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This pattern is especially evident on the right of Figure 3.3, where each
(3) is worked out. Notice how 21 is the sum of the numbers 6 and 15 above
it. Similarly, 5 is the sum of the 1 and 4 above it and so on.

This arrangement is called Pascal’s triangle, after Blaise Pascal, 1623-
1662, a French philosopher and mathematician who discovered many of its
properties. We've shown only the first eight rows, but the triangle extends
downward forever. We can always add a new row at the bottom by placing
a 1 at each end and obtaining each remaining number by adding the two
numbers above its position. Doing this in Figure 3.3 (right) gives a new
bottom row

1 8 28 56 70 56 28 8 1.

This row consists of the numbers (%) for 0 <% <8, and we have computed
them without the formula (§) = zi;- Any (;) can be computed this way.
The very top row (containing only 1) of Pascal’s triangle is called Row 0.
Row 1 is the next down, followed by Row 2, then Row 3, etc. Thus Row n
lists the numbers (7} for 0<% <n. Exercises 3.5.13 and 3.5.14 established

(i)

for each 0 <k s n. In words, the kth entry of Row n of Pascal’s triangle
equals the (n — £)th entry. This means that Pascal’s triangle is symmetric
with respect to the vertical line through its apex, as is evident in Figure 3.3.

1 1
1 1 1x + 1y
1 2 i 122 + 2oy + 15°
1 3 3 s 1 123 + 322y + 3292 + 18
1 4 6 4 1 1zt + 453y +6x2y% + 4xyd + 1yt

1 5 10 10 5 1 125 + 5aty +10x%y% + 10270 + Bay? + 155

Figure 3.4. The n'* row of Pascal’s triangle lists the coefficients of (x + y)*

Notice that Row n appears to be a list of the coefficients of {x + y)”.
For example (x + y) = 1x% + 2xy + 152, and Row 2 lists the coefficients 1 2 1.
Also (x +y)° = 1x% + 3x%y + 3xy2 + 153, and Row 3 is 1 3 3 1. See Figure 3.4,
which suggests that the numbers in Row n are the coefficients of (x + y)".
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