MHF 3202, Dr. Block, Problem Set 1, due 3-23-2020

1. Suppose that t is a real number. Prove that there exists a real number w such that $\frac{w+1}{w-2}=t$ if and only if $t \neq 1$.
Hint: Here is an outline of a proof:
Suppose that t is a real number.
First, we prove that if there exists a real number w such that $\frac{w+1}{w-2}=t$, then $t \neq 1$. By way of contradiction, suppose that there is some real number w such that $\frac{w+1}{w-2}=t$, and $t=1$.
You fill in this part. You must prove something that gives a contradiction.

This is a contradiction. We conclude that if there exists a real number w such that $\frac{w+1}{w-2}=t$, then $t \neq 1$.

Second, we prove that if $t \neq 1$, then there exists a real number w such that $\frac{w+1}{w-2}=t$. Suppose that $t \neq 1$. Set $w=$??.
**You must figure out what to set w equal to. This is scratch work. Of course the w may depend on the $t .^{* *}$
Then you must prove each of the following.
w is a well-defined real number.
$w \neq 2$.
$\frac{w+1}{w-2}=t$.
This completes the proof.
2. Prove that for every $\epsilon>0$ there exists $\delta>0$ such that if $x \in \mathbb{R}$ and $|x-3|<\delta$, then $\left|x^{2}-5 x+6\right|<\epsilon$.

Hint: Here is an outline of a proof:
Suppose that $\epsilon>0$. Set $\delta=$??
Suppose that $x \in \mathbb{R}$ and $|x-3|<\delta$.
**Finish the proof by showing that $\left|x^{2}-5 x+6\right|<\epsilon$.
**A key part of the proof involves scratch work to find a suitable δ. **

