
Sets and Logic, Dr. Block, Lecture Notes, 3-13-2020

First, we look at Proposition 69 in my course notes:

Proposition 69. Suppose that a and b are positive integers. Then
there exist integers k and ` such that

gcd(a, b) = ak + b`.

This appears in the text as Proposition 7.1 on page 152. You should
study the details of this proof in the text. Here is an outline of the steps
in the proof.

Step 1. Consider the set A = {ax+ by : x, y ∈ Z}, and B = {w ∈ A :
w ≥ 1}. The set B is not given a name in the proof in the text, but is still
involved in the proof. Verify that B is not empty. So B has a smallest
element which we call d.

Step 2. Note that since d ∈ B we have d ≥ 1 and for some integers k
and ` we have

d = ak + b`.

Note that the integers k and ` are now fixed for the rest of the proof.

Step 3. Prove that d is a common divsor of a and b.

Step 4. Prove that d is a multiple of gcd(a, b).

Conclusion. It follows from Step 4 that d ≥ gcd(a, b). Then from
Step 3, d = gcd(a, b). Therefore, by Step 2,

gcd(a, b) = ak + b`.
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Next, we use Proposition 69 in one of the exercises in the text.

Exercise 30. Suppose a, b, p ∈ Z and p is prime. Prove that if p|ab
then p|a or p|b.



Before giving the proof, consider the form of the statement we are
asked to prove. The form is P ⇒ (Q ∨ R). So we will begin the proof
with the statement ”Suppose P.” Then we have to prove (Q∨R). Recall
the ways of proving a statement of this form:

* Suppose ∼ Q and prove R.
* Suppose ∼ R and prove Q.
* Proceed by contradiction.
* Make cases and deal with each case separately. When you do this

the cases must cover every possibility. Here is one example: Suppose that
x is an integer.

Case 1. x is even.
Case 2. x is odd.
In the following proof that follows we will use the first way listed above:

* Suppose ∼ Q and prove R. Here is the proof.

Proof of Exercise 30. Suppose that a, b, p ∈ Z and p is prime.
Suppose that p|ab. Suppose also that p does not divide a. Then, since p

is prime, we must have gcd(a, p) = 1. It follows from Proposition 69 that
for some integers k and ` we have

ak + p` = 1.

Multiplying both sides by b we obtain

abk + pb` = b.

Now, since p|ab, there is some integer x satisfying ab = px. Substituting
this in the last displayed equality, we obtain

pxk + pb` = b.

Therefore, p(xk + b`) = b, and thus, p|b.
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Next, we look at Exercise 32.

Exercise 32. If n ∈ Z, then gcd(n, n + 2) ∈ {1, 2}.



The stategy here is to give a name to the greatest common divisor,
and the use the fact that it divides both n and n+2. We also use the fact
that a positive integer j can not divide a positive integer smaller that j.
See Propostion 42, in the course notes.

Proof of Exercise 32.

Suppose that n ∈ Z. Let d = gcd(n, n + 2). Then for some integers x
and y we have n = dx and n + 2 = dy. It follows that

2 = n + 2− n = dy − dx = d(y − x).

So, d|2. Since d ≥ 1, it follows that d ∈ {1, 2}. Therefore,

gcd(n, n + 2) ∈ {1, 2}.
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Finally, we look at Exercise 18.

Exercise 18. There is a set X for which N ∈ X and N ⊆ X.

To prove this we must exhibit a set X that satisfies the desired prop-
erties. Here is a proof.

Proof of Exercise 18. Consider the set

X = {N} ∪ N = {N, 1, 2, 3, . . . }.

We see that N ∈ X and N ⊆ X.
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