Definition 1. Recall the following definitions: algebra, σ-algebra, σ-algebra generated by a collection of subsets, finitely additive, countably additive, measure, measure space.

Definition 2. Let (X, \mathcal{A}, μ) be a measure space. If $\mu(X) = 1$, we say that (X, \mathcal{A}, μ) is a probability space.

Definition 3. Let $(X_1, \mathcal{A}_1, \mu_1)$ and $(X_2, \mathcal{A}_2, \mu_2)$ be measure spaces. Let $T : X_1 \to X_2$.

We say that T is measurable if and only if $B \in \mathcal{A}_2$ implies that $T^{-1}(B) \in \mathcal{A}_1$.

We say that T is measure preserving if and only if T is measurable and $\mu_1(T^{-1}(B)) = \mu_2(B)$ for all $B \in \mathcal{A}_2$.

We say that T is an invertible measure preserving transformation if and only if T is a bijection, and both T and T^{-1} are measure preserving.

Definition 4. Let X be a metric space. Let $\mathcal{B}(X)$ denote the smallest σ-algebra containing each open subset of X. We call $\mathcal{B}(X)$ the collection of Borel sets. If $(X, \mathcal{B}(X), \mu)$ is a probability space, we call μ a Borel probability measure. We will let $M(X)$ denote the set of Borel probability measures.

Proposition 5. Let X,Y be metric spaces, and let $f : X \to Y$ be continuous. If $B \in \mathcal{B}(Y)$, then $f^{-1}(B) \in \mathcal{B}(X)$.

Definition 6. Let X be a metric space, and let $f : X \to X$ be continuous. Let $\mu \in M(X)$. If f is measure preserving with respect to the probability space $(X, \mathcal{B}(X), \mu)$, then we say that μ is f-invariant. We will let $M(X,f)$ denote the set of f-invariant Borel probability measures.

Definition 7. Let X be a set, and let \mathcal{A} be a algebra of subsets of X. Let $\tau : \mathcal{S} \to [0,\infty]$.

1. We say that τ is finitely additive if and only if $\tau(\emptyset) = 0$, and $\tau(\bigcup_{i=1}^{n} E_i) = \sum_{i=1}^{n} \tau(E_i)$ whenever $\{E_i\}$ is a finite pairwise disjoint collection of elements of \mathcal{A}.

2. We say that τ is countably additive if and only if $\tau(\emptyset) = 0$, and $\tau(\bigcup_{i=1}^{\infty} E_i) = \sum_{i=1}^{\infty} \tau(E_i)$ whenever $\{E_i\}$ is a countable pairwise disjoint collection of elements of \mathcal{A} with $\bigcup_{i=1}^{\infty} E_i \in \mathcal{A}$.

Proposition 8. Let \mathcal{A} be an algebra of subsets of X, and let $\tau : \mathcal{A} \to [0,\infty]$ be a finitely additive function with $\tau(X) = 1$. Suppose that for every decreasing sequence of sets $\{E_i\}$ with each $E_i \in \mathcal{A}$ and $\bigcap_{n=1}^{\infty} E_n = \emptyset$ we have $\tau(E_n) \to 0$. Then τ is countably additive.

Theorem 9. Let \mathcal{A} be an algebra of subsets of X, and let $\tau : \mathcal{A} \to [0,\infty]$ be a countably additive function with $\tau(X) = 1$. Let \mathcal{B} be the σ-algebra generated by \mathcal{A}. Then there is a unique function $\mu : \mathcal{B} \to [0,\infty]$ which extends τ such that (X, \mathcal{B}, μ) is a probability space.

Definition 10. Let X be a set. A collection \mathcal{S} of subsets of X is called a semi-algebra if and only if

1. $\emptyset \in \mathcal{S}$.
2. If $A, B \in \mathcal{S}$, then $A \cap B \in \mathcal{S}$.
3. If $A \in \mathcal{S}$, then $A^C = \bigcup_{i=1}^{n} E_i$, where $\{E_i\}$ is a finite, pairwise disjoint, collection of elements of \mathcal{S}.

Definition 11. Let X be a set, and let \mathcal{S} be a semi-algebra of subsets of X. Let $\tau : \mathcal{S} \to [0,\infty]$.

1. We say that τ is finitely additive if and only if $\tau(\emptyset) = 0$, and $\tau(\bigcup_{i=1}^{n} E_i) = \sum_{i=1}^{n} \tau(E_i)$ whenever $\{E_i\}$ is a finite pairwise disjoint collection of elements of \mathcal{S} with $\bigcup_{i=1}^{n} E_i \in \mathcal{S}$.

2. We say that τ is countably additive if and only if $\tau(\emptyset) = 0$, and $\tau(\bigcup_{i=1}^{\infty} E_i) = \sum_{i=1}^{\infty} \tau(E_i)$ whenever $\{E_i\}$ is a countable pairwise disjoint collection of elements of \mathcal{S} with $\bigcup_{i=1}^{\infty} E_i \in \mathcal{S}$.

Proposition 12. Let \mathcal{S} be a semi-algebra of subsets of X. The algebra generated by \mathcal{S} consists precisely of those subsets of X which can be expressed as a finite union of pairwise disjoint subsets of \mathcal{S}.

Proposition 13. Let X be a set, and let \mathcal{S} be a semi-algebra of subsets of X. Suppose that $\tau : \mathcal{S} \to [0,\infty]$ is finitely additive. Let \mathcal{A} be the algebra generated by \mathcal{S}. Then there is a unique finitely additive function $\tau_1 : \mathcal{A} \to [0,\infty]$ which is an extension of τ. If τ is countably additive, then so is τ_1.
Example 14. Let $X = [0, 1]$, and let \mathcal{S} denote the collection of all connected subsets of X. Then \mathcal{S} is a semi-algebra of subsets of X. There is a unique $\mu : \mathcal{B}(X) \to [0, \infty]$ such that

1. (X, \mathcal{B}, μ) is a probability space.

2. for any interval $J \subset X$, $\mu(J)$ is the length of J.

We will call μ Lebesgue measure on $\mathcal{B}(X)$.

Example 15. Let $X = S^1 = \{(x, y) \in \mathbb{R}^2 : x^2 + y^2 = 1\}$, and let \mathcal{S} denote the collection of all connected subsets D of X such that the length of D is less than π. Then \mathcal{S} is a semi-algebra of subsets of X. There is a unique $\mu : \mathcal{B}(X) \to [0, \infty]$ such that

1. (X, \mathcal{B}, μ) is a probability space.

2. for any arc $J \subset X$, $\mu(J)$ is $\frac{1}{2\pi}$ times the length of J.

We will call μ Lebesgue measure on $\mathcal{B}(X)$.

Definition 16. Let X be a set. A collection \mathcal{M} of subsets of X is said to be a monotone class if and only if

1. If $E_1 \subset E_2 \subset E_3 \ldots$ where each $E_i \in \mathcal{M}$, then $\bigcup E_i \in \mathcal{M}$.

2. If $E_1 \supset E_2 \supset E_3 \ldots$ where each $E_i \in \mathcal{M}$, then $\bigcap E_i \in \mathcal{M}$.

Proposition 17. Let X be a set, and let \mathcal{D} be a collection of subsets of X. There is a smallest monotone class containing \mathcal{D}. We call this the monotone class generated by \mathcal{D}.

Proposition 18. Let X be a set, and let \mathcal{A} be an algebra of subsets of X. The σ-algebra generated by \mathcal{A} is the monotone class generated by \mathcal{A}.

Proposition 19. Suppose that $(X_1, \mathcal{B}_1, m_1)$ and $(X_2, \mathcal{B}_2, m_2)$ are probability spaces and $T : X_1 \to X_2$. Let \mathcal{S}_2 be a semi-algebra which generates \mathcal{B}_2. Suppose that for all $A \in \mathcal{S}_2$ we have $T^{-1}(A) \in \mathcal{B}_1$ and $m_1(T^{-1}(A)) = m_2(A)$. Then T is measure preserving.

Example 20. Let $X = [0, 1]$, and let (X, \mathcal{B}, μ) be the probability space in Example 14. Let $T : X \to X$ be the full tent map given by $T(x) = 2x$ if $x \leq \frac{1}{2}$ and $T(x) = 2 - 2x$ if $x \geq \frac{1}{2}$. Then T is measure preserving.

Example 21. Let $X = S^1$, and let (X, \mathcal{B}, μ) be the probability space in Example 15. Let $T : X \to X$ be a rotation. Then T is measure preserving.

Example 22. Let $X = S^1$, and let (X, \mathcal{B}, μ) be the probability space in Example 15. Let n be a positive integer, and let $T : X \to X$ be given by $T(z) = z^n$. Then T is measure preserving.

Example 23. Let $(X_1, \mathcal{A}_1, \mu_1)$ and $(X_2, \mathcal{A}_2, \mu_2)$ be probability spaces. Let \mathcal{S} denote the collection of all sets of the form $D_1 \times D_2$ where $D_1 \in \mathcal{A}_1$ and $D_2 \in \mathcal{A}_2$. Then \mathcal{S} is a semi-algebra of subsets of $X_1 \times X_2$. Let \mathcal{B} be the σ-algebra generated by \mathcal{S}. Then there is a unique function $\mu : \mathcal{B} \to [0, \infty]$ such that

1. $(X_1 \times X_2, \mathcal{B}, \mu)$ is a probability space (which we will call the product space).

2. If $D_1 \times D_2 \in \mathcal{S}$, then $\mu(D_1 \times D_2) = \mu_1(D_1) \cdot \mu_2(D_2)$.

Example 24. Let $(X_1, \mathcal{A}_1, \mu_1)$ and $(X_2, \mathcal{A}_2, \mu_2)$ the probability space in Examples 15. Let $(X_1 \times X_2, \mathcal{B}, \mu)$ be the product space. Then with respect to this space, it can be shown that the hyperbolic toral automorphism (given in Example 132 last semester) is measure preserving.

Definition 25. Let (X, \mathcal{B}, μ) be a probability space, and let $T : X \to X$ be measure preserving. Let $B \in \mathcal{B}$. A point $x \in B$ is said to be recurrent with respect to B if and only if there is a positive integer k with $T^k(x) \in B$.

Theorem 26. (sometimes called Poincare Recurrence Theorem) Let (X, \mathcal{B}, μ) be a probability space, and let $T : X \to X$ be measure preserving. For each $B \in \mathcal{B}$, almost every point of B is recurrent with respect to B.

Theorem 27. (also sometimes called Poincare Recurrence Theorem) Let (X, B, μ) be a probability space, and let $T : X \to X$ be measure preserving. Let $B \in B$. Let A denote the set of $x \in B$ such that there exist positive integers $n_1 < n_2 < \ldots$ with $T^{n_i}(x) \in B$ for each $i = 1, 2, \ldots$. Then $\mu(A) = \mu(B)$.

Corollary 28. Let $f : X \to X$ be a continuous map of a compact metric space to itself. Suppose that there exists an f-invariant Borel probability measure μ. Let $R(f)$ denote the set of recurrent points of f (recall Definition 6 from last semester notes). Then $\mu(R(f)) = 1$.

Corollary 29. Let $f : X \to X$ be a continuous map of a compact metric space to itself. Suppose that there exists an f-invariant Borel probability measure μ with the property that for any nonempty open subset V of X, $\mu(V) > 0$. Then the set of recurrent points of f is dense in X.

Remark 30. The previous Corollary applies in Examples 20, 21, 22, and 24.

Definition 31. Let (X, B, μ) be a probability space, and let $T : X \to X$ be measure preserving. Let $B \in B$. We say that T is ergodic if and only if whenever $T^{-1}(B) = B$ for some $B \in B$, we have either $\mu(B) = 0$ or $\mu(B) = 1$.

Definition 32. Let X be a set, and let A and B be subsets of X. We use the following notation.

$$A \triangle B = (A - B) \cup (B - A)$$

where $A - B$ denotes the set of $x \in A$ such that $x \notin B$.

Theorem 33. Let (X, B, μ) be a probability space, and let $T : X \to X$ be measure preserving. The following are equivalent:

1. T is ergodic
2. If $B \in B$ and $\mu(T^{-1}(B) \triangle B) = 0$, then $\mu(B) = 0$ or $\mu(B) = 1$.
3. If $A \in B$ with $\mu(A) > 0$, then $\mu(\bigcup_{n=1}^{\infty} T^{-n}(A)) = 1$.
4. If $A, B \in B$ with $\mu(A) > 0$, $\mu(B) > 0$, then there exists a positive integer n with $\mu(T^{-n}(A) \cap B) > 0$.

Definition 34. Let X be a metric space, and let μ be a Borel probability measure on X. Let $\{V_a : a \in A\}$ denote the collection of all open subsets of X which satisfy $\mu(V_a) = 0$. The support of μ is defined by

$$\text{supp}(\mu) = X - (\bigcup_{a \in A} V_a).$$

Proposition 35. Let X be a compact metric space, and let μ be a Borel probability measure on X. Then

1. $\text{supp}(\mu)$ is a closed set and $\mu(\text{supp}(\mu)) = 1$.
2. $\text{supp}(\mu)$ is the intersection of all closed subsets K of X with $\mu(K) = 1$.

Definition 36. Let X be a metric space, and let $f : X \to X$ be continuous. Let $\mu \in M(X)$. If f is measure preserving with respect to the probability space $(X, B(X), \mu)$, then we say that μ is f- invariant. We will let $M(X, f)$ denote the set of f-invariant Borel probability measures. If $\mu \in M(X, f)$ and f is ergodic with respect to the probability space $(X, B(X), \mu)$, then we say that μ is ergodic. We will let $E(X, f)$ denote the set of f-invariant, ergodic Borel probability measures.

Proposition 37. Let X be a compact metric space, and let $f : X \to X$ be continuous. Suppose that there exists $\mu \in E(X, f)$ with $\text{supp}(\mu) = X$. Then

1. f is strongly topologically transitive
2. almost all points of X have a dense forward orbit.
Definition 38. Let \((X, \mathcal{B}, \mu)\) be a probability space. Recall that the terms measurable and integrable may be defined for real valued or complex valued functions. Let \(p \geq 1\). We let \(L^p_\mathbb{R}(\mu)\) denote the set of real valued measurable functions \(f\) such that \(|f|^p\) is integrable. We let \(L^p_\mathbb{C}(\mu)\) denote the set of complex valued measurable functions \(f\) such that \(|f|^p\) is integrable.

Theorem 39. Let \((X, \mathcal{B}, \mu)\) be a probability space, and let \(T : X \to X\) be measure preserving. Let \(p \geq 1\). The following are equivalent:

1. \(T\) is ergodic
2. If \(f : X \to \mathbb{R}\) is measurable and \((f \circ T)(x) = f(x)\) for all \(x \in X\), then \(f\) is constant almost everywhere.
3. If \(f : X \to \mathbb{R}\) is measurable and \((f \circ T)(x) = f(x)\) for almost all \(x \in X\), then \(f\) is constant almost everywhere.
4. If \(f : X \to \mathbb{R}\) is in \(L^p_\mathbb{R}(\mu)\) and \((f \circ T)(x) = f(x)\) for all \(x \in X\), then \(f\) is constant almost everywhere.
5. If \(f : X \to \mathbb{R}\) is in \(L^p_\mathbb{R}(\mu)\) and \((f \circ T)(x) = f(x)\) for almost all \(x \in X\), then \(f\) is constant almost everywhere.

Theorem 40. The previous Theorem holds for complex valued functions and \(L^p_\mathbb{C}(\mu)\).

Theorem 41. Let \((X, \mathcal{B}, \mu)\) be a probability space. Let \(p \geq 1\). Then \(L^p_\mathbb{C}(\mu)\) and \(L^p_\mathbb{R}(\mu)\) are banach spaces with norm given by:

\[||f||_p = \left(\int |f|^p d\mu\right)^{\frac{1}{p}}.\]

Recall that the elements of these spaces are equivalence classes of functions. In the case \(p = 2\) these spaces are Hilbert spaces.

Theorem 42. Let \((S^1, \mathcal{B}, \mu)\) be the probability space given in Example 15. Then \(L^2_\mathbb{C}(\mu)\) is a separable Hilbert space, and the functions

\[f_k(z) = z^k, \quad k \in \mathbb{Z}\]

form a countable, complete orthonormal system. So for each \(f \in L^2_\mathbb{C}(\mu)\) we may write

\[f(z) = \sum_{n=-\infty}^{\infty} b_n z^n\]

in a unique way. Here the convergence is in \(L^2_\mathbb{C}(\mu)\), and we have

\[||f||_2 = \sqrt{\sum_{n=-\infty}^{\infty} |b_n|^2}.\]

This series is called the Fourier series.

Example 43. Let \((S^1, \mathcal{B}, \mu)\) be the probability space given in Example 15. Any irrational rotation of the circle is ergodic. Any rational rotation of the circle is not ergodic.

Example 44. Let \((S^1, \mathcal{B}, \mu)\) be the probability space given in Example 15. The measure preserving transformation \(T\) given by \(T(z) = z^2\) is ergodic.

Theorem 45. Let \((X, \mathcal{B}, \mu)\) be a probability space. Let \(\mathcal{A}\) be an algebra of subsets of \(X\) which generates \(\mathcal{B}\). Then for every \(B \in \mathcal{B}\) and every \(\epsilon > 0\) there exists \(A \in \mathcal{A}\) with \(\mu(A \Delta B) < \epsilon\).

Theorem 46. Let \((X, \mathcal{B}, \mu)\) be a probability space, and suppose that \(T : X \to X\) is measure preserving. Let \(\mathcal{A}\) be an algebra of subsets of \(X\) which generates \(\mathcal{B}\). Suppose that for each \(A \in \mathcal{A}\), there is a positive integer \(N\) such that if \(B = T^{-N}(A)\), then \(\mu(B \cap A) = \mu(B) \cdot \mu(A)\). Then \(T\) is ergodic.
We will denote \(X = (\Sigma, \mu) \) where the sum is taken over all \(Y \).

Let \(k \) be a positive integer. Fix \((X, \mathcal{B}, \mu) \) in the previous definition, the two-sided shift on \(X \).

Theorem 48. Let \(X \) and \(\mathcal{B} \) be as in the previous definition. There is a unique measure \(\mu \) such that

1. \((X, \mathcal{B}, \mu)\) is a probability space.

2. For any cylinder set

\[A = \{(\ldots, x_{-1}, x_0, x_1, \ldots) \in X : -n \leq j \leq n \implies x_j \in A_j\}, \]

we have:

\[\mu(A) = \prod_{i=-n}^{i=n} \mu_i(A_i). \]

Definition 49. We call the probability space \((X, \mathcal{B}, \mu)\) (as in the previous theorem) the product of the probability spaces \((X_i, \mathcal{B}_i, \mu_i)\) and write

\[(X, \mathcal{B}, \mu) = \prod_{i=-\infty}^{i=\infty} (X_i, \mathcal{B}_i, \mu_i). \]

Definition 50. Similarly, if we start with probability spaces \((X_i, \mathcal{B}_i, \mu_i)\) for each non-negative integer \(i \) we may form a probability space \((X, \mathcal{B}, \mu)\) which we call the product of the probability spaces \((X_i, \mathcal{B}_i, \mu_i)\) and write

\[(X, \mathcal{B}, \mu) = \prod_{i=0}^{i=\infty} (X_i, \mathcal{B}_i, \mu_i). \]

Definition 51. Fix a positive integer \(k \), and fix a probability vector \((p_1, \ldots, p_k)\) (so \(p_i \geq 0 \) for all \(i \), and \(p_1 + \cdots + p_k = 1 \)). Let \(Y = \{1, \ldots, k\} \), and let \(\mathcal{C} \) denote the collection of all subsets of \(Y \). Define a measure \(m \) on \(\mathcal{C} \) by \(m(A) = \sum p_i \), where the sum is taken over all \(i = 1, \ldots, k \) such that \(i \in A \). Then \((Y, \mathcal{C}, m)\) is a probability space.

For each integer \(i \), let \((X_i, \mathcal{B}_i, \mu_i) = (Y, \mathcal{C}, m)\). We may form the product

\[(X, \mathcal{B}, \mu) = \prod_{i=-\infty}^{i=\infty} (X_i, \mathcal{B}_i, \mu_i). \]

We will denote \(X \) by \(\Sigma_k \), and refer to \(\mu \) as the \((p_1, \ldots, p_k)\)-product measure. So we may consider the probability space \((\Sigma_k, \mathcal{B}, \mu)\).

Theorem 52. With respect to the probability space in the previous definition, the two-sided shift on \(k \) symbols is an invertible measure preserving transformation.

Definition 53. Fix a positive integer \(k \), and fix a probability vector \((p_1, \ldots, p_k)\) (so \(p_i \geq 0 \) for all \(i \), and \(p_1 + \cdots + p_k = 1 \)). Let \(Y = \{1, \ldots, k\} \), and let \(\mathcal{C} \) denote the collection of all subsets of \(Y \). Define a measure \(m \) on \(\mathcal{C} \) by \(m(A) = \sum p_i \), where the sum is taken over all \(i = 1, \ldots, k \) such that \(i \in A \). Then \((Y, \mathcal{C}, m)\) is a probability space.

For each non-negative integer \(i \), let \((X_i, \mathcal{B}_i, \mu_i) = (Y, \mathcal{C}, m)\). We may form the product

\[(X, \mathcal{B}, \mu) = \prod_{i=0}^{i=\infty} (X_i, \mathcal{B}_i, \mu_i). \]

We will denote \(X \) by \(\Sigma_k^+ \), and refer to \(\mu \) as the \((p_1, \ldots, p_k)\)-product measure. So we may consider the probability space \((\Sigma_k^+, \mathcal{B}, \mu)\).
Theorem 54. With respect to the probability space in the previous definition, the one-sided shift on k symbols is a measure preserving transformation.

Lemma 55. Consider the probability space (Σ_k^+, B, μ), and the one-sided shift T. Let A be a cylinder set given by

$$A = \{(x_0, x_1, \ldots) \in X : 0 \leq j \leq n \Rightarrow x_j \in A_j\}.$$

Let B be a cylinder set given by

$$B = \{(x_0, x_1, \ldots) \in X : 0 \leq j \leq n \Rightarrow x_j \in B_j\}.$$

If $s \geq n + 1$, then

$$\mu(T^{-s}(A) \cap B) = \mu(A) \cdot \mu(B).$$

Lemma 56. Consider the probability space (Σ_k, B, μ), and the two-sided shift T. Let A be a cylinder set given by

$$A = \{(\ldots, x_{-1}, x_0, x_1, \ldots) \in X : -n \leq j \leq n \Rightarrow x_j \in A_j\}.$$

Let B be a cylinder set given by

$$B = \{(\ldots, x_{-1}, x_0, x_1, \ldots) \in X : -n \leq j \leq n \Rightarrow x_j \in B_j\}.$$

If $s \geq 2n + 1$, then

$$\mu(T^{-s}(A) \cap B) = \mu(A) \cdot \mu(B).$$

Lemma 57. Let (X, B, μ) be a probability space. Suppose that $A = C_1 \cup \cdots \cup C_n$, a pairwise disjoint union of elements of B. Suppose that $B = D_1 \cup \cdots \cup D_n$, a pairwise disjoint union of elements of B. Suppose that for all i, j we have $\mu(C_i \cap D_j) = \mu(C_i) \cdot \mu(D_j)$. Then $\mu(A \cap B) = \mu(A) \cdot \mu(B)$.

Theorem 58. With respect to the probability space in Definition 53, the one-sided shift on k symbols is ergodic.

Theorem 59. With respect to the probability space in Definition 51, the two-sided shift on k symbols is ergodic.

Definition 60. Let (X_1, B_1, μ_1) and (X_2, B_2, μ_2) be probability spaces, and suppose that $T_1 : X_1 \to X_1$, $T_2 : X_2 \to X_2$ are measure preserving transformations. We say that T_1 is isomorphic to T_2 if and only if there exist $M_1 \in B_1$, $M_2 \in B_2$ and an invertible measure-preserving transformation $\phi : M_1 \to M_2$ such that

1. $\mu_1(M_1) = \mu_2(M_2) = 1$.
2. $T_1(M_1) \subset M_1$, and $T_2(M_2) \subset M_2$.
3. $\phi(T_1(x)) = T_2(\phi(x))$ for all $x \in M_1$.

Example 61. Let $T_1 : [0, 1] \to [0, 1]$ be given by $T_1(x) = 2x \mod 1$. Let $T_2 : S^1 \to S^1$ be given by $T_2(z) = z^2$. Then T_1 is isomorphic to T_2.

Proposition 62. Let (X_1, B_1, μ_1) and (X_2, B_2, μ_2) be probability spaces, and suppose that $T_1 : X_1 \to X_1$, $T_2 : X_2 \to X_2$ are measure preserving transformations. Suppose that T_1 is isomorphic to T_2. If T_1 is ergodic, then T_2 is ergodic.

Theorem 63. (Birkhoff Ergodic Theorem) Suppose that (X, B, μ) is a probability space, and $T : X \to X$ is measure preserving. Let $f \in L^1(\mu)$. Then the sequence

$$\frac{1}{n} \sum_{i=0}^{n-1} f(T^i(x))$$

converges almost everywhere to a function $f^* \in L^1(\mu)$. Also, $f^* \circ T = f^*$ almost everywhere and $\int f^* d\mu = \int f d\mu$.

We will return to the proof of this theorem, but we first look at some corollaries.
Corollary 64. (sometimes called the Ergodic Theorem) Suppose that \((X, \mathcal{B}, \mu)\) is a probability space, and \(T : X \to X\) is measure preserving. Then \(T\) is ergodic if and only if for all \(f \in L^1(\mu)\),
\[
\lim_{n \to \infty} \frac{1}{n} \sum_{i=0}^{n-1} f(T^i(x)) = \int f \, d\mu
\]
for almost all \(x \in X\).

Corollary 65. Suppose that \((X, \mathcal{B}, \mu)\) is a probability space, and \(T : X \to X\) is measure preserving and ergodic. Let \(E \in \mathcal{B}\). For each positive integer \(n\) and each \(x \in X\), let \(K_n(x)\) denote the cardinality of \(\{x, T(x), \ldots, T^{n-1}(x)\} \cap E\). Then for almost all \(x \in X\) we have
\[
\lim_{n \to \infty} \frac{K_n(x)}{n} = \mu(E).
\]

Corollary 66. (Borel’s Theorem on normal numbers) For almost all \(x \in [0,1)\), the frequency of ones in the binary expansion of \(x\) is \(\frac{1}{2}\).

Corollary 67. Suppose that \((X, \mathcal{B}, \mu)\) is a probability space, and \(T : X \to X\) is measure preserving. Then \(T\) is ergodic if and only if for all \(A, B \in \mathcal{B}\),
\[
\lim_{n \to \infty} \frac{1}{n} \sum_{i=0}^{n-1} \mu(T^{-i}(A) \cap B) = \mu(A)\mu(B).
\]

Our goal now is to prove the Birkhoff Ergodic Theorem.

Definition 68. Let \(L^0(X, \mathcal{B}, \mu)\) denote the vector space of measurable complex-valued functions. Let \(L^0_{\mathbb{R}}(X, \mathcal{B}, \mu)\) denote the vector space of measurable real-valued functions.

Definition 69. Let \((X_1, \mathcal{B}_1, \mu_1)\) and \((X_2, \mathcal{B}_2, \mu_2)\) be probability spaces, and suppose that \(T_1 : X_1 \to X_2\) is measure preserving. The induced operator \(U^0 : L^0(X_2, \mathcal{B}_2, \mu_2) \to L^0(X_1, \mathcal{B}_1, \mu_1)\) is defined by \((U^0(f))(x) = f(T(x))\) for \(x \in X_1\).

Proposition 70. 1. \(U^0\) is linear.
2. \(U^0(L^0_{\mathbb{R}}(X_2, \mathcal{B}_2, \mu_2)) \subseteq L^0_{\mathbb{R}}(X_1, \mathcal{B}_1, \mu_1)\).
3. \(U^0(f \cdot g) = (U^0(f)) \cdot (U^0(g))\).
4. \(U^0(c) = c\), if \(c\) is a constant function.
5. If \(f \geq 0\), then \(U^0(f) \geq 0\).
6. \(U^0(K_B) = K_{T^{-1}(B)}\) for all \(B \in \mathcal{B}\).

Definitions. \(K_B(x) = 1\) if \(x \in B\), and \(K_B(x) = 0\) if \(x \notin B\).

Proposition 71. Let \((X_1, \mathcal{B}_1, \mu_1)\) and \((X_2, \mathcal{B}_2, \mu_2)\) be probability spaces, and suppose that \(T_1 : X_1 \to X_2\) is measure preserving. If \(F \in L^0(X_2, \mathcal{B}_2, \mu_2)\), then
\[
\int U^0(F) \, d\mu_1 = \int F \, d\mu_2.
\]

Proposition 72. Let \((X_1, \mathcal{B}_1, \mu_1)\) and \((X_2, \mathcal{B}_2, \mu_2)\) be probability spaces, and suppose that \(T_1 : X_1 \to X_2\) is measure preserving. Let \(p \geq 1\). Then \(U^0(L^p(X_2, \mathcal{B}_2, \mu_2)) \subseteq L^p(X_1, \mathcal{B}_1, \mu_1)\), and \(\|U^0(f)\|_p = \|f\|_p\), for all \(f \in L^p(X_2, \mathcal{B}_2, \mu_2)\).

Theorem 73. (Maximal Ergodic Theorem) Suppose that \((X, \mathcal{B}, \mu)\) is a measure space, and let \(U : L^1_{\mathbb{R}}(X, \mathcal{B}, \mu) \to L^1_{\mathbb{R}}(X, \mathcal{B}, \mu)\) be a positive linear operator with \(\|U\| \leq 1\). Let \(N\) be a positive integer, and let \(f \in L^1_{\mathbb{R}}(X, \mathcal{B}, \mu)\). Set \(f_0 = 0\), and for \(n \geq 1\) set \(f_n = f + U(f) + U^2(f) + \cdots + U^{n-1}(f)\). Set \(F_N = \max_{0 \leq n \leq N} f_n\), and set \(A = \{x \in X : F_N(x) > 0\}\). Then \(\int_A f \, d\mu \geq 0\).
Corollary 74. Suppose that \((X, \mathcal{B}, \mu)\) is a probability space, and \(T : X \to X\) is measure preserving. Let \(g \in L^1(\mathbb{R}, \mathcal{B}, \mu)\), and let \(\alpha \in \mathbb{R}\). Set

\[
B_\alpha = \{ x \in X : \sup_{n \geq 1} \frac{1}{n} \sum_{i=0}^{n-1} g(T^i(x)) > \alpha \}.
\]

Suppose that \(A \in \mathcal{B}\) and \(T^{-1}(A) = A\). Then \(\int_{B_\alpha \cap A} g \, d\mu \geq \alpha \cdot \mu(B_\alpha \cap A)\).

We now prove the Birkhoff Ergodic Theorem. We will also prove the following:

Theorem 75. \((L^p \text{ Ergodic Theorem of Von Neumann})\) Suppose that \((X, \mathcal{B}, \mu)\) is a probability space, and \(T : X \to X\) is measure preserving. Let \(1 \leq p < \infty\), and let \(f \in L^p(\mu)\). Then for each \(n \geq 1\), the function \(\frac{1}{n} \sum_{i=0}^{n-1} f \circ T^i\) is in \(L^p(\mu)\). Also the function \(f^*\) given by \(f^*(x) = \lim_{n \to \infty} \frac{1}{n} \sum_{i=0}^{n-1} f(T^i(x))\) is in \(L^p(\mu)\). Finally,

\[
\lim_{n \to \infty} ||f^* - \frac{1}{n} \sum_{i=0}^{n-1} f \circ T^i||_p = 0.
\]

Definition 76. Suppose that \((X, \mathcal{B}, \mu)\) is a probability space, and \(T : X \to X\) is measure preserving. We say that \(T\) is weak-mixing if and only if for all \(A, B \in \mathcal{B}\),

\[
\lim_{n \to \infty} \frac{1}{n} \sum_{i=0}^{n-1} |\mu(T^{-1}(A) \cap B) - \mu(A)\mu(B)| = 0.
\]

We say that \(T\) is strong-mixing if and only if for all \(A, B \in \mathcal{B}\),

\[
\lim_{n \to \infty} \mu(T^{-n}(A) \cap B) = \mu(A)\mu(B).
\]

Theorem 77. Suppose that \((X, \mathcal{B}, \mu)\) is a probability space, and \(T : X \to X\) is measure preserving. If \(T\) is strong-mixing, then \(T\) weak-mixing. If \(T\) is weak-mixing, then \(T\) ergodic.

Definition 78. Let \(n\) be a positive integer, and let \(T : \Sigma_n \to \Sigma_n\) denote the two-sided shift map with symbols \(1, \ldots, n\) as in Definition 51. Let \(P = (p_{i,j})\) be a stochastic \(n \times n\) matrix. This means that each entry of the matrix is nonnegative and each row sum is one. Let \(\vec{p} = (p_1, \ldots, p_n)\) be a probability vector such that \(\vec{p}P = \vec{p}\) (i.e., a left eigenvector corresponding to the eigenvalue one).

We say that a subset \(B\) of \(\Sigma_n\) is an elementary rectangle if and only if there are symbols \(a_1, \ldots, a_k\) and an integer \(q\) such that \(B\) consists of all doubly infinite sequences \((x_i)\) such that \(x_q = a_1, \ldots, x_{q+k-1} = a_k\). We define a function \(\tau\) on the set of elementary rectangles by

\[
\tau(B) = p_{a_1} \cdot P_{a_1,a_2} \cdots P_{a_{k-1},a_k}
\]

where \(B\) is given as above.

Theorem 79. Let \(\Sigma_n\) and \(\mathcal{B}\) be as in Definition 51. There is a unique measure \(\mu\) which extends the function \(\tau\) given in the previous definition, such that \((\Sigma_n, \mathcal{B}, \mu)\) is a probability space. This measure is called the \((\vec{p}, P)\)-Markov measure.

Theorem 80. The two-sided shift map \(T : \Sigma_n \to \Sigma_n\) is an invertible, measure preserving transformation with respect to the probability space \((\Sigma_n, \mathcal{B}, \mu)\) where \(\mu\) is the \((\vec{p}, P)\)-Markov measure. Moreover, if \(A\) is the \(n \times n\) matrix given by \(A_{i,j} = 1\) if \(P_{i,j} > 0\), and \(A_{i,j} = 0\) if \(P_{i,j} = 0\), and \(\Sigma_A\) is the corresponding set of \(A\)-allowable sequences, then \(\mu(\Sigma_A) = 1\).

Proposition 81. If \(P\) is a stochastic matrix then for any positive integer \(k\), \(P^k\) is a stochastic matrix.

Proposition 82. Let \(\mu\) be the \((\vec{p}, P)\)-Markov measure as above. Let \(q\) be an integer, and let \(k\) be a positive integer. Let \(B\) consist of all doubly infinite sequences \((x_i)\) with \(x_q = a_1\) and \(x_{q+k} = a_2\). Then

\[
\mu(B) = p_{a_1}(P^k)_{a_1,a_2}
\]

where \((P^k)_{a_1,a_2}\) denotes the entry of \(P^k\) in row \(a_1\) and column \(a_2\).
Remark 83. When using the \((\vec{p},P)\)-Markov measure as above, we often assume that if \(\vec{p} = (p_1, \ldots, p_n)\) then \(p_i > 0\) for all \(i\).

Theorem 84. Let \(P = (p_{i,j})\) be a stochastic \(n \times n\) matrix, and let \(\vec{p} = (p_1, \ldots, p_n)\) be a probability vector such that \(p_i > 0\) for all \(i\) and \(\vec{p}P = \vec{p}\). Then \(\lim_{N \to \infty} \frac{1}{N} \sum_{k=0}^{N-1} P^k\) exists.

Proposition 85. Let \(P = (p_{i,j})\) be a stochastic \(n \times n\) matrix, and let \(\vec{p} = (p_1, \ldots, p_n)\) be a probability vector such that \(p_i > 0\) for all \(i\) and \(\vec{p}P = \vec{p}\). Let \(Q = \lim_{N \to \infty} \frac{1}{N} \sum_{k=0}^{N-1} P^k\).

1. If \(\vec{x}P = \vec{x}\), then \(\vec{x}Q = \vec{x}\).
2. \(Q\) is stochastic.
3. \(PQ = QP = Q\).
4. \(Q^2 = Q\).
5. If \(\vec{x}Q = \vec{x}\), then \(\vec{x}P = \vec{x}\).

Theorem 86. Suppose that \((X, \mathcal{B}, \mu)\) is a probability space, and \(T : X \to X\) is measure preserving. Let \(S\) be a semi-algebra which generates \(\mathcal{B}\). Then \(T\) is ergodic if and only if for all \(A, B \in S\),

\[
\lim_{n \to \infty} \frac{1}{n} \sum_{i=0}^{n-1} \mu(T^{-i}(A) \cap B) = \mu(A)\mu(B).
\]

Definition 87. Let \(P\) be a non-negative \(n \times n\) matrix. We say that \(P\) is irreducible if and only if for each pair \(i, j\) of positive integers with \(1 \leq i, j \leq n\) there is a positive integer \(k\) with \((P^k)_{i,j} > 0\).

Theorem 88. Let \(P = (p_{i,j})\) be a stochastic \(n \times n\) matrix, and let \(\vec{p} = (p_1, \ldots, p_n)\) be a probability vector such that \(p_i > 0\) for all \(i\) and \(\vec{p}P = \vec{p}\). Let \(Q = \lim_{N \to \infty} \frac{1}{N} \sum_{k=0}^{N-1} P^k\). Let \(T\) denote the shift transformation with the \((\vec{p},P)\)-Markov measure (sometimes called the \((\vec{p},P)\)-Markov shift). The following are equivalent.

1. \(T\) is ergodic.
2. Each row of \(Q\) is \(\vec{p}\).
3. All rows of \(Q\) are identical.
4. Each entry of \(Q\) is positive.
5. \(P\) is irreducible.
6. 1 is a simple eigenvalue of \(P\) (i.e. the eigenspace is one-dimensional).

Definition 89. We will assume that \(X\) is a compact metric space. Also, recall the following. Let \(\mathcal{B}(X)\) denote the smallest \(\sigma\)-algebra containing each open subset of \(X\). We call \(\mathcal{B}(X)\) the collection of Borel sets. If \((X, \mathcal{B}(X), \mu)\) is a probability space, we call \(\mu\) a Borel probability measure. We will let \(M(X)\) denote the set of Borel probability measures.

Theorem 90. Let \(\mu \in M(X)\). For all \(B \in \mathcal{B}(X)\) and all \(\epsilon > 0\), there is an open set \(V_\epsilon\) and a closed set \(C_\epsilon\) with \(C_\epsilon \subset B \subset V_\epsilon\) and \(\mu(V_\epsilon - C_\epsilon) < \epsilon\). (A measure with this property is called regular.)

Corollary 91. Let \(\mu \in M(X)\), and let \(B \in \mathcal{B}(X)\). Then

\[
\mu(B) = \sup \mu(C),
\]

where the supremum is taken over all closed sets \(C\) with \(C \subset B\). Also,

\[
\mu(B) = \inf \mu(V),
\]

where the infimum is taken over all open sets \(V\) with \(B \subset V\).
Definition 92. (and remark) Let $C(X)$ denote the space of (bounded) continuous real valued functions on X. Recall that $C(X)$ is a Banach space (a complete normed linear space) with norm given by

$$||f|| = \sup_{x \in X} |f(x)|.$$

Theorem 93. Let $\mu_1, \mu_2 \in M(X)$. If $\int f d\mu_1 = \int f d\mu_2$ for all $f \in C(X)$, then $\mu_1 = \mu_2$.

Definition 94. (and remark) Let $\mu \in M(X)$. Define a function $J_\mu : C(X) \to \mathbb{R}$ by $J_\mu(f) = \int f d\mu$. Observe that

1. J_μ is linear.
2. If $f \geq 0$, then $J_\mu(f) \geq 0$.
3. If $f(x) = 1$ for all $x \in X$, then $J_\mu(f) = 1$.
4. The function $\mu \to J_\mu$ is injective.

Definition 95. A linear map $L : C(X) \to \mathbb{R}$ is called a linear functional on $C(X)$. We say that a linear functional L on $C(X)$ is bounded if and only if there exists a positive real number M such that for all $f \in C(X)$ we have

$$|L(f)| \leq M \cdot ||f||.$$

Proposition 96. Let $\mu \in M(X)$. Then $J_\mu : C(X) \to \mathbb{R}$ is a bounded linear functional on $C(X)$.

Definition 97. (and remark) Let Y be a normed linear space, and let Y^* denote the set of bounded linear functionals on Y. We define a norm on Y^* by

$$||L|| = \sup_{x \in Y, x \neq 0} \frac{|L(x)|}{||x||}.$$

With this norm Y^* is a Banach space. This norm determines a topology on Y^* called the strong topology.

Now given a a collection of \mathcal{F} of linear functionals on Y^* (so $\mathcal{F} \subset (Y^*)^*$), there is a smallest topology on Y^* such that each $f \in \mathcal{F}$ is continuous. If we take $\mathcal{F} = (Y^*)^*$, this determines a topology on Y^* called the weak topology.

Finally, for each $y \in Y$, we obtain an element ϕ_y of $(Y^*)^*$ by setting $\phi_y(L) = L(y)$. Let $\mathcal{F} = \{\phi_y : y \in Y\}$. Then \mathcal{F} determines a topology on Y^* called the weak* topology on Y^*. In general, the weak* topology is weaker (has fewer open sets) than the weak topology.

Definition 98. Let L be a bounded linear functional on $C(X)$. We say that L is positive if and only if $f \geq 0$ implies that $L(f) \geq 0$. We say that L is normalized if and only if $L(1) = 1$, where the first 1 denotes the constant function 1. Let $NPLF(X)$ denote the subset of $(C(X))^*$ which consists of all bounded, positive, normalized linear functionals on $C(X)$.

Theorem 99. The function $G : M(X) \to NPLF(X)$ defined by $G(\mu) = J_\mu$ is a bijection.

Proof. Surjectivity follows from one form of the Riesz representation theorem.

Definition 100. Let T_1 denote the weak* topology on $(C(X))^*$. Let T_2 denote the relative topology on $NPLF(X)$ obtained from T_1. Let T_3 denote the collection of subsets of $M(X)$ of the form $G^{-1}(V)$ where $V \in T_2$. Then T_3 is a topology on $M(X)$. We call this topology the weak* topology on $M(X)$.

Theorem 101. Given $f \in C(X)$ we define a function $H_f : M(X) \to \mathbb{R}$ by $H_f(\mu) = \int f d\mu$. The weak* topology on $M(X)$ is the smallest topology on $M(X)$ such that each function H_f is continuous.

Theorem 102. The space $C(X)$ is separable. (There exists a countable, dense subset.)

Corollary 103. There exists a countable, dense subset F of $C(X)$ such that the constant function zero is not in F.

Theorem 104. The space $M(X)$ with the weak* topology is metrizable.
Theorem 105. Let Y be a normed linear space, and let Y^* denote the set of bounded linear functionals on Y. Then the unit sphere
\[\{ L \in Y^* : ||L|| \leq 1 \} \]
is compact with the weak* topology. Here the norm is as defined in Definition 97.

Theorem 106. The space $M(X)$ with the weak* topology is compact.

Proposition 107. (and notation) Let $T : X \to X$ be continuous. There is a well-defined function $\hat{T} : M(X) \to M(X)$ given by
\[(\hat{T}(\mu))(B) = \mu(T^{-1}(B)) \]
for all $B \in \mathcal{B}(X)$.

Proposition 108. Let $\mu \in M(X)$, and let $T : X \to X$ be continuous. Then $\int f d\hat{T}(\mu) = \int (f \circ T) d\mu$ for all $f \in C(X)$.

Proposition 109. Let $\mu \in M(X)$, and let $T : X \to X$ be continuous. The following are equivalent.
1. T is a measure preserving transformation of the probability space $(X, \mathcal{B}(X), \mu)$.
2. $\hat{T}(\mu) = \mu$.
3. $\int (f \circ T) d\mu = \int f d\mu$ for all $f \in C(X)$.

Definition 110. Let $T : X \to X$ be continuous. We let $M(X, T)$ denote the set of all $\mu \in M(X)$ such that T is a measure preserving transformation of the probability space $(X, \mathcal{B}(X), \mu)$. The elements of $M(X, T)$ are called T-invariant measures.

Theorem 111. Let (μ_n) be a sequence in $M(X)$ with the weak* topology, and let $\mu \in M(X)$. Then $\mu_n \to \mu$ if and only if for each $f \in C(X)$,
\[\int f d\mu_n \to \int f d\mu. \]

Proof. This is a homework problem.

Theorem 112. Let $T : X \to X$ be continuous. Then $M(X, T)$ is a closed subset of $M(X)$ (with the weak* topology). Hence, $M(X, T)$ is compact.

Theorem 113. Let $T : X \to X$ be continuous. Let (σ_n) be a sequence in $M(X)$. Define a new sequence (μ_n) in $M(X)$ by
\[\mu_n = \frac{1}{n} \sum_{i=0}^{n-1} \hat{T}^i(\sigma_n). \]

Then any subsequential limit of the sequence (μ_n) is an element of $M(X, T)$. In particular, $M(X, T) \neq \emptyset$.

Proposition 114. Let $\mu_1, \mu_2 \in M(X)$, and let $\lambda \in [0, 1]$. Then there is an element μ_3 of $M(X)$ defined by
\[\mu_3 = \lambda \mu_1 + (1 - \lambda) \mu_2. \]

Definition 115. Let K be a subset of $M(X)$. We say that K is convex if and only if whenever $\mu_1, \mu_2 \in K$ and $\lambda \in [0, 1]$ we have $(\lambda \mu_1 + (1 - \lambda) \mu_2) \in K$.

Proposition 116. If $T : X \to X$ is continuous, then $M(X, T)$ is a convex subset of $M(X)$.

Definition 117. Let $T : X \to X$ be continuous. An element μ of $M(X, T)$ is called an extreme point of $M(X, T)$ if and only if whenever $\mu = \lambda \mu_1 + (1 - \lambda) \mu_2$ with $\lambda \in [0, 1]$ and $\mu_1, \mu_2 \in M(X, T)$, we have $\mu = \mu_1$ or $\mu = \mu_2$.

Theorem 118. Let $T : X \to X$ be continuous. Suppose that $\mu \in M(X, T)$, and μ is an extreme point of $M(X, T)$. Then T is an ergodic measure preserving transformation of the probability space $(X, \mathcal{B}(X), \mu)$.
Definition 119. Let $T : X \to X$ be continuous. Suppose that $\mu \in M(X, T)$, and T is an ergodic measure preserving transformation of the probability space $(X, \mathcal{B}(X), \mu)$. Then we say that μ is ergodic.

Definition 120. Let (X, \mathcal{B}, μ) and (X, \mathcal{B}, μ_1) be a measure spaces. We say that μ_1 is absolutely continuous with respect to μ if and only if $\mu(A) = 0$ implies that $\mu_1(A) = 0$.

Theorem 121. (Radon-Nikodym) Let (X, \mathcal{B}, μ) be a σ-finite measure spaces. Let μ_1 be a measure which is absolutely continuous with respect to μ. Then there is a nonnegative measurable function f such that for all $E \in \mathcal{B}$ we have

$$\mu_1(E) = \int_E f \, d\mu.$$

The function f is unique, in the sense that if g has the same properties, then $g = f$ almost everywhere.

Theorem 122. Let $T : X \to X$ be continuous. Suppose that $\mu \in M(X, T)$, and $\mu_1 \in M(X, T)$. Suppose that μ_1 is absolutely continuous with respect to μ. If μ is ergodic, then $\mu_1 = \mu$.

Theorem 123. Let $T : X \to X$ be continuous. Suppose that $\mu \in M(X, T)$. Then μ is an extreme point of $M(X, T)$ if and only if μ is ergodic.

Theorem 124. (Krein-Milman) Let X be a locally convex topological vector space. Let K be a compact convex subset of X. Then K is the closed convex hull of its extreme points. In particular, if $K \neq \emptyset$, then K has extreme points.

Theorem 125. Let Y be a normed linear space, and let Y^* denote the set of bounded linear functionals on Y. Then Y^* with the weak* topology is a locally convex topological vector space.

Theorem 126. Let $T : X \to X$ be continuous. Then there exists a T-invariant ergodic measure.

Definition 127. Let (X, \mathcal{B}, μ_1) and (X, \mathcal{B}, μ_2) be a measure spaces. We say that μ_1 and μ_2 are mutually singular if and only if there exist disjoint sets $A, B \in \mathcal{B}$ with $X = A \cup B$ and

$$\mu_1(A) = 0 = \mu_2(B).$$

Theorem 128. (Lebesgue decomposition) Let (X, \mathcal{B}, μ_1) and (X, \mathcal{B}, μ_2) be a σ-finite measure spaces. Then there exists a measure μ_3 on (X, \mathcal{B}) which is singular with respect to μ_1 and a measure μ_4 on (X, \mathcal{B}) which is absolutely continuous with respect to μ_1 such that $\mu_2 = \mu_3 + \mu_4$. The measures μ_3 and μ_4 are unique.

Corollary 129. Let (X, \mathcal{B}, μ_1) and (X, \mathcal{B}, μ_2) be probability spaces. Then there exists $p \in [0, 1]$ and probability measures μ_5 and μ_6 on (X, \mathcal{B}) such that

1. μ_5 is singular with respect to μ_1.
2. μ_6 is absolutely continuous with respect to μ_1.
3. $\mu_2 = p\mu_5 + (1 - p)\mu_6$.

The measures μ_5 and μ_6 and the number p are unique.

Remark 130. Recall that we are assuming in these notes in all items 89 and above (except items 97, 105, 121, 124, 125, 127, 128, and 129) that X is a compact metric space.

Example. Let $T : X \to X$ be continuous. Suppose $\mu_1, \mu_2 \in M(X)$ are mutually singular. Then it need not be the case that $\hat{T}(\mu_1)$ and $\hat{T}(\mu_2)$ are mutually singular.

Proposition 131. Let $T : X \to X$ be a homeomorphism. Suppose $\mu_1, \mu_2 \in M(X)$ are mutually singular. Then $\hat{T}(\mu_1)$ and $\hat{T}(\mu_2)$ are mutually singular.

Theorem 132. Let $T : X \to X$ be a homeomorphism. Suppose $\mu_1, \mu_2 \in M(X, T)$ are ergodic and $\mu_1 \neq \mu_2$. Then μ_1 and μ_2 are mutually singular.
Theorem 133. Let X and Y be compact metric spaces, and let $f : X \to X$ and $g : Y \to Y$ be continuous. Suppose that f and g are topologically conjugate. Then there exists a function $H : M(X,f) \to M(Y,g)$ such that

1. H is a homeomorphism,
2. H is affine,
3. $\mu \in M(X,f)$ is ergodic if and only if $H(\mu) \in M(Y,g)$ is ergodic.

Definition 134. Let $f : X \to X$ be continuous. We say that f is uniquely ergodic if and only if $M(X,f)$ has only one element.

Definition 135. (and Remark) Let $\alpha = (p_1, p_2, \ldots)$ be a sequence of integers where each $p_i \geq 2$. Let Δ_α denote the set of all sequences (x_1, x_2, \ldots) where $x_i \in \{0, 1, \ldots, p_i - 1\}$ for each i. We use the product topology on Δ_α. Observe that Δ_α is a compact, metrizable space.

Addition in Δ_α is defined as follows. We set

$$(x_1, x_2, \ldots) + (y_1, y_2, \ldots) = (z_1, z_2, \ldots)$$

where $z_1 = x_1 + y_1 \mod p_1$, $z_2 = x_2 + y_2 + t_1 \mod p_2$, etc. Here $t_1 = 0$ if $x_1 + y_1 < p_1$ and $t_1 = 1$ if $x_1 + y_1 \geq p_1$. So, we carry a one in the second case. Continue adding and carrying in this way for the whole sequence.

With this addition Δ_α is a topological group known as the α-adic adding machine.

We define $f_\alpha : \Delta_\alpha \to \Delta_\alpha$ by

$$f_\alpha(x_1, x_2, \ldots) = (x_1, x_2, \ldots) + (1, 0, 0, \ldots).$$

We will refer to the map $f_\alpha : \Delta_\alpha \to \Delta_\alpha$ as the adding machine map. This map is also sometimes called the odometer map.

Theorem 136. Let $\alpha = (p_1, p_2, \ldots)$ be a sequence of integers with $p_i \geq 2$ for each i. Let $j_i = p_1 \cdot p_2 \cdot \ldots \cdot p_i$ for each i. Let $f : X \to X$ be a continuous map of a compact metric space X. Then f is topologically conjugate to f_α if and only if (1), (2), and (3) hold.

1. For each positive integer i, there is a cover P_i of X consisting of j_i pairwise disjoint, nonempty, clopen sets which are cyclically permuted by f.
2. For each positive integer i, P_{i+1} is a refinement of P_i.
3. If $\text{mesh}(P_i)$ denotes the maximum diameter of an element of the cover P_i, then $\text{mesh}(P_i) \to 0$ as $i \to \infty$.

Corollary 137. Let $\alpha = (p_1, p_2, \ldots)$ be a sequence of integers with $p_i \geq 2$ for each i. Then Δ_α is a minimal set for f_α.

Theorem 138. Let $\alpha = (p_1, p_2, \ldots)$ be a sequence of integers with $p_i \geq 2$ for each i. Then the adding machine map f_α is uniquely ergodic.