1. Algebraic Properties of the Real Numbers

1.1 Axioms (Algebraic Axioms for the Real Numbers (“Field Axioms”)). We assume that
the real numbers consists of a set R equipped with two binary operations  + 7 and - 7
satisfying the following axioms:

AC (Commutativity of Addition)
a+b=b+aforalabckR.

AA (Associativity of Addition)
a+(b+c)=(a+b)+cforalla,bececR.

AID (Existence of Additive Identity) There is a number 0 € R satisfying

a+0=a=0+aforalla e R.

ATV (Existence of Additive Inverses) Corresponding to each a € R, there is a unique number
—a € R satisfying
a+(—a)=0=(—a)+a.

MC (Commutativity of Multiplication)
ab = ba for all a,b € R.

MA (Associativity of Multiplication)
a(bc) = (ab)c for all a,b,c € R.

MID (Existence of Multiplicative Identity) There is a number 1 (different from 0) in R
satisfying '
la =a=qalforalla € R.

MIV (Existence of Multiplicative Inverses) Corresponding to each a (except 0) in R, there
is a unique number a~! € R satisfying
ael'=1=a"la.

D (Distributivity)

a(b+ ¢) = ab+ ac and (a + b = ac+ be for all a,b,c € R.

1.2 Remark. Some other basic facts will be used in proofs without being formally stated

here and without citation (except as needed to clarify the exposition). These can be divided”
into two categories:
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1. Laws of logic.

2. Laws of equality. First, we have three basic axioms: For all a,b and ¢ we have
(i) @ = a, (ii) if @ = b then b = ¢, and (iii) if @« = b and b = ¢ then a = c. In addition
there is a general principle which we may call substitution of equals, stating that if
a = b then we may freely substitute the symbol b for ¢ in any expression. Thus, if
a =band ¢ = d then a + ¢ = b+ d and ac = bd. The principle here is that a = b
means that the symbols a and b are names for the same object. All of the properties
with which we are concerned are properties of the underlying object, not of the name,
and hence are unaffected by which name we happen to use for the object.

1.3 Definition/Remark. A binary operation on a set S is a function that assigns to every
ordered pair of elements of 5 a unique element of S. Familiar examples of binary operations
on R are ordinary addition, subtraction, and multiplication. In particular, if we write a +b =
¢, we are assigning the real number ¢ (the “answer”) to the ordered pair {a, b) of real numbers.

One immediate consequence of this definition is the familiar “equals added to equals are
equal”. In other words, if ¢ = b and ¢ = d, then a + ¢ = b + d. The justification for this
is that our binary operation of addition assigns to the ordered pair (a, ¢} some real number
e, let’s say. But since a = b and ¢ = d, the ordered pair (b, d) is the same ordered pair as
(a,c), and since the operation of addition assigns a unigue number e to this ordered pair, we
must have b+ d = e. But since a 4 ¢ = ¢ we have a + ¢ = b+ d. In summary, we can say
that the definition of binary operation justifies the implication that if @ = b and ¢ = d, then
a-+c= b+ d. Similar considerations apply to subtraction, multiplication, and d1v151on.

We will use the familiar rule that multiplication takes precidence over addition, so that
ab + cd means (ab) + (cd).

1.4 Theorem. Suppose a,b,¢,d € R. Then
a). Ifa+ec=b+c, then a=0b.

bj. The additive identity is unique.
That is, ifec Randa+e=a=ce+4+a foralla € R, thene= 0.

¢). Ifac=bc and ¢ £ 0, then a = b.

d). The multiplicative identity is unique.
That is, ifec R anda-e=a=¢e-a foralla € R, thene=1.

e). (a+b)+(c+d) = (a+c)+(b+d) and (ab)(cd) = (ac)(bd).
f). a0 =0 = 0a.

g). Ifab=0, thena =0 orb=0.

B). (—1)a = —a.

i). —(—a)=a and —(a +b) = (—a) + (-b

Warning: You cannot use the identity “( 1)(—1) = 1”7 in the proof of clause (i), since
you will not have proved it until clause (j).



1). a(=b) = —(ab) = (—a)b and (—a)(—b) = ab.

k). If a # 0, then a™* # 0.

). If a £ 0, then (=)™ =a; also ifa # 0 and b # 0, then (ab)™! =a 17
1.5 Theorem. Suppose a,b &€ R.

a). The equation b+ z = a has one and only one solution.

b). Ifb+# 0, then the equation bx = a has one and only one solution.
1.6 Definition. We define subtraction and division as follows.

a). For a,b € R, a — b denotes that number z such that b+ z = q.

b). Fora,be R }Vith b#0, % denotes that number z such that bz = a.
1.7 Theorem. Suppose a,b,c,d € E.

). a—b=a+(—b); also, if b0, then % = abl,

b). a(b—c)=ab—ac and —(a —b) = b — a.
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e). If a0, then " s the multiplicative inverse of a .

d}. %: a; also, if a #£ 0, then Sy
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1.13 Axioms (Order Axioms for the Real Numbers). We assume that there is a binary re-
- lation “ < 7 on R satisfying the following axioms:

OTC (Trichotomy)
# For any a,b € R, exactly one of @ < b, a = b, and b < @ holds.

OTR (Transitivity)
Ifa<bandb<e thena <ec.

OA (Compatibility with Addition)
fa<b thena+c<b+e

OM (Compatibility with Multiplication)
If « < band 0 < ¢, then ac < be.

LUB (Least Upper Bound) This axiom will be presented in Chapter 4.
1.14 Notation. “a > b” means “b < a”, “a < b” means “a < bor a = b”, etc.
1.15 Theorem. Suppose a,b,c € R. Then
a). Ifa>0 and b >0, then a4+ b > 0.
b). Ifa < b, then —a > —b.
e). Ifa <bandc <0, then ac > be.
d). a>0,b6>0 imply ab> 0; @ > 0,b < 0 imply ab < 0; and a < 0,b < 0 imply ab > 0.
e). ab> 0 implies that either a > 0 and b > 0 or else a < 0 and b < 0. |
f). 0<1.

gl a—l<a<a+l.
k). Suppose a # 0. Then a > 0 iﬁl>0.
a

i). Suppose b#0. Then ¢ >0 iff eithera >0 and b> 0 ora <0 and b < 0.

1

1
). Suppose a and b are either both positive or both negative. Then a < b iff = > 3
a

k). If a* < b and a,b> 0, then a < b.

1.16 Exercise. Prove or disprove each of the following.
a). fa<band c< d, then a+c < b+ d.
b). Ifa < b and ¢ < d, then ac < bd.

c). Formulate true versions of the statements you disproved.



