mathbb{C} \). Suppose that \(D \) is a domain (a nonempty, open, connected set). Suppose that \(f(x + iy) = u(x,y) + iv(x,y) \) for all points of \(D \). If \(f \) is analytic on \(D \), then \(u \) and \(v \) are harmonic in \(D \).

Corollary 38. Let \(f : D \rightarrow \mathbb{C} \) where \(D \) is a subset of \(\mathbb{C} \). Suppose that \(D \) is a domain (a nonempty, open, connected set). Suppose that \(f \) is analytic on \(D \), and also the conjugate \(f : D \rightarrow \mathbb{C} \) is analytic on \(D \). Then \(f \) is constant on \(D \).

Corollary 39. Let \(f : D \rightarrow \mathbb{C} \) where \(D \) is a subset of \(\mathbb{C} \). Suppose that \(D \) is a domain (a nonempty, open, connected set). Suppose that \(f \) is analytic on \(D \), and \(|f(z)| \) is constant on \(D \). Then \(f \) is constant on \(D \).

Definition 40. For any complex number, \(z = x + iy \) we define \(e^z = e^x e^{iy} \). We sometimes write \(\exp(z) \) for \(e^z \).

Proposition 41. The function \(e^z \) is entire, and \(\frac{d}{dz} e^z = e^z \) for all complex numbers \(z \).

Proposition 42. Let \(z \) and \(w \) be complex numbers. We have:

1. \(e^{z+w} = e^z e^w \).
2. \(e^{z+2\pi i} = e^z \).
3. \(e^{z-w} = \frac{e^z}{e^w} \).
4. \((e^z)^n = e^{nz} \) for any positive integer \(n \).

Proposition 43. Let \(z = x + iy \) and \(w = re^{i\theta} \neq 0 \). Then \(e^z = w \) if and only if

\[
z = \ln r + i(\theta + 2n\pi)
\]

for some integer \(n \).

Proposition 44. Let \(A \) denote the set of complex numbers \(x + iy \) with \(-\pi < y \leq \pi \). Let \(B \) denote the set of non-zero complex numbers. Let \(h : A \rightarrow B \) be defined by \(h(z) = e^z \). Let \(g : B \rightarrow A \) be defined by \(g(w) = \ln |w| + i \text{Arg}(w) \). Then \(h \) and \(g \) are inverse functions of each other.

Definition 45. For any non-zero complex number \(w \) we define \(\text{Log}(w) = \ln |w| + i \text{Arg}(w) \) and \(\log(w) = \ln |w| + i \text{arg}(w) \). Also, we say that \(\text{Log}(w) \) is the principal value of \(\log(w) \). Note that \(\log(w) \) is a multiple-valued function.

Proposition 46. For any non-zero complex number \(w \), we have

\[
\log(w) = \{ z \in \mathbb{C} : e^z = w \}.
\]

Proposition 47. \(\frac{d}{dz} \text{Log}(z) = \frac{1}{z} \) for all \(z \neq 0 \) with \(-\pi < \text{Arg}(z) < \pi \).

Definition 48. For any non-zero complex number \(z \) and any complex number \(c \) we define \(z^c = \exp(c \log z) \). Also, the principal value of \(z^c \) is defined to be \(\exp(c \text{Log} z) \).
Proposition 49. For any non-zero complex number \(z \) and any positive integer \(n \), the set \(z^{\frac{1}{n}} \) is coincides with the set of \(n \)-th roots of \(z \).

Proposition 50. Fix a complex number \(c \), and fix a branch of \(\log(z) \). Let \(f(z) = z^c \) denote the (single-valued) function attained by using this branch in the definition. Then \(f \) is analytic on the domain given by \(z \neq 0 \) and \(\alpha < \arg(z) < \alpha + 2\pi \). Moreover \(f'(z) = cz^{c-1} \).

Proposition 51. Fix a complex number \(c \neq 0 \), and fix one value of \(\log(c) \). Let \(f(z) = c^z \) denote the (single-valued) function attained. Then \(f \) is entire, and \(f'(z) = c^z \log(c) \).

Definition 52. The sine and cosine functions are defined by

\[
\sin z = \frac{e^{iz} - e^{-iz}}{2i}, \quad \cos z = \frac{e^{iz} + e^{-iz}}{2}.
\]

Proposition 53. The sine and cosine functions are entire, and

\[
\frac{d}{dz} \sin z = \cos z, \quad \frac{d}{dz} \cos z = -\sin z.
\]

Remark 54. The 4 other trigonometric functions of a complex variable can be defined in terms of the sine and cosine functions. Moreover, the standard trigonometric identities for a real variable continue to hold for a complex variable.

Proposition 55. For any complex number \(z = x + iy \),

\[
\sin z = \sin x \cosh(y) + i \cos x \sinh(y) \quad \cos z = \cos x \cosh(y) - i \sin x \sinh(y).
\]

Definition 56. The hyperbolic sine and cosine functions are defined by

\[
\sinh(z) = \frac{e^z - e^{-z}}{2}, \quad \cosh(z) = \frac{e^z + e^{-z}}{2}.
\]

Proposition 57. The hyperbolic sine and cosine functions are entire, and

\[
\frac{d}{dz} \sinh(z) = \cosh(z), \quad \frac{d}{dz} \cosh(z) = \sinh(z).
\]

Proposition 58. Let \(z \) be a complex number.

\[
\sinh(z) = -i \sin(iz), \quad \cosh(z) = \cos(iz).
\]

Proposition 59. For any complex number \(z = x + iy \),

\[
\sinh(z) = \sinh(x) \cos(y) + i \cosh(x) \sin(y) \quad \cosh(z) = \cosh(x) \cos(y) + i \sinh(x) \sin(y).
\]