MHF 3202, Dr. Block, Problem Set 1, due 3-23-2020

1. Suppose that t is a real number. Prove that there exists a real number w such that $\frac{w+1}{w-2} = t$ if and only if $t \neq 1$.

Hint: Here is an outline of a proof:

Suppose that t is a real number.

First, we prove that if there exists a real number w such that $\frac{w+1}{w-2} = t$, then $t \neq 1$. By way of contradiction, suppose that there is some real number w such that $\frac{w+1}{w-2} = t$, and t = 1.

**You fill in this part. You must prove something that gives a contradiction. **

This is a contradiction. We conclude that if there exists a real number w such that $\frac{w+1}{w-2} = t$, then $t \neq 1$.

Second, we prove that if $t \neq 1$, then there exists a real number w such that $\frac{w+1}{w-2} = t$. Suppose that $t \neq 1$. Set w = ??.

You must figure out what to set w equal to. This is scratch work. Of course the w may depend on the t.

Then you must prove each of the following.

w is a well-defined real number.

$$w \neq 2.$$

$$\frac{w+1}{2} - t$$

 $\frac{w+1}{w-2} = t.$

This completes the proof.

2. Prove that for every $\epsilon > 0$ there exists $\delta > 0$ such that if $x \in \mathbb{R}$ and $|x-3| < \delta$, then $|x^2 - 5x + 6| < \epsilon$.

Hint: Here is an outline of a proof:

Suppose that $\epsilon > 0$. Set $\delta = ??$.

Suppose that $x \in \mathbb{R}$ and $|x - 3| < \delta$.

**Finish the proof by showing that $|x^2 - 5x + 6| < \epsilon$.

**A key part of the proof involves scratch work to find a suitable $\delta.$ **